
Worcester Polytechnic Institute
DigitalCommons@WPI

Computer Science Faculty Publications Department of Computer Science

6-1-2007

A Quick 3D-to-2D Points Matching based on the
Perspective Projection
Songxiang Gu
Worcester Polytechnic Institute

Cliff Lindsay
Worcester Polytechnic Institute

Michael A. Gennert
Worcester Polytechnic Institute, michaelg@wpi.edu

Michael A. King
University of Massachusetts Medical School Worcester

Follow this and additional works at: http://digitalcommons.wpi.edu/computerscience-pubs
Part of the Computer Sciences Commons

This Other is brought to you for free and open access by the Department of Computer Science at DigitalCommons@WPI. It has been accepted for
inclusion in Computer Science Faculty Publications by an authorized administrator of DigitalCommons@WPI.

Suggested Citation
Gu, Songxiang , Lindsay, Cliff , Gennert, Michael A. , King, Michael A. (2007). A Quick 3D-to-2D Points Matching based on the
Perspective Projection. .
Retrieved from: http://digitalcommons.wpi.edu/computerscience-pubs/46

http://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fcomputerscience-pubs%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wpi.edu/computerscience-pubs?utm_source=digitalcommons.wpi.edu%2Fcomputerscience-pubs%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wpi.edu/computerscience?utm_source=digitalcommons.wpi.edu%2Fcomputerscience-pubs%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wpi.edu/computerscience-pubs?utm_source=digitalcommons.wpi.edu%2Fcomputerscience-pubs%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wpi.edu%2Fcomputerscience-pubs%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wpi.edu/computerscience-pubs/46


WPI-CS-TR-08-04 June 2007

A Quick 3D-to-2D Points Matching based on the
Perspective Projection

by

Songxiang Gu, Cliff Lindsay, Michael A.

Gennert, Michael A. King

Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department

100 Institute Road, Worcester, Massachusetts 01609-2280



A QUICK 3D-TO-2D POINTS MATCHING BASED ON THE PERSPECTIVE PR OJECTION

Songxiang Gu, Cliff Lindsay, Michael A. Gennert
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Michael A. King
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ABSTRACT

This paper describes a quick 3D-to-2D point matching algo-
rithm. Our major contribution is to substitute a newO(2n)
algorithm for the traditionalN ! method by introducing a con-
vex hull based enumerator. Projecting a 3D point set into a
2D plane yields a corresponding 2D point set. In some cases,
matching information is lost. Therefore, we wish to recover
the 3D-to-2D correspondence in order to compute projection
parameters. Traditionally, an exhaustive enumerator permutes
all the potential matching sets, which isN ! for N points,
and a projection parameter computation is used to choose the
correct one. We define ”correct” as the points match whose
computed parameters result in the lowest residual error. Af-
ter computing the convex hull for both 2D and 3D points set,
we show that the 2D convex hull must match a circuit of the
3D convex hull having the same length. Additionally a novel
horizon validation method is proposed to further reduce the
number of potential matching cases. Finally, our matching
algorithm is applied recursively to further reduce the search
space.

Key words: Convex Hull, Residual Error, Horizon, Cali-
bration

1. INTRODUCTION

3D-to-2D points matching is still an open topic in computer
vision. Projecting a 3D point set into a 2D plane yields a
corresponding 2D point set. If the points are identical, we
will lose the correspondence information through the projec-
tion. On the other hand, if our input data is 3D and 2D point
sets and we want to estimate the projection parameters based
on the 3D and 2D points’ coordinates, we have to know the
points correspondence information. The traditional way [6]
to acquire the best matching 3D point set is to enumerate all
potential matching cases via camera calibration computation.
A single matching case yields a set of projection parameters,
which we use to project the 3D points into the 2D plane. We
then calculate the residual errors, which we define as the dif-
ference between the projected 2D points and the input 2D
points. We then choose the matching case with minimal resid-
ual error as the correct one. To recover a best matching corre-
spondence without any constraint requires a search space of
N ! for N points.

Even without any extra constraint, we still can shrink the
N ! searching space with topology information provided by
the points set and multi-view projection. In this paper, we in-
troduce a novel points matching algorithm to pick the correct
match withO(2n) complexity as well as solve the perspective
projection parameters. In this paper, we use pose estimation
[11] to determine a transformation in order to simulate the
perspective projections. Therefore, given a set of matching
2D and 3D points, we can compute the projection parame-
ters with the following closed-form calibration method [10]
[16]. Once the camera parameters are determined, we can use
them to project the original 3D points into 2D and compute
the residual error in 2D. If the matching information is correct
with minimal distortion, then the residual error would be zero.
In the presence of measurement noise, we expect a small, but
non-zero residual error. Therefore, an incorrect match will
produce a large residual error and can be disregarded.

