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Darboux transformations for Schrédinger equations
in two variables
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(Received 7 June 2005; accepted 17 June 2005; published online 11 August 2005)

Darboux transformations in one variable form the basis for the factorization
methods and have numerous applications to geometry, nonlinear equations and
SUSY quantum mechanics. In spite of this wide range of applications the theory of
Darboux transformations in two variables and its elegant relationship to analytic
complex functions has not been recognized in the literature. To close this gap we
develop in this paper the theory of Darboux transformation in the context of
Schrodinger equations in two variables. This yields a constructive algorithm to
determine the relationship between potential functions which are related by
Darboux transformations. © 2005 American Institute of Physics.

[DOI: 10.1063/1.2000727]

I. INTRODUCTION

For over half a century Darboux transformations in one independent variable have found
numerous application in various field of mathematics and physics.l_4 (References 1 and 2 contain
an extensive list of references.) In particular the factorization method™® and its gerleralizations7_11
which have been instrumental in many physical applications [including SUSY quantum mechanics
(QM)IZ] has its roots based on these transformations. Recently however these transformations
were generalized and applied to systems of nonlinear equations such as the KdV hierarchy and
others." In addition various applications of this method in geometry were worked out and form an
important ongoing research area.” Extensions of the method to multidimensional oriented Rie-
mann manifolds,'* time dependent potentials15 and shape invariant potentials16 have appeared in
the literature.

It is surprising that in spite of this extensive research effort the theory of these transformations
in two variables and its elegant relationship to complex analytic function theory has not been
worked out (as far as we could ascertain). An exception is the recent paper by Demircioglu et al. 17
which considered these transformations under some additional constraints using real variables and
polar coordinates. However under these additional constraints only partial results were obtained
and the relationship between these transformations and analytic complex functions was lost.

We now give a short overview of Darboux transformations for Schrodinger equation in one
variable.

We say that the solutions of two Schrodinger equations with different potentials u(x), v(x),
ie.,

¢" = (u(x) +N) ¢, (1.1)
Y= W)+ N, (1.2)

are related by a Darboux transformation if there exist A(x), B(x) so that
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Y= {Am *B(’“)a%} $(x). (13)

Letting B(x)=1 one can easily show that in order for Eqs (1.1) and (1.2) to be related by the
transformation (1.3) A(x), u(x), v(x) must satisfy

A"+u' +A(u—-v)=0, (1.4)

2A" +u-v=0. (1.5)

Eliminating (z—v) between these equations and integration yields

A -A’+u=-v, (1.6)

where v is an integration constant. Equation (1.6) is a Riccati equation which can be linearized by
the transformation A=-{"/{ which leads to

"= (ulx) + v){. (1.7)

Thus £ is an eigenfunction of the original Eq. (1.2) with A=v. From (1.5) we now infer that

v=u-2(n)", (1.8)

i.e., a Darboux transformation changes the potential function u(x) by Au=-2(In {)"” where ¢ is an
arbitrary eigenfunction of (1.1).

Our objective in this paper is to generalize these transformations to Schrodinger equations in
two independent variables and determine the relationship between their potentials. From a broader
point of view the goal of this project is to derive for two dimensional nonseparable potentials
results similar to those that followed from the application of Darboux transformations and the
factorization method in one dimension. That is an enumeration of physically important potentials
which can be treated and solved by these transformations. This program includes the exploration
of the Lie algebraic structure underlying these potentials and may lead to the definition of generic
families of “special functions” in two variables. (That is, functions which cannot be expressed as
a finite sum of products of functions in one variable.) The present paper represents the first step
towards achieving these objectives.

The plan of the paper is as follows: In Sec. II we derive the basic equations that constrain
Darboux transformations in two variables and their solutions. In Secs. III and IV we construct
explicitly some Darboux transformations and their related potentials. In Sec. V we consider po-
tential cascades whose functional form is preserved under these transformations. We end up in Sec
VI with summary and conclusions.

