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Abstract

Estrone is an endocrine-disrupting compound (EDC) that is suspected to have adverse effects on aquatic or-
ganisms. This work investigated the removal of estrone from water by adsorption onto hydrophobic molecu-
lar sieve zeolites followed by ultraviolet light (UV) photolysis to destroy the adsorbed estrone. A solvent-free
analytical method employing solid phase micro-extraction (SPME) and gas chromatography (GC-FID) was uti-
lized to analyze low estrone concentrations in water. Two types of zeolites, dealuminated Y (DAY) and sili-
calite-1, were evaluated for adsorption capacity and compared with Centaur® activated carbon (CAC). DAY
showed the highest adsorption capacity, while silicalite-1 was the least effective in removing estrone. More-
over, DAY required four hours to reach adsorption equilibrium; much less than the eight days needed for CAC
to reach equilibration. The Freundlich adsorption isotherm was found to best represent the data for adsorption
of estrone on DAY. UV at A = 254 nm degraded estrone in water much more effectively than long-wave UV
(A = 365 nm). Regeneration of the contaminant-saturated DAY was accomplished with A = 254 nm UV light.
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Introduction

ENDOCRINE-DISRUPTING coMPOUNDs (EDCs) are suspected of
causing adverse health effects in organisms by interfer-
ing with the normal function of hormones and the way hor-
mones control growth. EDCs include natural and synthetic
hormones, some industrial chemicals, and some pesticides.
More than 160 compounds have shown some evidence of en-
docrine disruption (Commission of the European Commu-
nities, 1999). The early discoveries that certain compounds
can mimic the endogenous hormones of animals can be
traced back to the 1930s (Walker and Janney, 1930; Cook et
al., 1934). In 1946, Schueler explained that molecular config-
urations of natural and synthetic compounds influenced the
degree of estrogenic and androgenic bioactivity in rodents
(Schueler, 1946).

Three natural estrogens, estrone, 173-estradiol, and estriol,
and one synthetic estrogen, 17a-ethynylestradiol, display the
strongest estrogenic effects according to many reports (Des-
brow et al., 1998; Snyder et al., 1999; Snyder et al., 2001;
Tanaka ef al., 2001). This could be due to the common phe-
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nol ring of these molecules that possibly interacts with es-
trogen receptors. Due to their extremely high biological po-
tency, a number of experiments have shown that trace
amounts of estrogens, as low as ng/l, are capable of exert-
ing biological effects on aquatic organisms (Purdon et al.,
1994; Arcand-Hoy et al., 1998; Kramer et al., 1998; Panter et
al., 1998; Routledge et al., 1998; Thorpe et al., 2003). Through
excretion, female and male mammals are the primary source
for the natural estrogens (Adlercreutz ef al., 1986; Johnson et
al., 2000). Synthetic estrogens are present in contraceptives
and other drugs used for treatment of cancers or hormonal
disorders. They enter natural waters through discharges of
wastewater, primarily from wastewater treatment facilities.
Reports from the United Kingdom and the United States in
the 1990s indicated that fish living below wastewater treat-
ment plants had reproductive abnormalities (Purdon et al.,
1994; Bevans et al., 1996; Folmar et al., 1996; Harries et al.,
1996; Jobling et al., 1998). Conventional wastewater treatment
plants can remove about 85% of 17B-estradiol and 17a-
ethynylestradiol and 70% of estrone on average (Johnson and
Williams, 2004). However, the fraction that is not removed
during treatment is still able to pose adverse biological ef-
fects in aquatic systems. In addition, part of the removed es-
trogens can accumulate in sludge from wastewater treatment
plants, and may potentially cause contamination of soil and
ground water if that sludge is used as soil amendments or
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TABLE 1. PHyYsICAL AND CHEMICAL PROPERTIES OF ESTRONE
Molecular
Solubility size

