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Abstract

Because of high volumes and unpredictable arrival ratesash processing systems are not always able to keep
up with input data - resulting in buffer overflow and uncolied loss of data. To produce eventually complete
results, load spilling, which pushes some fractions of datdisks temporarily, is commonly employed in relational
stream engine. In this work, we now introduce “structuresdé spilling”, a spilling technique customized for XML
streams by considering the partial spillage of their possgmmplex XML elements. Such structure-based spilling
brings new challenges. First we devise an algorithm, bagethe underlying theory of tree pattern containment
relationships, that correctly derives the spilling efecn the query plan efficiently. We also examine how to
guarantee to generate an entire result set eventually byymimg supplementary results in the clean-up stage.
Second we tackle the optimization problem, namely, thetsmbeof the reduced query that maximizes output
guality. For this, we develop three alternative optimigatistrategies, namely, OptR, OptPrune and ToX. The
experimental results demonstrate that our proposed swistconsistently achieve higher quality results compared
to state-of-the-art techniques.

1 Introduction

Motivation. XML stream systems have particularly attracted reseaschaerest recently [5, 8, 11, 14, 17, 24]
because of the wide range of potential applications suchilalisp/subscribe systems, supply chain management,
financial analysis and network intrusion detection. WhiMIXstream data enters the system at the granularity of a
continuous stream of tokens {9]t models possibly complex hierarchical structures. Foststream applications,
immediate online results are required, yet network traffayrbe unpredictable or spiky. When the arrival rate is
very high, stream processing systems may not always be @lieep up with the input data streams - resulting
in buffer overflow or uncontrolled data loss. To produce ¢éwalty complete results, load spilling, which pushes
some fractions of data to disks temporarily, is commonly leygd in relational stream engines [16, 23, 27, 28] to
tackle this problem. In this work, we now introduce “struetdbased spilling”, a spilling technique customized
for XML streams by considering the partial spillage of coempKML elements. In this context we opt to produce
partial results during periods of distress - ideally foogson the most essential and time-sensitive information.
The output of “delta” supplementary returned structurestzapostponed to a later time, for instance, when there
is a lull in the input stream. To the best of our knowledgereahie no prior work on exploring structure-based
spilling in the literature. We now motivate the practicébpilof structure-based spilling via concrete application
scenarios as below.

A token in XML stream can be a start tag, an end tag or a PCDAGHt



Example 11n online auction environments, sellers may continuostdyt new auctions during some promotion
time. When a customer wants to search for “SLR cameras”, althing cameras and their product information
should be returned. Some key portions of the results, sugiries and customer ratings, will be sent to be
displayed first, which aid customers to make decisions. Mammsumers tend to use two-stage process to reach
their decisions [13] instead of checking complete produoftirmation immediately. Consumers typically identify
a subset of the most promising alternatives based on thiagéebresults. Other product attributes, such as sizes
and product features, are often evaluated later after comiuhave identified their favorite subset. Thus when the
system resources are limited, the query engine may spithpaitant attributes to the disk while producing partial
results containing key information such as price and custaatings.

Example 2 In network intrusion detection systems, XML streamingadaitay come from different nodes of
the wide-area network. We need to analyze the incoming patkemation to detect potential attacks. If some
packets are dropped, the thrown packets may contain themaf®n related to the attack. In this case, throwing
packets directly may lead to a later failure to detect ancetstdnd the ins and outs of attacks. Instead pushing
unimportant fractions of data into disks temporarily whgstem resources are limited can avoid such problem.

Example 3 Facebook users may edit their personal profiles and sendages to their friends at any time.
Status updates, composed of possibly nested structureslimg updates from friends, recent posts on the wall
and news from the subscribed group, are generated consilyuodowever, different users might be interested
in specific primary updates. For instance, a college studlants to make new friends. He wants to be notified
when his friends add new friends. A girl who likes watchingtpies hopes to get notified as soon as her friends
update their albums. When the system resources are lintitedy be favorable to delay the output of unimportant
updates and instead only report “favorite updates” to theueers.

Q1
FOR $a in stream()/a//b l $a=/a/lb
RETURN
<pairQ1> é)
alb, far#d, falblc (2) @
</pairQ1> lalb fa*/d [alblc
(@) Query Q1 (b) Query Plan for Q1

Figure 1. Query Q1 and Its Plan

Challenges. Such structural-based spilling brings new challenges lwhiz not exist in the relational stream.
For example, let us look at query Q1 and its plan in Figure 1sufg we can spill any path in the query when
the stream system cannot keep up with the arrival rate. Asdhe path/a /b is chosen to be spilled, i.e., all

b elements on patha/b are flushed to disk. Note that multiple paths (e.g. 1, 2 andh4hé query plan are
actually affected (as side effect) by such spilling. Letefer to the user query after spilling has been applied as
reduced quenand the early output produced byr&duced output To assure the correctness of reduced output,
we have to derive the spilling effects on query. This requue to correctly identify the relationships between
the spilled path and other paths in the query. Further, toteadly produce entire yet duplicate-free result set,
we need to generate supplementary results correctly. @bsleat for each output tuple (e.g< pair@1 > in

Q1), only partial result structures are produced (é.glements are missing) immediately. Supplementary results
can only be generated at a later time when the system hadeniftomputing resources with the corresponding
reduced output submitted to the output stream long ago. rEggires us to design an output model to match
supplementary “delta” structures with partial result stawes. In addition, to generate supplementary results, we
may have to flush extra data to disk to guarantee that thecenetiult set can be produced. Finally, we have to
tackle the optimization problem, namely, the design of #duced query that maximizes output quality. Our goal
is to generate as many high-quality results as possibledingted resources.

Proposed Approaches.



Determine Spilling EffectsTo derive the correct spilling effects on the original useery, we need to determine
the relationship between the spilled path and other pathbeénguery. We devise aff ™ algorithm adapted
from [22] which is able to determine whether two paths havgtaioment relationship efficiently. To the best of
our knowledge, no work has been done to determine suchmgpéffect due to data dependency over XML stream
data.

Complementary Output ModelWe propose a complementary output model, which extends fhenmole-filler
model in [10], to facilitate the matching of the supplemept@sults with prior generated output. We will illustrate
that the hole-filler model naturally fits our spilling sceioar

Produce Correct Supplementary Resulfge examine how to flush extra data to generate correct supplainy
results. We guarantee to spill a minimum set of data needeslifiplementary query execution.