We show experimental results to validate the correctness
of our method. Our experiment builds a relationship between
the camera and a Single Photon Emission Computed Tomog-
raphy (SPECT) system, which is used to collect the radioac-
tivity information. Our 3D points are both retro-reflectiveand
radioactive and we acquire the 2D image of points by camera
and the 3D coordinates by the SPECT. Since the 3D infor-
mation is collected by radioactivity, it is impossible for us to
mark the points for the correspondence. Therefore, by in-
putting the identical 3D and 2D points set into our method,
we can show the correct correspondence as well as the cam-
era parameters. We also designed a simulation procedure to
study the performance of our method.

The rest of the paper is organized as follows; section two
will covers related work, followed by section 3 which is an in-
depth explanation of our approach. Then section four outlines
our experiments, and section four discusses the conclusion
and future work.

1.1. Related Work

The RANSAC algorithm [4] is one of the most popular al-
gorithm for 3D-to-2D points matching. Developed from the
traditional ICP adn RANSAC algorithm [14], Fitzgibbon [5]
registered the large number of 3D and 2D points by LM-ICP
algorithm. Though it works well for a large number of ran-
dom points, it does not converge to a global optimum neces-



sarily. Furthermore, both algorithms require models in order
to compute a match. For our application, we need an opti-
mal correspondence without providing a model and our point
number is small. Goshtasby [7] matched point patterns with
convex hull edges. However, he did not investigated the com-
plete inherent relationship between the 3D and 2D convex
hulls. Cyr [3] introduced a new method to register 3D objects
to 2D projections using shape. Kita [8] introduced an iterative
searching method for 3D volume data to 2D projection image
registration. This method can be adopted for 3D-to-2D points
matching. Ryo [9] developed another estimation method that
calculates the pose of 3D objects. All of theses methods do
not necessary converge to the best match.

Although calibration is not the main contribution of our
work, it is an important factor in this paper. Pin-hole camera
model is a close-form calibration model. Tsai [10] introduced
a calibration method to solve the pin-hole without distortion
and skew. Tsai [16] improves the model by using a 2-step cal-
ibration model. With the same input, this method can handle
skew and distortion problem. At least 6 points in both 3D and
2D space are required with only a single camera and image.
Since we have the 3D and 2D point coordinates and only one
camera, we employ Tsai’s calibration method in our points
matching algorithm.

2. OUR APPROACH

2.1. Overview

In this paper, we combine calibration with points matching
computation as a whole to create an efficient algorithm for
the global optimized matching case. To simplify the problem,
we do not consider distortion in this paper. Although the total
potential 3D-2D points matching cases areN !, most of the
cases can be disregarded. Only the potential matching sets
that follow the topology restrictions between 3D and 2D point
sets are considered for the calibration computation. To utilize
the topology information and simplify the computation, we
have to compute the convex hull for both 3D and 2D point
sets.

Since we assume no distortion, a 2D convex hull cor-
responds a circuit on the 3D convex hull(We make a sim-
ple proof in Appendix A). With such a theorem, the topol-
ogy degenerates the factorial method to an exponential one.
Secondly, we claim that not all the 3D circuits, but only 3D
horizons can be projected into 2D plane as a convex hull.
Therefore, we propose a horizon validation method to invali-
date a large number of 3D circuits. Since each valid horizon
only contains part of the points, the remaining points, which
is not on the horizon, could be processed as another point
set. Therefore, a recursive method is adopted to search the
remaining points dynamically. After putting all the filtered
matching cases into the calibration computation, we createa
set of camera parameters. Residual error is computed via the
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Fig. 1. (a) Convex hull of 3D point setS; (b) Convex hull of
2D point setS′.

calculated camera parameters. Given a pair of 3D/2D point
sets, the exact matching case and the correct projection pa-
rameters are finally picked out by the minimum residual error.

The residual error is introduced to measure the validity of
a potential matching case. For 3D point setS and 2D projec-
tion setS′, we have

E = 1/n

n
∑

i=0

‖S′ − Proj(S, Calib(S̄, S′))‖ (1)

Wheren is the number of the points;̄S is one of the po-
tential matching cases;Proj() is the projection function with
the parameters of 3D point set and camera parameters and
Calib() means the calibration. We want to try less times ofS̄
to get the minimum residual errorE.