(20°C) (Wilcox and Log Kow pK,
Molecular Molecular (Lai et Melting Vallieres, (Yoon et (Lai et al.,
formula Weight al., 2000) point 2006) al., 2006) 2000)
Ci5H20, 270.4 g/mol 13 mg/1 255°C 4A x 11A 3.13 10.3

landfilled (Auriol et al., 2006). Consequently, a variety of
treatment technologies have been looked at for destroying
or removing estrogens from water such as: ozonation (Nak-
agawa et al., 2002; Ternes et al., 2003), TiO,/UV oxidation
(Ohko et al., 2002), UV /H,0, oxidation (Rosenfeldt and Lin-
den, 2004), UV /H,0,/Fe oxidation (Feng et al., 2005), degra-
dation with MnO, (Rudder et al., 2004), adsorption on acti-
vated carbon (Fukuhara et al., 2006), UV (Liu and Liu, 2004)
and chlorination (Hu et al., 2003). Effective treatment tech-
nologies are needed for removing EDCs from water.

In this research, estrone was removed from water by ad-
sorption onto hydrophobic molecular sieves. Regeneration
of the saturated adsorbent by UV photolysis was also in-
vestigated. Estrone was selected as the target compound for
this research due to its presence in wastewater effluents, and
because of the relatively low removal effectiveness of estrone
in current treatment plants (Johnson et al., 2000). The main
physical and chemical properties of estrone are presented in
Table 1 and the chemical structure is shown in Figure 1. A
fast and solvent-free analytical method was utilized for
quantifying estrone in water. It consisted of solid-phase mi-
croextraction (SPME) followed by on-fiber silylation for
preparing the sample for gas chromatography (GC) analysis
(Carpinteiro et al., 2004).

Materials and Methods
Water samples

Estrone-spiked water samples were prepared from pow-
dered estrone (>99%, Sigma-Aldrich), stirred for 4-8 hr, and
filtered through glass fiber filters (47 mm, 0.7 um pore size,
Pall Gelman Laboratory). The aqueous samples were stored
protected from light at 4°C until use. Stock estrone solutions
for GC standard curves were prepared by dissolving estrone
in methanol (HPLC grade, Fisher Scientific). The estrone
stock solution was stored at 4°C until use and diluted with
purified water (Barnstead RO-Pure ST/E-pure system) to
make standard solutions for SPME-GC-FID calibration. An
internal standard solution, deuterated 17B-estradiol (dy)
(2,4,16,16 -D4, Cambridge Isotope Laboratories), prepared
by dissolving 5 mg in 50 mL methanol, was added to all sam-
ples before GC quantification.

Adsorbents

Dealuminated Y (DAY) (Zeolyst), silicalite-1 (Union Car-
bide), and a granular activated carbon made from bitumi-
nous coal (Centaur®, Calgon Corporation) were used as ad-
sorbents. The pores of the zeolites are uniform in shape and
size as a result of the regular crystalline framework struc-
ture. The pore sizes of the zeolites are listed in Table 2. The

granular activated carbon has pore diameters between 5-40
A, with most pores in the 5-20 A range (Merenov ef al., 2000).
All three of these samples were used in our prior studies
with other organic compounds (Giaya et al., 2000; Erdem-
Senatalar et al., 2004; Koryabkina et al., 2007), thus providing
a basis for comparison. The adsorbents were first dried in an
oven at 120°C for 12-14 hr, and then stored in a dessicator
containing a supersaturated solution of CaCl, in water. This
approach was expected to produce moisture equilibrium in
a saturated humidity atmosphere (Giaya et al., 2000; Giaya
and Thompson, 2002; Erdem-Senatalar et al., 2004; Ko-
ryabkina et al., 2007).

Adsorption tests

The adsorption data were obtained by using various ad-
sorbent/aqueous solution ratios (10-315 mg adsorbent/L
water). Subsequent to 5 hr mixing on an orbital shaker (Lab-
line Instruments, Inc.), 40 mL solutions were transferred to
45 mL vials, and liquid-solid separation performed by cen-
trifugation for 10 min at 2000 RPM (Eppendorf 5804 cen-
trifuge, Eppendorf, Germany).