Optimization Strategie<Our final goal is to choose appropriate structures to spithéximize output quality. We
develop three optimization strategies, namely, OptR, @ui® and ToX. OptR and OptPrune are both guaranteed
to identify an optimal reduced query, with OptPrune exfilitsignificantly less overhead than OptR.
Contributions. Our contributions are summarized as below:

1. We develop arif+ algorithm which is able to determine relevant relationshiigtween any two paths
efficiently.

2. We propose a complementary output model, which can hglplsomentary “delta” result structures match
reduced output easily.

3. We formulate our structure-based spilling problem imtaptimization problem and propose three alterna-
tive solutions, OptR, OptPrune and ToX.

4. Our experimental results demonstrate that our appreaahmsistently achieve higher quality results com-
pared to state-of-the-art techniques.

2 XML Stream Processing Background

Queries We Support. We support the core subset of XQuery in the form of “FOR WHERETRRN” expres-
sions (referred to as FWR) where the “RETURN?” clause canaioritirther FWR expressions; and the “WHERE”
clause contains conjunctive selection predicates, eadigate being an operation between a variable and a con-
stant. A large range of common XQueries can be rewrittenthigosubset [19].

Query Pattern Tree. The query tree for Q1 is given in Figure 2. Each navigatiop stean XPath is mapped to

a tree node. We use single line edges to denote the pardaitechrelationship and double line edges to denote
the ancestor-descendant relationship. In this work wenasshe spilled path can be any node in the query pattern
tree.

7"
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Figure 2. Query Tree for Q1

Algebra Query Processing.We assume the queries have been normalized using the taebriig[6]2. Queries
are then translated as follows into a plan. For each bindanigble in the “for” clause, a structural join is conducted
between the binding variable and the paths in the “returalise. Paths in the “return” clause are translated into

2\We can use the techniques in [7] to optimize the query.



inputs to the structural join operator. The expressionkériivhere” clause are mapped to select operators. Finally
a tagging function is on top of the plan taking care of the @etfitonstruction. Here we focus primarily on the
structural join, the core part of the XQuery plan, while taggis not further discussed. For instance, for the plan
in Figure 1, a structural join is conducted betwéarand each of its branches.

Basic Processing Unit (BPU) refers to the smallest inpué detit based on which we can produce results
independently. It can be a document or a topmost elemerga&tt by the query. When we encounter the end of
a BPU in the incoming data, we can produce the result streictaor the query Q1 in Figure 1, the BPU is@n
element on pathia. When< /a > is encountered, we can producepair@1 > result structures. This provides
an efficient way to produce output as early as possible for X@eams [12]. In our work, BPU is the topmost
element on the query tree.

3 Basics of Spilling Issues

When to Spill and When to Clean up.

The problem of deciding when the system needs to spill tuplast a question specific to XML stream while
any existing approach from the literature [23, 28] could tmpyed here. Thus we adopt the following approach
for simplicity in our system. We assume a fixed memory buifestore input XML stream data. As soon as all
tokens in an XML element have been processed, we clean thkses from the buffer. We assume a threshold
on the memory buffer that allows us to endure periodic spifeéle input without causing any overflow. During
execution, we periodically monitor the memory buffer. Wiheerffer occupancy exceeds the threshold, we trigger
the spilling phase. Later on when the arrival speed becomaszero, we invoke the clean up stage to generate
supplementary results.

In this work, we assume single threading, that is, eitheredeced query or the supplementary query is running
at any time. Parallel execution of the reduced and supplanequeries for slow input rates will be considered in
the future.

Complementary Output Model.

In the clean up stage, supplementary results are gene@tsuiriplement the reduced output. Since partial
result structures may be generated for each output tupke reéljuires us to design an output model that can
efficiently match supplementary “delta” structure withwedd output. Here we proposemplementary output
mode] which extends from the hole-filler model [10]. Hole-filleoatel has been designed to organize out-of-order
data fragments when an XML document is split into multipkginents. Our idea is to explicitly mark a hole in
the output element with a unique identifier to indicate nmigglata. In the later cleanup stage, we produce fillers to
fill in these holes, which in our context are supplementasylits. The reduced outputs and supplementary results
for Q2 when spilling/a /b are shown in Figures 3(c) and (d) respectively (data is shovaigure 3(b)).

Q2: FOR $a in stream("s2")/a
RETURN <pairQ2> $a//b, $a/d, $a/b/e/pairQ2>

To distinguish and match efficiently between holes and §llere define three types of IDs, namaly, BPU ID
(BID), Result Structure ID (RID) and Path ID (PID). Only fitkeand holes with the same IDs can be matched. For
instance, the first filler in Figure 3(d) indicates the migdih andb2 for path /a//b in the < pairQ2 > element
for the first BPU ¢ element).

4 Derive Spilling Effects on Query Paths
4.1 Determine Relationships Between Two Paths

As illustrated in Section 1, the spilling of some path mayseaother paths to be affected due to data dependency.
Hence we need to determine the affected paths in the quechieve this, we have to find out the relationships
between the spilled path and other paths in the query. Rtwllany node in the query tree can be spilled.
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(a) Plan for Q2 (b) Data
<pairQ> <Filler: Bid =“1" Rid =“1" Pid = “2">
I<Hole: Bid="1" Rid =1" Pid="2/> | <b>b1l </b>
<b> ....</b> <b>b2 </b>
<d>di</d> </ Filler >
|<Hole: Bid="1" Rid =1" Pid="4" /> |
</pairQ> <Filler :Bid = “1” Rid =“1" Pid = “4">
. <c> cl</c>
<pairQ> <c> ¢2 </c>
e </IFiller >
</pairQ>
(c) Reduced Output (d) Supplementary Output

Figure 3. Example for Output Model

Therefore we need to determine the relationships betwegiwanpaths so that we can derive the spilling effects
correctly.

For a given XPath expressigne X P{*//} and input document t, we denote pyt) the set of nodes in t
returned by the evaluation of Here nodes may correspond to subtrees. For instaiagé,returns the subtrees
rooted at nodes whose parents are of type

We characterize all possible relationships between twisplaglow:

o Subset and supersetPathp is asubsebf ¢ if ¢ containsp ° [22]. We also say; is thesupersedf p.

e Subsumption and subpart We callp is asubpartof pathg if for any nodez of pathp, we can find a node
y for pathq wherex is a substructure of the subtree rooteg.a®r we sayy subsumeg. For instance, path
/a/b/cis a subpart of a/b because for any nodes, their parents must be of tyipe

e Might overlap. If the nodes of patlp might overlap with the nodes of paitin structure, we call these two
pathsmight overlap For instance/a/b might overlap with pathia/ * /c since the nodé may have children
of typec.

e Independent When no overlapping structures for nodes of two paths ewistcall these two path are
independent For instance, pathia/b/c is independent from patlia/d since subtrees rooted at node
cannot overlap with subtrees rooted/at

The subset (a.k.a. containment) relationship has beeredtuu [21]. Their algorithm, henceforth called H,
decides the containment relationship by looking for homgrhsms between two paths. A homomorphism is a
function that matches two paths using the following rdte$) A label can map to the same label; 2) “*” can map
to any label; 3) “//” can map to a subpath that may contain pemore edges.