Il. DARBOUX TRANSFORMATIONS IN TWO VARIABLES

We shall say that two Schrodinger equations in two independent variables

Vzd):u(x’yv)\)qs’ (21)

Vi=v(x,y. N, (2.2)

are related by a Darboux transformation if there exist (smooth functions) A(x,y), B(x,y), C(x,y)
so that their solutions satisfy

Wxy) = A(x,y>+B<x,y>%+c<x,y>% $x.y). (23)

For brevity we drop in the following the dependence of the various functions on the indepen-
dent variables.
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Using Eq. (2.3) to substitute for ¢ in Eq. (2.2) and eliminating the higher order derivatives of
¢ and ¢/ dy? using Eq. (2.1) we obtain

aC  _IB |7 B _oC| &# IA a
[—2—+2—}—¢+{2—+2—}—¢+ V2C+2—+ Clu-v] %
dy ox |dxdy dy ay
0A d aC d J
+1V2B+2— +Blu-v] —¢+ VA+ 2w Alu—v]+ B= + C = $=0.
ox ax dy ax dy
(2.4)

To satisfy this equation we treat ¢ and its derivatives as independent variables and let their
coefficients be zero. This leads then to the following system of equations:

0B dC
3_ - 3_ =0, (2.5)
X y
dB dC
(9— + (9_ =0, (2.6)
y X
0A
V23+25 +Blu-v]=0, 2.7)
0A
V2C+ 23— +Clu-v]=0, (2.8)
Y
aC J 1%
V2A +A[u—v]+2—u+B—u+C—M=0. (2.9)
dy ax dy

We observe that Eq. (2.9) can be rewritten in a symmetric form in B, C in view of Eq. (2.5).
Equations (2.5) and (2.6) are Cauchy-Riemann equations for B, C. Hence these functions must
be harmonic conjugates and
d=B+iC (2.10)
is analytic. In view of this fact V2C=V?B=0 and Egs. (2.7) and (2.8) simplify to

dA dA
2— +Blu-v]=0, 2—+Clu-v]=0. (2.11)
ax dy
By eliminating u—v we then get the following equation for A:

JdA JdA
C—-B—=0. (2.12)
ox dy

This leads us to consider the following equation:

Bdx+Cdy=0. (2.13)

Although this equation is not exact an integrating factor is given by 1/(B*+C?). (This fact follows
from Cauchy-Riemann equations for B, C.) The general solution of this equation can be expressed
therefore by the standard formula
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B(x,y) Y C(xp,y)
v = f By + Cloy? LO Blioy)? + Clpy? (214

It follows then that the general solution for A is of the form A=f(w) where f is any smooth
function of w.
To treat Eq. (2.9) we use Eq. (2.7) to eliminate u—v . This leads to

0A
2A—
u u aC ) ox
—+C—+2—u=-VA+—. (2.15)
dx dy dy B

This equation can be used now to determine u for a proper choice of the function f(w). To proceed
we now note that [using Eq. (2.14)]

0A
ZA&— ]
X ! !
-V?A + 2 =BZ+C2[—f +77. (2.16)
Hence we set
-+ =¢g"w), (2.17)

where g(w) is some smooth function. As a result we are led to the following equation for f(w):

=1 +gw)=0. (2.18)

[We are not adding a constant of integration since g(w) is arbitrary.] This is a Riccati equation
which can be linearized by the transformation f=-¢q'/q and this leads to

q"-gw)g=0. (2.19)

Since we want to consider only analytic solutions to this equation which can be expressed in terms
of known functions the function g(w) must be chosen appropriately. In particular g(w) can be
chosen so that Eq. (2.19) is factorizable.” Here we consider only three possible choices for g(w),

(1) g(w)=constant=c. If ¢ is negative c=—a? then g=D cos(aw+7) where D, 7 are constants.
Hence f=a tan(aw+ 7). If on the other hand ¢=0 then g=Dw+E (E is a constant) and hence
f=-D/(Dw+E). Finally if c is positive c=a? then g=D cosh(aw+7) and f=-« tanh(aw
+7).