Solid phase microextraction/gas
chromatography procedure

A solid phase microextraction (SPME) fiber with an 85 um
film thickness polyacrylate coating (Supelco) was used for
extracting and concentrating estrone from the aqueous sam-
ples. The fiber was initially conditioned by baking in the in-
jection port of the gas chromatograph (Agilent Technologies,
Series 6890) at 300°C for at least 2 hr as recommended by the
manufacturer (Supelco). Extraction was performed in 45 mL
vials by immersing the SPME fiber in 40 mL aqueous sam-
ples containing the internal standard. The extractions were
conducted at room temperature (20°C = 2°C) for 1 hr with

FIG. 1. Molecular structure of estrone (Wilcox and Val-
lieres, 2006).
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TaBLE 2. ReEMovAL OF ESTRONE FROM WATER WITH 24 H ApsorrTioN oNTO CAC, DAY,
AND SILICALITE-1. INITIAL ESTRONE CONCENTRATION = 1130 ug/L

Ave. largest pore

Total specific
pore volume

dimensions, dp (A) Specific (m3/g)
Percent (Erdem-Senatalar surface area (Erdem-Senatalar
Adsorbent removal et al., 2004) (m/g) et al., 2004)
CAC 69 7.8 1014 0.51
(Merenov et
al., 2000)
DAY 99 7.4 692 0.38
(Zhao et al.,
1998)
Silicalite-1 39 5.6,55 371 0.21
(Zhao et al.,
1998)

stirring at 400 rpm. pH adjustment was not performed for
these analyses as the samples were ca. neutral, and others
had found that sample pH did not affect SPME extraction of
estrogens (Carpinteiro et al., 2004). After the microextraction
step, the fiber was exposed to the headspace of a 1.5 mL vial
containing 50 uL of N-methyl-N-(trimethylsilyl) trifluoroac-
etamide (MSTFA) (derivatization grade, Sigma-Aldrich) that
converts estrone to its silyl derivative (Carpinteiro ef al.,
2004). Derivatization was carried out at 60°C for 15 min in
an oven before each GC injection.

The GC was equipped with a flame ionization detector
(FID), and an Equity™—5 capillary column 12 m in length,
200 pm in nominal diameter with 0.33 um film thickness.
The inlet and detector temperatures were 280°C. Nitrogen
was used as the carrier gas at a constant flow of 0.8 mL/min.
Hydrogen gas and air at flow rates of 40 mL/min and 180
mL/min, respectively, were used for the FID flame. The flow
rate of make up nitrogen gas was 19.2 mL/min. The GC oven
was programmed as follows: 1 min at 80°C, ramped at
15°C/min to 260°C and held for 20 min. The SPME fiber was
allowed to desorbed in the GC inlet for 5 min at 280°C and
was heated for an additional 5 min at the same temperature
to avoid carry-over. The concentration of estrone in the sam-
ple was determined from a linear standard curve after ad-
justing for method sensitivity using the internal standard.
Blanks were included in each run, as well as spikes of known
concentrations within the standard curve concentration
range. The method detection limit was 1 ug/L.

Degradation of estrone by ultraviolet light

Irradiation by UV light using a short wavelength UV lamp
(Model 11SC-1 Mercury Pen-Ray lamp, 254 nm, 6650
uW/cm?) and a long wavelength UV lamp (36-380 Spec-
tronics Corp., 365 nm peak, 1000 uW/cm?) was performed
in an annular volume between a quartz tube (ACE-7506-10,
ACE Glass Inc., approximately 13 cm long and 1.2 cm di-
ameter with 5 mm wall thickness), and a glass outer tube
(ACE Glass Inc., approximately 11 cm long and 2.5 cm di-
ameter with 2 mm wall thickness). Due to the limited vol-
ume in this apparatus, 40 ml water samples were divided
into 8 runs for irradiation. The contact times were 10 s, 20 s,
30 s, 1 min, 3 min, 6 min, and 30 min.

Thermogravimetric analysis

Three samples, pure dry estrone, wet DAY, and DAY sat-
urated with estrone, were each subjected to thermogravi-
metric analysis (TGA). All samples were heated in the TGA
(TA Instruments TGA 2950 Thermogravimetric Analyzer)
from 30 to 500°C at a heating rate of 10°C/min under a purge
of nitrogen gas. Weight losses as a function of sample tem-
perature were recorded.