The H algorithm iterates over every pair of nodes on gatind¢ and checks whether there exists a homo-
morphism from the node ofito a node orp in a bottom up fashion. Table C(x,y) withe NODES(p) andy <
NODES(q) is computed for each iteration. C(x,y) is a boolealue denoting whether there exists a homomor-
phism from the subpath rooted @to the subpath rooted at Figure 4(a) illustrates a homomorphism between

3Subset in our context is the same as the containment definitio
“In this context, if there is a homomorphism franto p, thenp is contained by;.
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/a/d/e/c and/a/ = //c in a bottom up fashion. Observe that the bottom nede path p2 can map teon p1
based on rule 1. **" maps td and “//” maps to edges frori throughe until ¢ based on rule 2 and 3 respectively

( Table C is shown in Figure 4(b) ). Finally c(1,1) returnsetrurhus we conclude thdu/d/e/c is a subset of
Ja/ x[]c.

\

T DR T a c
d meeem . a |T |F |F
‘ | d | F |T |F
e - C

\ e |F |F |F
c+ c |F|F |T
pl p2

(a) Homomorphism (b) Matrix C used to

between pl and p1 compare two paths

Figure 4. Homomorphism between p1 and p2

In our context, H algorithm guarantees containment checignsound and complete because the compared
paths satisfy; € P1*//} [22]. However, H algorithm is not sufficient for our goal. S&we aim to compare the
relationship of any two paths in the query tree, we hope tadagtaplicate comparisons. For instance, consider
two pairs of pathga/b/c with /a//b/c and/a/b with /a//b. If we know /a /b is a subset ofa/ /b, we can reuse
this result to judge the relationship betweéryb/c and/a//b/c. However, this is not possible for H algorithm
since it compares the nodes in a bottom-up manner. In addiie need to judge other relationships, such as
subpart and subsumption. We illustrate now that H algoriihnot able to do so. For instance, consider paths p3
/a/b/c and p4/a/b. The table C is depicted in Figure 5(b). Obviously p3 is a subpf p4. However, the ladt
node of p4 cannot find mapping to the node in p3 using H algoritHence c(3,2) is set to false and finally c(1,1)

returns false too. We can only conclude that pBasa subset of p4. But we cannot conclude that p3 is actually a
subpart of p4.

I | |
a a a a<----g3 a b
[ [ a |[F |F | [ a | T |F
-
lf b b | F |F T b b | F |T
¢ c | F|F ¢ c | F
p3 p4 p3 p4
(@ (b) (©) (d)
No Homomorphism Matrix C using H Homomorphism Matrix C using H *
between p3 and p4 algorithm between p3andp4  algorithm

Figure 5. Homomorphism between p3 and p4

To solve the above problem, we instead propose to run H #éhgaiin a top down manner. Further we change
the meaning of C(x,y) as follows: C(x,y) is true if there éxian embedding from the subpattern from roofto
to the subpattern from root te. Since the mapping rules are the same, we can guarantee @hanstill find

homomorphism if path p1 is contained by p2. Let us call thepsathalgorithm theZ ™ algorithm We have the
following theorem.

Theorem 1 The containment relationship is derived correctly by fhe algorithm.
The above theorem states that the containment relatiomsluerived correctly when the H algorithm is run

in a top down manner with the new definition of C(x, y) as ddsmtiabove. The proof is omitted due to space
limitation.



/a /alb falblc | /al* fal*/d | /allb

/a Eq. SubsumeSubsumeSubsumeSubsuneSubsun
a/b || Subpart| Eq. SubsumeSubpart| M.O. Subset
/alb/c|| Subpart| Subpart| Eq. Subpart| Ind. Subpart
/a/* || Subpart| SupersgtSubsumeEq. Subsun|eM.O.
/a/*/d|| Subpart| M.O. Ind. Subpart| Eq. M.O.
a/lb || SubsunmeéupersetSubsumevi.O. M.O. Eq.

1’

Table 1. Comparison Matrix for Q1

Table C for comparing paths p3 and p4 using Hhe algorithm is given in Figure 5(d). Observe that we can
conclude thafa/b/c is a subpart of a/b since there exists a homomorphism from p4 to a subpath ofgBely,
/a/b. Another advantage of thE algorithm is that we can reuse the comparison results of aogaths. Since
searching for the homomorphism is conducted in a top-downnea this means when we compare two paths
andg, we automatically derive the containment relationshipsvben any subpath of paghand any subpath of
pathg.

To derive the correct subpart relationship, we have thewioilg theorem:

Theorem 2 Path p is subpart of path q if and only if there exits a homorhtam from q to an absolute subpath
of p.

To determine other relationships such as might overlap atelpendent, we make use of the techniques pro-
posed in [18].

4.2 Construct Matrix for Comparing Any Two Paths

For each node in the query tree, we can assign a unique ID whldnawerse the tree in a DFS manner. To
record the relationship of any two paths in the query, we ttaosa matrix M(T'|, |T'|), where|T'| indicates the
total number of nodes in the query tree. Each value M(x,y) imticates the relationship of the path from root
to the node of ID x and the path from root to the node of ID y. 8iAt" algorithm can reuse the comparison
results, we can simply calf + algorithm among the longest paths in the query tree. The adsgn matrix for
Q1lis shown in Table 1.

4.3 Characterization of Spilling Effects

We have so far examined how to determine relationships eetway two paths. Based on these relationships,
we categorize the spill effects on paths in a query as fotlows

1. Totally Missing (TAM)When the path in the queryis a subset or subpart of the spilled pathwe callg
totally missingsince all its data will be lost. For instancé;/b/c is TAM due to spilling pathya/b.

2. Partially Missing (PAM) When path in the queryis superset of the spilled path, we calpartially missing
since a subset of its matching data might be lost. For instapath/a//c is PAM due to spilling/a/c,
since all the ¢ nodes that have parents of typell be spilled.

3. Subpart Missing (SAMMWhen the patly in the query subsumes the spilled patfi.e. p is a subpart of),
we callg subpart missingFor instance/a/b is SAM when spilling pattya/b/c.