2.2. Convex Hull Matching

To extract topology information, convex hulls are computed
on both 3D and 2D point sets [Fig. 1]. A convex hull of a
point setS, is the unique convex polygon or polytope, which
containsS and all of whose vertices are points fromS [17].
Computing the convex hull is a well studied problem in com-
putational geometry [2]. Yao [18] showed that the lower bound
to find convex hulls isO(n ln n). In two and three dimen-
sions, the quick hull algorithm [1] [15] determines convex
hulls for most point sets with time complexityO(n lnn). How-
ever, this method may fail when more than 3 points are co-
planar. Finally, O’Rourke [12] provided aO(n2) robust method
for 2D two and 3D convex hull computations.

Based on the convex hull, we have split all the points into
two categories: boundary points, which are on the convex
hull, and interior points, which are interior the convex hull.
For example, in the Fig. 1(a), the 3D pointA and C are
boundary points and the 3D pointB is an interior point. In
the Fig. 1(b), the 2D pointA′ andC′ are boundary points and
the 2D pointB′ is an interior point.

Based on two primary theorems(Theorem 1, Theorem 2 in
Appendix A)from ComputationalGeometry [13] concern-
ing 3D and 2D convex hulls, it is easy to prove that all the
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boundary points on the 2D convex hull correspond to a subset
of the boundary points on the 3D convex hull. Furthermore,
based on Theorem 3 (Appendix A), we can claim the circuit
of 2D boundary points [Fig. 1(b)] must correspond to a cir-
cuit of 3D boundary points on 3D convex hull [Fig. 1(a)].
This means, to match them-length 2D convex hull, we do not
have to try all the permutations of the 3D point set, but only
them-length circuits on the 3D convex hull. With the insight
from the topology, we shrink the searching space in the first
step.

It is not difficult to trace am length circuit on the 3D
convex hull. After tracing such a circuit, if the point num-
ber of 2D convex ism, we only need2m trials to search for
the correct matching case in the 3D and 2D boundary point
sets. In other words, we needm trials to proceed clockwise
around the 2D boundary point set and anotherm trials for
the counter-clockwise case. We use the terminologyHm

n to
denote the number of validm length circuits on ann-vertex
convex hull.

Considering the constraint on convex hull point matching,
we search for a lengthm circuit on the 3D convex hull for
the first matching step, instead of an exhaustiveN ! search.
This first convex hull matching step reduces the computa-
tional complexity fromO(N !) to O(2mHm

n (N-m)!).

2.3. Horizon Validation

If a 3D circuit could be projected into a 2D plane as a convex
hull, all of the points and edges in that circuit should be visible
to a certain focus point. Such a circuit is called horizon. In

(a) First Layer of 3D Vertices  (b) First Layer of 2D vertices 

(c) Second layer of 3D Vertices  (d) Second layer of 2D vertices 

mpoints 2D convex hullnpoints 3D convex hull

Fig. 3. (a;b)m points circuit in 3D convex hull corresponding
to m points in the 2D convex hull. (c;d) Next layer points
matching

other words, if there is no such a 3D focus point that can view
all the edges on the 3D circuit, the circuit is not a valid horizon
and therefore can be excluded. Here we developed a horizon
validation method to validate the circuits.

As shown in Fig. 2(a), for an edgeP1P2 in the 3D circuit,
there is always a pair of triangles ((∆P1P2P3),(∆P1P2P4))
associated with it. If the edge is projected into a 2D plane as
a 2D convex edge, the focus point must view one of the pair
of the triangles, but not both. Particularly, in Fig. 2(a), if the
focal point is in the region betweenV1 andV2, it can view the
triangle (∆P1P2P4), but not (∆P1P2P3). Therefore, for each
edge, there is a valid region in 3D space that the focus point
could only exist in, which we call a ”valid region” (V R).

Each edge is determined by its own valid regionV R. For
two edges, there are two valid regions that can be intersected
into a common valid regionV Rc (Fig. 2(b)). If there is a
focus point that can view these two edges, the focus point has
to be in the common valid regions withV Rc 6= null. In gen-
eral, if all of the edges have at least one common valid region
(V Rc = V R1

⋂

V R2...
⋂

V Rl 6= null, l is the edge num-
ber), the circuit is proved to be a horizon. Otherwise, if the
common valid region is null, no matter where we put the fo-
cal point we can not view the circuit as a horizon. Therefore,
we consider the circuit to be invalid. Though we have not
analyzed the horizon validation mathematically, based on the
results of our simulation shown in Section 3.3, this algorithm
is an improvement of approximatelyO(2n) over an exhaus-
tive search.