Results and Discussion

Screening experiments using zeolites
and activated carbon

Initial screening experiments were conducted to compare
the ability of the three sorbents to remove estrone from wa-
ter. The results are listed in Table 2, and show that DAY had
the greatest equilibrium removal of estrone (99%), while sil-
icalite-1 was least effective (39%). The Centaur® activated
carbon (CAC) removed 69%. Given that an estrone molecule
has a width of about 3.8 A and length of about 10.8 A (Wilcox
and Vallieres, 2006), it might be expected that estrone would
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FIG. 2. Kinetics of adsorption of estrone on DAY (20°C);
two symbols represent duplicate runs.
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not be prevented from the pores in all three samples. How-
ever, DAY has a 3-D cage-like structure while silicalite-1 has
a 3-D channel structure. It is uncertain if their structural dif-
ferences contributed to their quite different adsorbability.
BET surface areas also provide an indication of a sorbent’s
ability to remove contaminants. Higher BET surface areas
usually provide for greater adsorbability, yet for estrone ad-
sorption, CAC with a much greater surface area (Table 2) un-
derperformed DAY. Silicalite-1 was eliminated from further
study after the screening experiments due to its low equi-
librium adsorption performance.

Kinetics of adsorption

Kinetics experiments were carried out with DAY and CAC
by placing the adsorbents and estrone in 45 ml vials and sac-
rificing vials at predetermined times. The results of the ki-
netic studies for DAY and CAC are shown in Figures 2 and
3, respectively. The time for reaching adsorption equilibrium
for DAY was approximately 4 hr, while it took more than
one week for CAC to reach adsorption equilibrium. Due to
the extremely long contact time for estrone to adsorb to CAC
only DAY was studied in more detail in subsequent experi-
ments.

DAY Adsorption Isotherm

The adsorption isotherm for estrone on DAY is presented
in Figure 4. The data were fitted to the linearized Freundlich
and Langmuir adsorption models.

The linearized Freundlich model is:

lnquInK—i-%lnCe

where g, is the mass in ug of adsorbate (estrone) per mass
in g of adsorbent (DAY), C, is the equilibrium concentration
of estrone in water in ug/L, and K and 1/n are Freundlich
constants.

The linearized Langmuir model is:

Ce :( 1 >+ Ce
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FIG. 3. Kinetics of adsorption of estrone on CAC (20°C);
two symbols represent duplicate runs.
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FIG. 4. Adsorption isotherm of estrone on DAY at 20°C.

where (max is the saturation capacity in mg/g, and b is a
constant.

The fit of the data to the linearized Freundlich isotherm is
shown in Figure 5. The high R? value establishes that there
is a very good fit to the data. The R? value for the fit of the
data to the linearized Langmuir model was 0.892, and is not
shown here. However, it is worth noting that the saturation
capacity parameter, qmax, computed from the Langmuir
isotherm analysis was 74 mg/g, quite close to the limiting
value observed experimentally.

The values found for the Freundlich constants were 1/n =
1.10, and K = 0.163 (mg/g)-(L/ug)'1?. The Freundlich con-
stant K is thought to represent the adsorption capacity, and
1/n the adsorptive energy between the adsorbent and the
adsorbate. The higher the value for K, the stronger the ad-
sorption capacity; while the smaller the value for 1/n, the
stronger the adsorptive energy. Fukuhara et al. evaluated dif-
ferent types of activated carbons for estrone removal from
water (Fukuhara et al., 2006) (Table 3). They concluded that
adsorption capacity increases with increases in specific sur-
face area. This work is consistent with that observation as
DAY has a smaller specific surface area than the activated
carbons in Table 3, and performs less effectively from an
equilibrium standpoint, yet has kinetics benefits over CAC
(Figs. 2 and 3).

It was estimated that approximately 16% of the DAY pore
volume was filled at saturation. This seemingly low level of
pore filling, noted by the plateau in the isotherm, might be hy-
pothesized to be due to estrone existing as pure, crystal or pre-
cipitated solid or quasi-solid estrone in the pore throats, block-
ing the potential for higher loadings. Note the rather high
melting point for estrone (255°C), which is listed in Table 1.
Thus, at room temperature, estrone can be expected to be a
solid. Since prior evidence has suggested that these hy-
drophobic zeolites adsorb very little water (Giaya et al., 2000;
Giaya and Thompson, 2002), estrone might be assumed to ad-
sorb with very little water, and thus be essentially pure in the
adsorbed state. That being the case, one might expect it to be-
have as a solid or quasi-solid phase, making diffusion into the
pores rather difficult. Secondly, Molecular Dynamics simula-
tions of a single estrone molecule in a DAY cavity revealed
that the hydrogen atom in the -OH group (Fig. 1) hydrogen
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FIG. 5. Plot of estrone on DAY adsorption data to lin-
earized Freundlich isotherm at 20°C.