4. Potentially Missing If we cannot guarantee that the path will be affected, wkittglotentially missing”.
For example, if the spilled path i&/b, we say that pathia/ * /c is potentially missingsince it might
overlap with/a/b. However, in this work, we take the conservative approaestimg it the same as PAM.
Note that for spilled pathia/b, the spilled data is actuallya/b//* since the spilling always includes its
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descendants. We can inters¢efb// with /a/ * /c. Based on that we conclude thatodes which satisfy
path /a/b/c are missing at the worst case. Hence we treat the path whightraverlap with the spilled
path the same way as PAM.

5 Generate Entire Result Set
5.1 Reduced Query Execution

We now describe how to execute a reduced query based on tiMdddge of spilling effects on the paths in
the query. We do not block the output as long as it is corraeneéhough the result structure may be partial.
In other words, the reduced query execution should satistyimnal output property [25]. Therefore we propose
the following policies for the execution of the reduced queo that we can produce as much correct output as
possible.

e Affected path in “for” clause. Let us call the FLWR block where the pathis defined the home FLWR of
q. When the binding variable is totally missing (TAM), theustiural join between the binding variable and
its branches is blocked. This is because the number of ljadmthe “loop counter” of invoking the inner
FLWR blocks and the structural join between the bindingalalg and its branch operators. Otherwise, it is
unblocked. When the binding variable is partially missiRg\{), the number of bindings may be reduced
but we can still produce some output. When the binding végigsubpart missing (SAM), although a
subpart of the binding variable is missing, it does not dffae iterations of the “loop counter”. Hence
SAM on the “for” path does not affect the query result gerierat

Example 5.1 Figure 6 shows three cases when the binding variable is PAAY &nd TAM respectively.
Figure 6(a) shows the case that the binding variaBleis PAM due to spilling/a/b, since path/a//b
contains/a/b. Figure 6(b) shows the case wh&mis SAM due to spilling pathia/b/c. Figure 6(c) shows
the case whefia is TAM.

1E$Ia=/af/b 1 a=/a//b la=/a//b
OlONOL

falb  fa/*/d lalblc falb  /a/*/d lalblc /a/lb /a/*d /alblc
(a) Spill fa/b (b) Spill fa/blc (c) Spill /a

..................................

Figure 6. Plan for Q1 with Spilling Effects

e Non-blocking “return” path . The structural join is conducted between a binding vagidbland all its
branches. Based on query semantics, the structural joiveleeta binding variabl® and one branct (i)
is independent from the structural join betwe€nand other branches. Therefore a “return” path being
affected by spilling does not block the output of other “ratupaths in the same FLWR block.

Example 5.2 For instance, the spilling type of a return patla/b is SAM due to spilling/a/b/c (Fig-
ure 6(b)). Althougte children ofb nodes are missing, we still allow the output of incompleatecstres.



ID [EqID |For Return || ID |EqID |For Return
1 |13 SAM |UA 9 |11 TAM |UA

2 |14 SAM | PAM 10 |11 TAM | PAM

3 |15 SAM | TAM 11 TAM | TAM

4 |16 SAM | SAM 12 |11 TAM | SAM

5 PAM |UA 13 UA UA

6 PAM | PAM 14 UA PAM

7 PAM | TAM 15 UA TAM

8 PAM | SAM 16 UA SAM

Table 2. Possible Combinations Between For Binding and Its B ranches

e Blocking “where” path . When the “where” path falls into PAM or SAM, this may affebitevaluation
of the predicates. In this case, we may not know whether thalteeshould be output or not. Therefore
we treat affected “where” paths as blocking. Whenever a fe/hpath falls into PAM or SAM, the output
for its home FLWR and its inner FLWR block cannot produce himg. In the future, we may consider to
adaptively handle affected “where” paths. For instancdoag as the path with PAM or SAM evaluates to
true, then we allow output. However, we are not focusing @ehhancement in this paper.

5.2 Determine Extra Data to Spill for Supplementary Query Execution

To produce eventually complete results set, we have to gensupplementary results correctly. In this section,
we describe how to decide what extra data to spill as well asstipplementary query for generating missing
results. Our goal is to spill a minimum set of data neededdppkmentary query execution. The eventual result
set must be guaranteed to be both complete and duplicate-fre

Since structural join is the core part in the queries we darsive focus on how to spill extra data to reconstruct
the structural join results correctly. Either the “for” pair the “return” path can be of four types, namely, PAM,
SAM, TAM or unaffected (UA). Hence 4*4 =16 combinatiordetween the binding variable and branches are
listed in Table 2. However, when the “for” binding variabsetotally missing (TAM), query processing is blocked.
In this case, the entire result set has to be regeneratedceHea only need to investigate 16-4= 12 cases. In
addition, when the binding variable is SAM, query executiomot affected. Hence cases 1,2,3 and 4 can be
regarded the same as cases 13, 14, 15 and 16 respectivelgb®Véhle equivalent cases in the column "EqgID” in
Table 2. Clearly, it is not necessary to consider case 1& siomplete results are produced in the reduced output.
Finally we only need to consider the cases 5-8, 14, 15 and Esdé&&cribe how to derive a minimum set of extra
data to flush to disk and how to compute supplementary reseltsv.

5.2.1 Structural Join with Only PAM Type

There are three possible cases for the structural join witti Rease 5,6 and 14 in Table 2). The first case is that
the binding variable falls into PAM but the branch is unaféet(UA). The second case is that the binding variable
is UA but the branches are PAM. The third case is that bothibhgndariable and branch are PAM.
Binding variable is PAM and branch is UA.

Now we examine how to generate supplementary results whebitiding variable is PAM and its branch
operators are all UA. Let us examine an example query Q3.

Q3: FOR $a in stream("s3")/a
RETURN <result>
/alb, /a/*, FOR $b in $a//b
RETURN<p> /alc, lalf</p>
<Iresult>

®If “where” path is affected, the output is blocked. It is ebuethe case that “for” path is TAM.



The plan for Q3 is shown in Figure Bb is PAM when/a/b is spilled. However, op5 and op6 are unaffected
since they are independent from pdttyb. Here we examine how to generate correct intermediate bafmp4.
Given the data in Figure 7(b), the output of op4 would gereratiuced output (c1, f1) corresponding to b2 since
bl is spilled. The missing result is shown in Figure 7(c). Tadoice such missing results, we should spill all the
data from op5 and op6 beside the spilled datab. Therefore we have the following theorem holds.

KA LN

lalb lal*

pl p2
el bl dl c1 f1

'$b=/allb
b2 cl f1 cl f1

. Reduced Result
O Missing Result
Jalc lalf

(a) spill/aib (b) Data (c) Result

Figure 7. Query Plan, Data and Results for Q3

Theorem 3 When the binding variable is PAM and all its branch operatare UA, to generate correct missing
results for current FLWR block, extra data needs to be gpikeall data from its branch operators.