2.4. Recursive Computation

As shown in Fig. 3(a;b), during the matching procedure, we
dynamically split the point sets intom matched points and
(N − m) remaining points in both 3D and 2D point sets by
the circuit. Since the two(N−m) remaining point sets can be



considered new an independent potential matching set, we de-
veloped a recursive method to deal with the remaining points.
If (N −m) is still large, we can compute the convex hulls for
2D, 3D(N − m) point sets and create the potential matching
cases for it. As shown in Fig. 3(c;d), we deal with the remain-
ing point sets just like the initial point sets. By recursively
repeating the procedure mentioned above until the remaining
points number is small enough, we can reduce the potential
matching cases toO(2r

∏

r

mi

∏

r

Hmi

ni
), wherer is the num-

ber of layers (recursive calls) of point set splitting. It iseasy to
tell that the algorithm has no computational benefit when the
number of the remaining points is fewer than 4. Therefore,
we can shrink the problem space until(N − m) ≤ 4.

Not only the circuit searching but also the horizon valida-
tion can be recursively propagated. Initially, the valid region
is set to infinite before we begin the horizon validation com-
putation. After the first level horizon validation, we go to the
next layer of circuit searching. Since the focal point should
not be changed when we search the circuit in next layer, the
common valid region of the next layer can only stay inside
the common valid region of the previous layer. We can prop-
agate the common valid region of the first level horizon as the
initial valid region to the next layer, which is no longer infi-
nite. During the valid region propagation, the common valid
region may be split into several pieces by the edges and tri-
angles. Fortunately, most of the pieces turn out to be invalid
very quickly.

Sincem ≤ n, the 2D convex hull is the benchmark for
each recursive convex matching. To optimize the computa-
tion, we can pre-compute all the layers of 2D convex hull.
However, when we deletem points from the 3D point sets
dynamically, we have to recompute the 3D convex hull for
the remaining point sets again and compute a new 3D convex
hull for next recursive step.

Finally, for each potential point set, we do a calibration
computation of the projection matrix. Then we re-project the
3D points into 2D by perspective projection and calculate the
residual error. The points matching case with the smallest
residual error is determined to be the correct matching case.

2.5. Missing Points

During the projection, some of the 3D points may be lost
caused by overlapped, darkened or out of the image range.
Then the 3D point numbern is less then the 2D point number
m. Currently, our basic idea is that we choosen 2D points
from m first to make the point number equivalent between
the 3D and 2D point sets. Then we put new point sets with
the equal point number into the matching algorithm. Given
the time complexity for our algorithm isO(2n), if there are
some missing points in 3D point set, the time complexity is
O(

(

n
m

)

2n).

3. EXPERIMENTS

3.1. Camera Parameters

The pinhole model [10] has 13 parameters including the dis-
tortion and skew. For each potential correspondence between
the 3D and 2D point sets, we compute the camera parameters
that optimally projects the 3D world points into the 2D im-
age. We use a closed-form calibration method that computes
the intrinsic and extrinsic parameters by solving the perspec-
tive projection equation.

⇀

X
c

= Proj(CP,
⇀

X
w

) (2)

WhereProj() is the projection function,CP is the set of

camera parameters and
⇀

X
w

,
⇀

X
c

are the point coordinates in
3D world and 2D camera plane, respectively. Camera param-
eterCP can be decomposed into

CP = A · P (3)

WhereA =





fx 0 ICx

0 fy ICy

0 0 1



 is the set of intrinsic param-

eters;fx andfy are the scaled focal lengths andICx andICy

are the image center coordinates. The extrinsic parameters
areP = [R|T ], whereR is a3 × 3 rotation matrix andT is
the translation vector. Given a set of at least 6 pairs of points

in both
⇀

X
w

and
⇀

X
c

, we can linearly compute the camera pa-
rameters,A andP [6]. After the basic camera parameters
are computed, we can re-project the 3D points into 2D plane.
Then a second step is performed for the distortion parame-
ters [16]. The computed camera parameters are then used to

project each point
⇀

X
w

according to Eq 2 and the residual error
is computed by Eq 1. We select the camera parameters from
the parameter set which generate the lowest residual error.