bonded with oxygen atoms in the DAY structure, more or less
anchoring it to the cavity (Yazaydin, 2007). The snapshot in
Figure 6 shows very temporary and transient hydrogen bonds
with three DAY oxygen atoms, which formed and broke very
quickly. However, the estrone molecule was never observed
to hop to an adjoining cavity in these simulations. Therefore,
it is suspected that the relatively low loading was due to the
isolation of estrone molecules to cavities near the external sur-
faces of the DAY crystals.

Molecular Dynamics simulations of estrone in silicalite-
1 were also carried out (Yazaydin, 2007), but are not shown
here. The observations in the silicalite structure were that
estrone fit rather tightly in that pore system with little room
for other estrone molecules, hydrogen bonding occurred
frequently, and the estrone molecule seemed somewhat
trapped in the pores. The estrone molecules did not move
along the straight or zig-zag pores. The lower adsorption
capacity of silicalite-1 observed in the experiments could be
understood from these simulations to stem from the smaller
pore volume in comparison to the larger DAY pore vol-
umes.

323

Thermogravimetric analysis (TGA)

Thermogravimetric analysis was conducted to help un-
derstand the requirements for thermal regeneration of the
saturated DAY, and to elucidate the behavior of estrone in
the pores of the DAY with temperature increases. The results
in Figure 7 show that the weight loss of pure estrone accel-
erated at about 300°C, i.e., slightly above its melting point of
255°C. A much slower weight loss continued to occur up to
600°C. A boiling point for estrone does not appear to have
been reported, so this slower weight loss may have resulted
from thermal decomposition in the nitrogen environment.
Water in DAY started evaporating well below 100°C, and
was essentially completely vaporized once the sample
reached about 110°C. The carrier gas undoubtedly enhanced
water vaporization at temperatures below its normal boiling
point. The sample containing adsorbed estrone removed
from water started losing weight as soon as heating began.
Weight loss up to 75°C was most likely water adsorbed
loosely on the external surface of the DAY, facilitated, as be-
fore, by the carrier gas. Subsequent weight loss due to es-
trone was revealed by a slow weight loss up to 600°C, as be-
fore.

Temperatures in the range of 250-400°C are typical for ze-
olite-catalyzed organic reactions, and the DAY sample is
known to have small amounts of AlO,~ T-sites, known to
possess catalytic acidity that catalyzes some organic conver-
sions. Thus, it is likely that the gradual weight loss noted
here indicates that estrone experienced chemical degrada-
tion reactions in the DAY. This also would explain why
weight loss of estrone in DAY began at lower temperatures
than for the pure estrone.

Thus, using thermal regeneration to remove estrone from
the DAY pores one would expect to have to raise the tem-
perature to about 600°C for some period of time, an energy-
intensive process. Incomplete removal of estrone from the
DAY pores would be expected at lower temperatures.

Direct UV irradiation to destroy estrone in water

A 254 nm wavelength UV light (200 m]/cm?) rapidly de-
stroyed estrone in water as shown in Figure 8. A reduction
of 89.5% was reached in 30 seconds. Further UV fluence did
not degrade estrone to lower than 75 ug/L.

TaBLE 3. ComPARISON OF FREUNDLICH CONSTANTS (C IN ug/L AND q IN mg/g)
FOR ESTRONE ADSORPTION ONTO VARIOUS ACTIVATED CARBONS AND DAY