The proof of theorem is omitted due to limited space. Now v lat how to generate the supplementary results.
We use a superscript andd to distinguish the data kept in memory and the data flushetskordspectively. For
branch B(i), we have the following equation holds:

V g B(i) (VAU v™) g B(i)

(V4 ag B(i)) U (V™ s B(3))

The reduced output™ g B(1), V™ g B(2),... V™ g B(n) have been produced at runtime by conduct-
ing structural join betweelr andB(1), V andB(2),.... V andB(n) respectively. Hence we need to calculate the
supplementary resulfg? g B(1), V¥ x5 B(2),... V¢ g B(n). So the extra data to spill iB(1), B(2), ...
B(n).

Since the data might be spilled many times to disk, we use scsipb to indicate the data spilled at different
times. Assume that structure V, B(1), ..., B(n) have beem@ads times to disk respectively, meaning the spill
data isVy¢, Vi,... V& and B(1)1,... B(1)k,B(2)1,... B(2)k,... B(n)1,... B(n)x respectively. As we mentioned
in Section 2, the results generated based on a basic pnogasst are independent from others. In this work we
assume always spilling data in batch of basic processirg.u8oV,¢ does not need to be joined witB(i),, if x is
not equal tqy since they do not belong to the same basic processing urgteldre, the supplementary join results
corresponding to data spilled at time k can be calculatd@ds<is B(1)y, Vi g B(2), ...V xig B(n)y,).

Note that case 9 is actually the special scenario of case Eewtie = () andV¢ = V. So we can use the same
equation to calculate the supplementary results.

Binding Variable is UA and Branch is PAM.

In this case, multiple branch operators may fall into PAMbat same time. However, structural join results
betweenV and branchB(i) is independent from the structural join results betw&eand other branches. The
case that one branch operator falls into PAM is considerstdird can be easily extended to the case that multiple
branches are PAM. For brand@(i), we have the following equation holds:

@

V g B(i) V g (B™ (i) U B(3))

(V sas B U (V bag B (i) @
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Obviously, the reduced outpdt < B™(i) has been produced at runtime. Now we need to calculate the
missing resultd” g B4(i). So we have to reconstruct the structural join between V ammdthe extra data
needed to spill is data corresponding to path V.

Assume V and B has been pushed k times to disk respectively.mii$sing structural join results betwekn
and B(i) at time k can be calculated & g B%(i)y.

In the plan for Q2 in Figure 3(a), when path/b is spilled, pathya//b is PAM. The structural join betweeu
and/a//b can be calculated using Equation 2.

Case 15 is a special scenario of case 14 wiigfe= () and B = B. Therefore we can use Equation 2 to
calculate the supplementary results for case 15.

Binding Variable is PAM and Branch is PAM.

When the binding variable is PAM and the branch is UA, we neesptll all the data from its branch operators.
Also based on the case where binding variable is UA and thechrss PAM, we need to spill all the data from
binding variable. When the binding variable is PAM and braiscPAM, an intuitive answer is to spill all the data
from the binding variable and its branch operators. Can vileleps data? Let us answer this using an example
below.

Q4: FOR $a in stream("s")/a
RETURN <result>
/a/b, FOR $b in $a/*
RETURN <p> /a/d, /a/lb</p>
<Iresult>

The plan and results for Q4 are shown in Figure 8(b). Again seethe data in Figure 7(b). When patl/b
is spilled, bl is spilled to disk. In this case, the bindingiakle iteration is reduced from 4 to 3 (b1 is missing).
In addition, observe that each result structure is parkat. operator op3, we cannot only spill missing path /a/b
without spilling c1, d1 and f1. Because the result strucaargesponding to c1, d1 and f1 are still incomplete. On
the other hand, for operator op5, we cannot only spill mggath /a/b either since b3 still needs to be joined
with the spilled binding value b1. Based on above obsematige have the following theorem holds.

Theorem 4 When the binding variable is PAM and some branch operatoesP#M, to generate correct missing
results for current FLWR block, we need to spill data for tiveding variable and all of its branch operators.

o ooooooo

d1 b2 bl dl b2 bl di1 b2 bl d1 b2 bl

. Reduced Result
O Missing Result
lald lallb

(@) spill/a/b (b) Result from op3

Figure 8. Query Plan and Results for Q4

We omit the proof due to space limitation. Now we investigabe to generate missing results without dupli-
cates. Assume the branch operators falling into PAM are)B&(E2),..., B(se). For each branch operator B(si),
we have the following equation holds:

11



V xig B(si)

(VM UV g (B™(si) U BL(3))

(V™ g B™(si) U (V™ g B (si)) U (V4 >ag B(si)) U (Vg B™(si)) 3)
(V™ g B™(si) U (V™ g B (si)) U (V9 g B(si)) U (Vg B™(si))

(V™ g B™(si) U V™ g BY(si)) U (V? xg B(si))

Clearly, (V™ xig B™(si) has been generated in the reduced output. So we need toatalotiher parts in
Equation 3.

5.2.2 Structural Joins with SAM Type

Binding variable is UA and branch is SAM.

Multiple branch operators may fall into SAM at the same tiMé describe how to generate the structural join
results for one SAM branch operator and we can easily extetuwdthe case that multiple return paths fall into
SAM.

When branch operator B(i) falls into SAM but not PAM, we useddrtdicate its missing subpart. For all the
data corresponding to branch B(i), its subpart D is misslhtha time. The missing results can be calculated as:
V xig B(i) g D. Hence we have to reconstruct the structural join betweendvBa This requires us to spill all
the data of B(i), D and its binding variable V to guaranteedbeect missing results is produced. However, since
V g Biincludes the output from branch operator Bi, it is alreadydpiced in the reduced query execution. We
can spill this part of results directly.

When the branch operator Bi belongs to both SAM and PAM, thesimd@ results are divided into two parts.
The first part is the missing output corresponding to gatk) (not including subpart D). The second part is the
missing output corresponding to subpart D. Based on thelusina for case 14, the missing results for p&tH(i)
areV g B%(i). For the missing output corresponding to subpart D, we hawette following equation:

V xig Bitxig D
=V g (B (i) U B(i)) a5 D 4
= (V x5 B%(i) >ag D) U (V g B™ (i) a5 D)

Note thatV’ 5 B™(i) has been produced at runtim®. >is B%(i) can be calculated in the supplementary
query execution.
Binding variable is PAM and Branch is SAM.

Similar to the cases that binding variable is PAM and the ¢inas SAM, we can combine the equations in these
two cases to calculate missing results. The detailed dismuss omitted due to space limitation.