3.2. Verification Using Real Camera Data

We illustrate this method using a 7 point data set as in Fig.
4. Recalling that at least 6 point pairs are needed to calculate
CP , we use 1 extra point to provide redundancy. In this case,
the 2D optical data comes from an AXIS PTZ 2130 camera
with resolution of640× 480 pixels. As mentioned in Section
3.4, a reasonable estimation for the maximum distortion error
is 9 pixels. Then we add radioactivity into the centers of retro-
flective spheres and put the 7-sphere phantom into SPECT.
The 3D data acquired has a resolution of256 × 256 × 256
voxels. Each voxel is a cube with 2.33mm on each side, for
a volume of 12.65mm3. Since the 3D information is acquired
by the radioactivity, all the spheres are identical.

Using brute-force matching, 7 points need7! = 5040 cal-
ibration computations which completes in 1.26 seconds. In
our experiment, we repeat the data acquisition 6 times with
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Fig. 4. 6 samples with the same image resolution640 × 480
but different camera parameters.

different camera parameters [Fig. 4]. The results for such 6
trials are shown in Table 1.

In the experiments, all final matches are optimal. The
average value for the residual error is 2.051 pixels. If we
have known the 3D coordinates of the retro-reflective mark-
ers, the closed-form method developed by Tsai [16] works
well. Moreover, this result shows that the current lens distor-
tion usually has little influence in the imaging procedure and
does not change the projection topology. Such results signify
that our solution is applicable for the point matching problem
even with real cameras. For our solution, the average poten-
tial matching cases are 817, which is much smaller than7!.

In this experiment, we can not change the point number at
will. Therefore, we have to design a simulation procedure to
show the results with different point number.

3.3. Simulation and Result

Based on the closed-form calibration method, we want to know
the average time complexity for our algorithm with points sets
that have a different number of points. An evaluation is pro-
posed to simulate experiments with more pseudo-points via
the following steps.

1. Generate the coordinates for a set of 3D points.
2. Generate a set of camera parameters.

Trial Residual
Error
(Pixel)

Time Con-
sumption
(Sec)

Potential
Matching
Cases

1. 2.48 0.313 780
2. 0.37 0.328 780
3. 0.48 0.343 780
4. 3.24 0.322 780
5. 1.12 0.375 1002
6. 3.18 0.329 780

Mean 1.810 0.335 817.0

Table 1. Time Consumption for the Real Data.

3. Project the 3D points into the 2D camera plane.

4. Shuffle the order of the 2D point set.

5. Put them into our algorithm for the best matching case.

6. Select camera parameters that yield the smallest resid-
ual error.

To test our convex hull based points matching algorithm,
we generated 8 sets of data with 7 to 14 points, and put them
into our algorithm to show the matching results and compu-
tation time. Previously, we mentioned a brute-force matching
method, a basic convex hull based matching method(Section
3.1) and an improved method with horizon validation(Section
3.2). We compared these three methods to show the average
time consumption in the simulation [Fig. 5]. Although we
cannot exhaustively list all possible topologies, we repeat the
points generation of certain point number with uniform distri-
bution 3000 times. After 8×3000 iterations of the simulation,
the mean results are shown in Fig. 5. Fig. 5(a) shows the
comparison of the average number of valid potential match-
ing cases and Fig. 5(b) shows the comparison of the average
time consumption. From the Fig. 5, our method provides
an exponential solution for the point matching problem. For-
merly, the brute-force method required 1.26 seconds for 7!
calibration computations for optimal matching of 7 points.It
is reasonable to state that when the number of points is in-
creased to 13, the brute-force matching takes more than 18
days to calculate making it impractical. Based on the simula-
tion results, only 77.03 seconds on average is required for best
matching for 13 points. The time consumption of the method
is approximatelyO(2n).

Fixing the point number to 9, Fig. 6 shows the time con-
sumption distribution for the 3000 trials with random posi-
tions. From that map, it is easy to tell that for most of the
random cases, the time consumptions are less than 10 sec-
onds. We also show that the distribution of time consump-
tion is roughly Gaussian. Based on the simulation results, our
method decreases the searching time for the best match by the
convex hull based enumerator.