(2) gw)=w?-(2n+1), n=0, 1,... . (This is the kernel of the differential equation for the har-
monic oscillator.) For n=0 this leads to f=w while for n>0 we obtain f=w
-[2nH,_y,/H,(w)], where H,(w) are Hermite functions.

(3) gw)=n(n—1)/w? n=2, 3,.... In this case Eq. (2.19) is a Euler equation and g=w" or ¢
=w~ =1 1In either case this leads to f~1/w.

We observe that different choices of g(w) can lead to the same f(w).
Having made a choice for g(w) Eq. (2.15) becomes

du du _dC g
B—+C—+2—u=— 7.
ox ay dy B +C

(2.20)

To find the general solution to this equation we must find two independent solutions to the system,
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dx d -d
a o - (2.21)
B C ac g
u——-—> >
dy B +C
The first equality in this equation leads to
Cdx-Bdy=0. (2.22)

Once again this equation is not exact but an integrating factor is given by 1/(B*+C?) and the
solution of the equation w(x,y) can be expressed then by a standard formula similar to Eq. (2.14).
Using w; we can eliminate x or y from the second equation in (2.21) and find a solution w,(u,y).
The function u is given then implicitly by any smooth function F(w,,w,)=0. Once u has been
determined v can be computed from Eq. (2.7) or (2.8).

To summarize the procedure, one starts by choosing an analytic function ®=B+iC then
computes w using Eq. (2.14). For a proper choice of g(w) one computes A=f(w) from Eq. (2.19).
The determination of u (and hence v) requires then the solution of Egs. (2.20) and (2.21). We note
however that instead of choosing the function g one can choose u so that the left-hand side of Eq.
(2.20) multiplied by B>+C? is a function of w only. This will determine g’ and hence A from
Eq. (2.18).

In the following section we work out this procedure for the (complex) functions ®=z" and
O=iz7".

lll. DARBOUX TRANSFORMATIONS WITH ®=2"

A. n#1

In this case B=r" cos(nf) and C=r" sin(n6) hence it is expedient to work in polar coordinates.
Equation (2.12) becomes

oA 1 9A
(Ccos 8= B sin )— — —(C sin + B cos §)— =0. (3.1)
ar r a0

For the present choice of B, C this yields

A 1 0A
sin[(n—1)0]— — —cos[(n—1)f]— =0. (3.2)
or r a6
From Eq. (2.14) we then find that

B cos[(n—1)6]
o (n=1)r"0 "

Choosing g(w)=0 in Eq. (2.17) we find that A=f(w)=—D/(Dw+E). (In the following we let D
=1, E=0.) Equation (2.20) for u becomes

(3.3)

u u
— +t -1)0]— +2nu=0. 3.4
r&r+ an[(n—1) ]&6)+ nu (3.4)

The general solution of this equation is given implicitly by

F( 2n r(”l—l) ) 0
r b . =
" sin[(n—1)6]

where F is a smooth function. For example, if F(w;,w,)=w,—w, then
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1

= . 3.5
U= D sin[(n—1)6] (3-5)
Using Eq. (2.7) to compute u—v=-2f"(w)/(B*+C?) we find for the present choice of f,
2(n—1)>
PNk (3.6)

" Peos (n-1)6]

B. n=1

In this case B=x and C=y . Hence from Eq. (2.14) we deduce that w=In r and A=f(w). [Since
fis arbitrary we could have written this relation as A=f(r) but this will change the expression for
V2A in Eq. (2.15)]. Equation (2.15) with the left-hand side reexpressed in polar coordinates
becomes

du g'(w)
— +2u= . 3.7
r&r " r 3.7)

We conclude then that in this case u is given by

GO 1 [gw
e [

r, (3.8)

where G(6) is a smooth function and u—v==2[f"(w)/r*].