5.3 Completeness and Uniqueness of Final Result Set
Based on the discussions above, we have the following thebodds:
Theorem 5 The final result set is complete and no duplicate resultshwiljenerated.

Completeness First, prove the results satisfy completeness propersgufe a result structurg belongs to
the output results. But it is not produced in the output. WL@@ assume); is composed of many substructures.

Since the results are generated in one of the following cd9eall the substructures df; are generated in the
reduced query execution; 2) all the substructureS,aire generated in the supplementary query execution; or 3)
some substructures 6f are generated in the reduced query execution and the oth&rigciures are generated in
the supplementary execution.

If condition 1 is satisfied, we can conclude that the tugjanust fall into the cases that either both binding
variable and the branch are UA or the binding variable is PAM baranch is UA (case 1,5,9 in Table 2). In this
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case, the binding variable value for this tuple must beldodé™. We have showed that we produce all possible
results in the reduced query execution in Section 5.1. lfitmm 2 is satisfied, we observe that it must fall into the
cases where all branches are UA or TAM (casesb,7,9,10,)1H@wever, the values of binding variable for tuple
S; must belong td’¢. We have showed in Section 5.2 that we guarantee produdimpssible missing results
in the reduced query execution. If condition 3 is satisfibére must exist some branch which falls into either
PAM or SAM (cases 6,8,14 and 16 in Table 2). Similarly, we hstvewed all possible outputs are generated in
the reduced query execution and the supplementary quecybxe.

Based on above discussion, we conclude the assumptiorhthatissing output tuplé; is not reported by the
output is not possible. Thus, our spilling algorithm progsiall output results.

Uniqueness Assume result structurg; is reported twice in the output. We denoted such two insefS¢and
Ss. Since we only have two phases of query execution, reducedygund supplementary query execution. Thus
we identify the following two cases:

Casel:S; and.S, are both generated in the reduced output. As we showed ifo8éxt, this is not possible
since the structural join in reduced query would not geredaplicate results.

Case 2:57 and S, are both generated in the missing output. As we showed indBeg12, this is not possible
either since the duplicate-free computation is consideréde formula of computing supplementary results.

From the above two cases, we conclude that the assumptibthénplesS; is reported twice is not validd

6 Metrics of Quality and Cost

Our optimization goal is to select optimal structure tolgpilmaximize output quality at the spilling stage. In
this work we focus on maximizing the quality of reduced ottple now describe the metrics of quality and cost
for measuring the alternative reduced queries.

6.1 Output Quality

Previous studies on approximate query answering tend tsfoa the relational model, where the output quality
is usually measured by the output rate or the cardinali®@dB,However, in our work, since each output result may
be partial, measuring the cardinality of the output is obslg not sufficient. Here we propose a “fine-granularity”
output quality model which aims to measure the quality ofipeKML output results. We measure the quality of
the reduced output based on the following factors:

1. Cardinality. Since a return structure may be composed of nested sutosgsicsome substructure may
only return a subset. So we count the cardinality of eachtsudiare into output quality.

2. Shape Returned substructures may not be of the full shape whecofiesponding paths in query fall into
SAM. To differentiate such substructures from others, w& define ashape indicatotto indicate how full
each substructure is.

The shape indicator for a paifin query can be calculated &y = =colrlementalicrspiing 6

When a path falls in SAM, its shape indicator is less than thismisense the quality is “punished ” because of
returning incomplete substructures.

Recall that the topmost element is the smallest data unitlwban produce result structure. We defuret
guality as the quality gained by executing the reduced query on adspatement. We measure unit quality using
the formula below:

J
V:ZZ Ngx S ©)

SHere we assume the size of an element is fixed.
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Notation Explanation

Np Number of elements matching for a topmost ele-
ment

Sha Join Selectivity

Cj Cost of comparing two elements

Cr/o Cost of disk 1/0

Cs Cost of stack operation

Table 3. Notations Used in Cost Model

Heren indicates the number of return structures generated pendspelement. Each returned structure is
composed of j substructuregdenotes the type of nodes matching brai). N, andS, denote the cardinality
and shape indicator @frespectively.

Path Quality

Spill /a/b Spill /a/blc
lallb 1*1 1*1+2*0.5
fald 1*1 1*1
[alblc 0 0

Figure 9. Quality for Q2

Example 6.1 We calculate the unit quality of Q2 for data in Figure 3(b)aplis shown in Figure 3(a)). The
quality of each substructure is shown in Figure 9. For eaghntost element, a result structure< pair@2 >

is returned. When spilling patfa/b, d1 and b3 are returned. The unit quality of the reduced query is 1+1=2.
When spilling/a/b/c, /a//b returns three elements], b2 andb3. For b1 and b2, their shape indicators are both
equal to 0.5 (calculated using Equation 5) since theghildren are missing. So the output quality for//b is
1+2*0.0.5= 2. The unit quality is 1+2=3.

6.2 Cost Model

We now define a cost model for comparing alternative reducedies. We measure the cost as the average time
of processing a topmost element (we call it unit processo®g)cWe divide the processing cost into the following
parts: Locating Cost{(LC) that measures the cost spent on retrieving datalamdCost(JC) spent on structural
joins. In addition, in the spilling stage, since we need tsHldata to disk, we call the cost spent on spilling data
Spilling Cost(SC). Since our goal is to optimize the quality of the redugeadry, we focus on the cost model of
measuring runtime cost savings for the reduced query. Thengeasurement of the supplementary query is not
discussed here and is part of our future work.

Locating Cost. Since XML streams can be scanned only once, when the tokeresponding a path in the query
arrive, we must “recognize” them. The locating cost indisathe cost spent on retrieving tokens. Automata are
widely used for pattern retrieval over XML streams [8, 17heTrelevant tokens are “recognized” by the automata
and then assembled into elements to be further filtered omed. However we do not need to consider locating
cost savings. The reason is that even if we flush some elertedisk, we still have to retrieve them from the
input stream.

Join Cost. The main computation savings come from the structural jdfiisce we assume stream data arrives in
order, the elements for both join inputs are sorted. We catyam efficient structural join algorithm Stack-Tree-
Anc [1] since both inputs are sorted. We use the cost modédhferalgorithm in [29]. We estimate the cost of
structural join using the formula as below :
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2*NVNB(Z')SD<IC]' + 2Ny Cs (6)

Here Ny and Nz (i) indicate the number of binding variables and branches penést element. The notations
are in Table 3. Based on Eqaution 6, we can easily calculatetstal join savings for the reduced query.
Spill Cost. Although join computation is saved due to spilling, we havealculate spill costs. Based on our
discussion in Section 5.2, we may have to spill other pattenhable future supplementary result generation. Let
us useS P to denote the set of paths to be spilled to disk. The flush @sbe calculated as follows:
> NeCrjo (7)

qeESP

7 Choosing the Optimal Structure to Spill
7.1 Search Space of Spill Candidates

Before solving the problem, we need to first generate all spitdidates. We assume any location and any
number of nodes in the query tree can be spilled. Assume #ret&| nodes on the query tree. Then there are
C‘OT| + C‘1T| + ..+ CN;" = 2IT1 possible candidates. An example query tree and its possibigidates are shown
in Figure 10. Each node in the lattice represents one catediddne top node means spilling nothing (i.e. initial
qguery). The bottom candidate indicates spilling evenghline. empty query). Each level i lists all candidates
spilling i nodes from query tree. Search space scales qusiite it is exponential in the number of nodes in the
query tree.