4. CONCLUSIONS AND FUTURE WORK

Our algorithm provides a quick method to get the correct
3D-to-2D points matching information. We use the inherent
topology information and the multi-view projection principle
to shrink the search space. Based on our simulation result, the
performance of our method is approximatelyO(2n). Our so-
lution fits for some applications, in which the best matching
case is required and a small number of points are small. In fu-
ture, we would like to investigate to use our method with other
applications, such as 3D-to-2D points matching, pose estima-
tion and camera calibration. However, it is still an exponential
solution. If the point number is further increased, we stillhave
to spend a lot of time on searching the best matching case.
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Appendix
Theorem 1. [13]
As shown in Fig. 1(b), the line segmentl defined by two

2D pointsA′ and C′. (A′C′) is an edge of the 2D convex
hull(CH(S′)) if and only if all other points of the point setS′

lie on l or to one side of it.�

Theorem 2. [13]
As shown in Fig. 1(a), the facep defined by three 3D

points A, C and D. ∆ACD is a face of the 3D convex
hull(CH(S)) if and only if all other points of the point set
S lie on the planep or to one side of it.�

Lemma 1:
As shown in Fig. 7, given 3D triangle∆v1v2v3, its 2D

perspective projection is also a triangle, called∆v′1v
′

2v
′

3. We
also have that all the points interior the triangle∆v1v2v3

are projected into the interior of triangle∆v′
1
v′
2
v′
3
.(If the 3D

triangle is projected into a 2D plane as a line segment, it can
also be considered as a special case of Lemma 1.)

Proof: First of all, we have to prove that a 3D line seg-
ment is projected into a 2D line segment with perspective
projection. Suppose 3D point coordinates ofv1 andv2 are
(X1, Y1, Z1) and(X2, Y2, Z2); suppose 2D point coordinates
of v′

1
andv′

2
are(x1, y1) and(x2, y2). From the mathematic

expression of the projection, we have





u
v
w



 = P









X
Y
Z
1









(4)

u,v,w are the internal variables; matrixP is the projection
transformation matrix and theX , Y , Z is the 3D point coordi-
nate. The 2D coordinates can be computed as the following:

[

x
y

]

=

[

u/w
v/w

]

(5)

Given a 3D pointvi which is on the line segmentation
v1v2 with the coordinateXiYiZi, we have



X1 − Xi

Xi − X2

=
Y1 − Yi

Yi − Y2

=
Z1 − Zi

Zi − Z2

(6)

Combined with Eq 4, Eq 5 and Eq 6, we can get

x1 − xi

xi − x2

=
y1 − yi

yi − y2

(7)

where the(x′

i, y
′

i) is the coordinate of 2D pointv′i. If the
pointv′i is the 2D projection point ofvi, v′i is on the line seg-
mentation ofv′1v

′

2.
Based on the conclusion above, we pick a random pointvi

on the line segmentv1v2. We have known that the projection
point v′i is on the line segmentv′1v

′

2. Connecting thev3 and
vi, we can claim that all the points on the line segmentv3vi

are projected into the line segmentv′3v
′

i. Then we draw a
conclusion that all the points interior the triangle∆v1v2v3

are projected into the interior of the triangle∆v′
1
v′
2
v′
3
.

A conclusion here is an interior point of 3D convex hull
can not be projected to a boundary point of 2D convex hull,
(v /∈ CH(S)) → (v′ /∈ CH(S′)).�

Theorem 3.
Given 2D point setS′[Fig. 8(b)] which is the projection

of 3D point setS[Fig. 8(a)], if v′1,v′2 are adjacent points in
the 2D convex hull ofS′, thenv1, v2 are also adjacent in the
3D convex hull ofS, wherev′1,v′2 are 2D projections of 3D
pointsv1 andv2.

Proof: As shown in Fig. 8, suppose that 2D linev′
1
v′
2

is a
convex edge inS′ but the corresponding 3D linev1v2 is not a
convex edge inS. Choose 3D pointv3 on linev1v2 between
v1 andv2, We have(v3 /∈ CH(S + {v3})). v′

3
is the 2D

projection ofv3 and lies on the linev′1v
′

2. By Theorem 1, we
have(v′

3
∈ CH(S′ + {v′

3
})). However, since we also have

(v′ ∈ CH(S′)) → (v ∈ CH(S))(Lemma 1.), we have a con-
tradiction against the hypothesisv1v2 /∈ CH(S). Therefore,
theorem 3 is proved.�
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Comparison for time consumption
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Fig. 5. Comparison between different methods. (a) Compar-
ison of average potential matching cases. (b) Comparison of
average time consumption.
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Fig. 6. The time consumption distribution for the 3000 trials
of 9 random point sets.
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Fig. 7. Triangle Projection.

(a) 3D Vertices (b) 2D Vertices
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Fig. 8. Corresponding convex hull edge in 3D (a) and 2D (b).
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