IV. DARBOUX TRANSFORMATIONS WITH ®=iz"

A. n#1

For this choice of ® we have B=—r"sin(n6), C=r" cos(n6) and the roles of B, C have been
(essentially) exchanged. In this case w is given by

sin[(n—1)6]

= 4.1
v (n—1)r" “.1)
and A=f(w). The equation for u with g'(w)=0 becomes
u Ju
= —cot{(n-1)0]— +2nu=0 4.2
. cot[ (n )]aa nu (4.2)

whose general solution is of the form

r(n—l)
2n | =
F(r u’cos[(n— 1)0])—0, (4.3)

where F(w,,w,) is a smooth function. If we let f(w)=—1/w then

B 2(n-1)%
T i (- 1)) “.4)

B. n=1

In this case B=-y and C=x. Hence w=6, A=f(6) and the equation for u in polar coordinate
is
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Z—Z =8 r(zw ) (4.5)
Hence
w=22 1 60 (4.6)

and u—v==2f"(0)/r%.

V. CASCADES

One of the important (and interesting) features of the factorization method in one independent
variable is that the application of the ladder operator (or equivalently a Darboux transformation)
on a potential u(x) leads to potentials with the same dependence on x but with different param-
eters. As a result one can apply these operators on ‘“essentially the same potential” a finite or
infinite number of times creating a cascade of potentials whose solutions are interrelated by
Darboux transformations.

To explore the existence of such cascades in two independent variables we shall assume that
B(u—v)=u. Using this relation to substitute in Eq. (2.7) we obtain

2[3%
u= B .

Substituting this expression for « in Eq. (2.9) and using Eqgs. (2.5) and (2.12) to simplify we infer
that A must satisfy

0A
24—
2B-1VA+—2 =0 (5.2)
and therefore [since A=f(w)]
[(2B8-1Df (W) +f2(w)] =0. (5.3)
Hence
2B=1Df' (W) +f(w)=c, (5.4)

where ¢ is a constant. We deduce then (following the discussion in Sec. II of a similar equation)
that f(w) can take any of the following forms:

(1) ¢=0 then f(w)=2B=-1)/(w+c)),
(2) c=7 then f(w)=ytanh[(yw+c,)/(2B-1)],
(3) ¢=-97 then f(w)=—ytan[(yw+c;)/(2B8-1)].

[We assumed that 23+ 1 since otherwise f(w)=constant.] Here ¢, c,, c; are arbitrary con-
stants and the corresponding potential u can be computed from Eq. (5.1).
For ¢=c¢;=0 and ®=7"(n+# 1) this leads to

_2B2B-1)(n-1)

r?cos? [(n-1)0] ° (55

Similarly for ®=iz" it follows that
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_2B02B-1)(n-1)
T Psin(n-1)6]

(5.6)

Similar but more complicated expressions can be obtained for the other choices of c.

For n=1 we infer from Eqgs. (3.8) and (4.6) that cascades exist but the corresponding poten-
tials are essentially in one variable. In particular for @ =iz Eq. (4.6) implies that a cascade exists
when G(r)=0 and

8(0)=-2p1"(6). (5.7)
Substituting this relation in eq. (2.18) it follows that
(1-2B)f' () - f(0)=0 (5.8)

and therefore f(0)=—[(1-28)/(6+c,)] where c, is a constant.

VI. SUMMARY AND CONCLUSIONS

In this paper we showed that Darboux transformations in two independent variables have
strong affinity to the theory of analytic complex functions. This relationship enabled us to analyze
these transformations in full. It allowed us also to give a constructive algorithm for the application
of these transformations. This algorithm was used to make a partial classification of Darboux
transformations for two classes of analytic functions and their related potentials. Further (exhaus-
tive) enumeration of other potential functions especially those that related to the factorization
method through Eq. (2.19) [by the choice of the function g(w)] is needed. Moreover it will be
important to identify classes of physically interesting nonseparable potentials in two variables and
find out if they are amenable to treatment by Darboux transformations through the application of
Eq. (2.20). We discussed also the existence of potential cascades whose form is preserved under
these transformations. However there are other possible definitions of this property, e.g., u—v
=constant. The differential equations that correspond to these cascades are the exact analogs of
factorizable equations in one dimension and their algebraic structure from group theoretical point
of view remains an important open question.
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