We now observe that we can reduce the search space becausecaodidates actually result in the same
spilling effects. Recall that when we spill data correspogdo pathp from the query tree, all its descendants are

also flushed to disk. This leads to the following observation

Observation 7.1 If a spill candidate includes two nodes which satisfy theegtar-descendant (or parent-child)
relationship, it has the same spilling effects as the caamigidontaining the ancestor (parent resp.) node.

T fa} {b} {c}
b

fab}  fae}  {bcl
c \' /
fasbre}

(b)

O

Figure 10. Query Tree and Its Spill Candidates

For instance, in Figure 10(b), the underlined candidate} has the same spilling effect &s}. The candidates
which have strikethrough have the same spilling effedtgs Clearly, we should avoid generating such candidates
with the same spilling effects. Hence now we propose a minimon-redundant search space.

Minimum Search Space We design an algorithm that generates a minimum set of allradundant spill
candidates. The idea is to generate non-redundant caesliffam the subtrees recursively. For a tree of height
h, to generate all possible non-redundant candidates, ki [giero or one candidate from candidates generated by
each subtree of heiglhit— 1 and composes them to one new candidate. Or it can generate Gandidate which
consists of a single root node. The minCandidates algorishulescribed below:

Let us assume the height of query treéiiand the width isw. In general, we derive the complexity equal to
2¢" ™" When the tree is deep and narrow (small width and large Beitite complexity is low. When the tree
is shallow and wide, the complexity is high. The worse casghen the tree has two levels (its width becomes
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Algorithm 1 minCandidates

Input: Query Tre€el’
Output: candidate sef
void minExhaust(Node root)
if root is leaf then
return{root};
else
for each childC; do
S; = minCandidates(; );
S;=S; U {@},
end for
/IAssume root has w children. Generate candidates.
S =51 X S2... X Sw;
S =SU{root};
returnS;
end if

|T'| — 1). The complexity i<2/”1=2. The minimum search space for query Q2 is shown in Figure bie Mat the
size is much smaller than the size of the original searchespdiich is2® = 32.

N
o o

| {b,c} {c,dg{//&,c) }b,d}
AN NAANS
R T {b,c,d} {b,//b,cy//b,c,d)
| {b,//b,c,d}

{a,b,lllb,c,d}
(a) Query Tree for Q2 (b) Minimum Search Space

Figure 11. Minimum Search Space for Q1

7.2 Formulation of Optimization Problem

For each spill structure candidate, a reduced query isekbtiv produce reduced output. Our goal is to pick
optimal structures to spill so to optimize output qualithelproblem can be formulated as follows:

Given the following inputs: 1. Data arrival ragein the number of topmost elements per time unit; 2. Unit
qualities gained by executing each reduced query on a tdpatesent{vy, v, ..v, }; 3. Unit processing cost
for each candidate reduced quer{gs, C4,..C,, }. 4. The number of time units for a reduced query to execute,
C, denoting the available CPU resources. We aim to find a spilliclate whose corresponding reduced query
satisfies the two conditions: (1) Consume all input elements time units; (2) Maximize total output utility.

Given a spill candidate, we first derive its correspondinduoed query®;. We then use”'/C; to calculate
how many elements can be processed when exec@jndgiowever, since the processed data cannot exceed the
incoming data, the total output quality can be calculatédguhe formula below:

vi * min{\ * C,C/Cy;} (8

7.3 Algorithms for Spill Optimization

Optimal Reduction(OptR). Optimal Reduction approach (OptR) is an exhaustive agproasearches the entire
solution space and picks the candidate which yields thedsigbutput quality.

The procedure is as follows: 1) Iterate every spill candidata top-down manner in the spill candidate lattice
and derive a reduced quey;. 2) Then we estimate the cost, unit quality as well as totghutuquality of the
new reduced query. The candidate query that has the highgsttauality will be chosen as the reduced query at
spilling stage.
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Example 7.1 Assume the arrival rate is 84 topmost elements/s, i.e. Cei8#ents/ms. Assume the unit cost and
unit quality for initial query are 24ms and 6 respectivel\helTavailable CPU resources are 240 ms. In this case,
the reduced query needs to process 20 topmost elementsashidying the highest output quality. Each candidate
is annotated with their unit processing costs and unit dgyati Figure 12(a). We finally pick spill candidaté, ¢}
since its corresponding reduced query yields the highest datput quality which is (240/12)*2 =40.

o ]
(246 [24.6]

d /b
PN

bc} f{cdy {ibc {ibd
{[12,21} {9,1}1 {4,01} {[13,3]} ‘@@ {/ffoc} {/llgg}

el bfhe (hpd {bcd} {b e {//bcd}

{ b’/[ﬁbdf'd}

{ab/bcd

14,01
(a) Optimization Using OptR (b) Optimization Using OptPrune

Figure 12. Optimization Using OptR and OptPrune

Optimal Reduction with Pruning (OptPrune). Optimal Reduction with Pruning (OptPrune) applies addéi
pruning rule to eliminate suboptimal solutions. It agaiplexes the search space in a top-down manner and
removes less promising solutions based on the observatiowb

Observation 7.2 In the search space when we reach a candiditand find it is capable to consume all input
data. The candidates below it (candidates which includgaths ind;) can all be pruned.

The reason is that if a candidafg can produce-; result structures, the candidates below it tend to spillanor
paths. In this case the quality of each result structurefigitidy no better than that of candidaig However, the
number of output result structures keeps the same sincepalt data is consumed. In this sense, the total output
quality of the candidate below; is guaranteed not to be higher than thatlpf

Example 7.2 In Figure 12(b), candidatdb, ¢} can consume all input. In this case, we can prune candidates
below it, {b,c,d}, {b,//b,c,d} and{a,b,//b,c,d} directly. Similarly, all candidates below the other cirdle
candidates in Figure 12(b) can be removed.