Total specific Specific Mean pore
K 1/n pore volume  surface area  diameter

Adsorbent [(mg/g) - (L/ug)V"]  [unit-less] R [em®/g] [m?/g] [A] Reference

Activated 25.6 0.33 0.963 0.46 1038 17.7 (Fukuhara et al., 2006)
carbon A-1

Activated 73.5 0.40 0.996 0.839 1831 18.3 (Fukuhara et al., 2006)
carbon A-2

Activated 35.9 0.41 0.991 0.677 1514 17.9 (Fukuhara et al., 2006)
carbon A-3

Activated 47.2 0.51 0.998 1.149 1467 31.3 (Fukuhara et al., 2006)
carbon B-3

Activated 36.7 0.35 0.960 244 1187 244 (Fukuhara et al., 2006)
carbon C-3

DAY 0.163 1.10 0.989 0.38 692 <74 this work
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FIG. 6. Snapshot of estrone in a DAY cavity, based on Molecular Dynamics simulations (Yazaydin, 2007). The white atoms
in the center cavity are the main hydrogen atoms of the estrone molecule. (Color image is available online at www liebert-

pub.com/ees)

UV irradiation may mitigate the estrogenic impact of es-
trogens (Ohko ef al., 2002; Liu and Liu, 2004). Ohko et al.
(2002) concluded that the phenol moiety may be the origin
of photocatalytic oxidation and they presumed that the es-
trogenic activities of the intermediate products lacking a phe-
nol ring were negligible. Liu and Liu (2004) showed that pho-
tolysis of estrogens caused the breakage and oxidation of
benzene rings to produce products containing carbonyl
groups.
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For comparison purposes, destruction of estrone was at-
tempted with longer wavelength UV light. It was found that
365 nm UV light was not as effective at destroying estrone
with only 10% destroyed in 6 min (360 mJ/cm?). This ob-
servation is consistent with data presented by others. Liu and
Liu found that long-wave light (A = 365 nm) was less effec-
tive than short-wave UV light (A\ = 254 nm) for photolysis of
estrone in aqueous solutions (Liu and Liu, 2004). Rosenfeldt
and Linden reported that bisphenol A, ethinyl estradiol, and
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FIG.7. Thermogravimetric analysis (TGA) results for pure
estrone, DAY & water, and DAY & estrone.

FIG. 8. Estrone degradation in aqueous solution with UV
light irradiation (A = 254 nm).
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FIG.9. Equilibrium capacity after adsorption/UV (A = 254
nm) regeneration cycles.

estradiol only adsorbed UV radiation in the range of 200-300
nm (Rosenfeldt and Linden, 2004).

UV regeneration of estrone-saturated DAY

Irradiation with UV light at A = 254 nm was used to re-
generate the estrone-saturated DAY by mineralizing the en-
trapped estrone. A similar strategy was used to regenerate
adsorbents containing chloroform and trichloroacetic acid in
our previous work (Koryabkina et al., 2007). Figure 9 shows
adsorption equilibrium results for DAY regenerated using
UV irradiated for 6 and 30 min. These data are the accumu-
lation of nine cycles of adsorption, followed by regeneration
with UV light. These results are compared to data from Fig-
ure 4, which represents DAY not previously exposed to es-
trone. While there is some scatter in the data for the regen-
erated DAY, the data suggests that UV light was successful
in mineralizing estrone associated with the DAY pores. The
small variations in the data are most likely due to small loss
of the solid zeolite powder between cycles due to handling
issues.

Conclusions

The effectiveness of hydrophobic zeolites for removing es-
trone from water was investigated in this work. It was found
through equilibrium adsorption experiments that dealumi-
nated zeolites Y (DAY) outperformed silicalite-1 and Cen-
taur® activated carbon (CAC). And kinetic testing illustrated
that adsorption of estrone onto DAY was much faster than
onto CAC. An adsorption isotherm for adsorption of estrone
to DAY was obtained and the Freundlich isotherm model fit-
ted to the experimental data.

Experiments were conducted with direct UV irradiation
for the potential regeneration of estrone-saturated DAY. Re-
generation of DAY with direct UV was found to be success-
ful, and has the potential to reduce the energy required for
regeneration when compared to regeneration by heating to
600°C. By using combined adsorption followed by UV re-
generation, the estrone was first concentrated in the DAY
pores, and then UV mineralized the compound. If UV alone
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is used to treat wastewater, it generally requires a high con-
sumption of UV energy due to continuous contact with a
large volume of water with low concentrations of contami-
nation. The combined adsorption/UV process may have ad-
vantages in treatment as the regeneration step can be per-
formed with higher (adsorbed) contaminant concentrations.
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