Top-down Expansion Heuristics (ToX) We now present a Top-down eXpansion heuristics (ToX) wiose-
plexity is much cheaper than both OptR and OptPrune. ToXisigg start from simple spill candidates first and
stop at the first candidate which is able to consume all thetinp

ToX proceeds as follows:
Step 1.Check candidates which spill only one leaf node (candidatebe top level of the lattice). If we can find a
candidate which is able to consume all input and achievessigiotal output quality among candidates considered
so far, stop. Otherwise go to step 2.
Step 2.Pick the candidate which has the highest quality/cost mtithis level and move to candidates connecting
it one level lower.
Step 3.If one of the new candidates can consume all the input an@aethine highest total output quality among
candidates considered so far, stop. Otherwise go backpg@ste
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Figure 13. Optimization Using ToX

Example 7.3 For the search space in Figure 13, we first check the candsdatach only spill one node. We find
{//b} can consume all input. We considgf/b} optimal and stop. The total output quality in this case isR6*
20. ToX is not guaranteed to find an optimal solution.

8 Experimental Results

In this section, we conduct a comparative study of the thptienization algorithms OptR, OptPrune and ToX.
To test whether the selection of substructures is effectie also employ a greedy selection of substructures.
The algorithm, calledRandom iteratively selects one among all possibly substructuamslomly until enough
substructures are spilled so that the input load can be &ddrxjl the corresponding reduced query. The experi-
mental results demonstrate that our proposed solutionsistently achieve higher quality compared to Random
approach.

8.1 Experimental Setup

We have implemented our proposed approaches in an XML stsgatem prototype called Raindrop [12]. We
use both real data set and synthetic data set. Real datafsmhidMondial, a world geographic database [20].
The testing data file size is 1MB. Synthetic data is the analeta generated using ToXgene [4]. We generate two
sets of data which differ in their element sizes in the “netyraths. One data set has equal sizes of elements in
the “return” paths while the other set has rather differérgésof elements in the “return” path. The testing data
files are about 30MB. All experiments are run on a 2.8GHz Bempirocessor with 512MB memory. We conduct
experiments using two settings:

e Fixed Arrival Rate. In this case, we use a fixed arrival rate throughout wholeygereecution. The arrival
rate is higher than the processing speed. Spilling is id@se soon as the memory threshold is reached.
Thereafter all methods would continue to spill. We comphesdutput quality achieved using our proposed
approaches with Random approach.

e Varying Arrival Rate . In this case, we increase the arrival speed periodicallyneithe arrival rate
increases, the query engine may have to spill more strigctareonsume all the input. When the arrival rate
changes, the spilling algorithm will recalculate and detilre optimal structures to spill. We perform the
experiments to study the effect on output quality due toimgrarrival rates.

8.2 Fixed Arrival Rate Scenario

In this set of experiments, we study the output quality gaibg taking different optimization approaches.
Figures 14(a), 14(b) and 14(c) show the output quality uging optimization strategies on different data sets. At
the early stage since the memory threshold is not yet reatihedhitial query is running in all cases whose output
quality is the highest. After the memory threshold is redgtiee spilling stage is invoked. The output quality
is decreased since all four approaches spill some strgcttd@wvever, our proposed approaches, OptR, OptPrune
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Figure 14. Performance Comparison of Four Approaches

and ToX gain higher quality than Random. Note that OptR antP@me both gain much higher quality than
Random and ToX. This is because OptR and OptPrune guarantied the optimal structures to spill.

Observe that when the element sizes of the “return” pathsliffierent in Figure 14(c), the output quality is
different from the quality in the case of the same size. Thibacause the costs for each candidate reduced
gueries are changed when spilling varying structures. @timization algorithms will pick different optimal spill
structures which yield best quality results.

8.3 Varying Arrival Rate Scenario

Figures 14(d), 14(e) and 14(f) compare the output qualitgmwthe arrival rate changes. Note that when the
arrival rate is increased, the quality is decreased or kdbepsame. This indicates that due to increased arrival
rates, the reduced query may need to spill more structuresnsume all the input. We also observe that OptR,
OptPrune always gain much higher quality than ToX and Randeem when the quality is decreased. In other

words, our optimization algorithms will pick different aial spill structures to achieve best quality results for
each of the different arrival rate cases.

8.4 Overhead of Spilling Approaches

Here we study the overhead of three spilling strategies.oiehead is measured by the time spent on choos-
ing which structure to spill. We study the relationship be#w the complexity of the query and the overhead of
optimization methods. We use five queries which vary in thessof query trees. In Figure 15, when the queries
become complex, the overhead of ToX is always smaller thaR@pe and OptR since it stops at the earliest can-
didate which consumes all input. Observe that the overhé@ptiPrune is much smaller than that of OptR. This
indicates that our pruning method is indeed effective aticed) the searching cost. Given that both approaches
can achieve the highest quality, OptPrune is obviously gebeption than OptR. In addition, the overhead of
OptPrune does not scale although its overhead is highetttiaaof ToX. Therefore OptPrune is better than other
two approaches since it yields the highest quality resuilis acceptable overhead.
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Figure 15. Overhead of Three Approaches

9 Related Work

Spilling techniques have been investigated in relatiottebsns. Flush algorithms have been proposed to either
maximize the output rate or to generate a subset of resusissearly as possible [16, 23, 27, 28]. However, we
cannot directly apply their techniques into structureediaspilling in XML streams because of the following two
reasons: 1) The spilled objects in relational streams gresu However, in our context, spilled objects are sub-
structures of the hierarchical XML data. 2) These works acei$ing on providing non-blocking flush techniques
when conducting different relational join, such as Syminéfash Join, Hash-Merge Join and Progressive Merge
Join. However, structural join is the core component of X@ugans, which can be looked agfgoin whose
condition is to compare the regions of two elements [30].

[25] first proposed to produce approximate results for X@uenen no input for some operators in the plan
exists. However, they do not address the case that suhs&aare missing from the input. In addition, since they
assume the data is persistent, supplementary query reqdtajion does not require spilling extra data. Query
relaxation techniques are proposed to return approximageyqesults [2, 15]. However, query relaxation often
returns a superset of the results set. They thus targeteaetitf objective from ours.

10 Conclusion

We propose a new structure-based spilling strategy thdbixpeatures specific to XML stream processing.
We design anH* algorithm which can determine containment relationshigsveen two paths efficiently. A
complementary output model is proposed to help supplemengsults to match reduced output. We examine
how to generate reduced output as well as supplementarfysreaused by spilling. We develop three optimization
strategies, OptR, OptPrune and ToX. The experimentalteedeimonstrate that our proposed solutions consistently
achieve higher quality results compared to state-of-théeahniques.
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