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A QUICK 3D-TO-2D POINTS MATCHING BASED ON THE PERSPECTIVE PR OJECTION

Songxiang Gu, Cliff Lindsay, Michael A. Gennert Michael A. King
Worcester Polytechnic Institute Umass Medical School
ABSTRACT Even without any extra constraint, we still can shrink the

N! searching space with topology information provided by

the points set and multi-view projection. In this paper, we i

troduce a novel points matching algorithm to pick the cdrrec

match withO(2™) complexity as well as solve the perspective
rojection parameters. In this paper, we use pose estimatio
1] to determine a transformation in order to simulate the
erspective projections. Therefore, given a set of matrhin
D and 3D points, we can compute the projection parame-

ters with the following closed-form calibration method J10
16]. Once the camera parameters are determined, we can use
em to project the original 3D points into 2D and compute
e residual error in 2D. If the matching information is @t

This paper describes a quick 3D-to-2D point matching algo
rithm. Our major contribution is to substitute a néw2")
algorithm for the traditionalN! method by introducing a con-
vex hull based enumerator. Projecting a 3D point set into
2D plane yields a corresponding 2D point set. In some case
matching information is lost. Therefore, we wish to recove
the 3D-to-2D correspondence in order to compute projectio
parameters. Traditionally, an exhaustive enumerator persn
all the potential matching sets, which ! for N points,
and a projection parameter computation is used to choose t
correct one. We define "correct” as the points match whos

computed parameters result in the lowest residual error. A ith minimal distortion, then the residual error would bexe

ter computing the convex hull for both 2D and 3D paints €4 the presence of measurement noise, we expect a small, but
we show that the 2D convex hull must match a circuit of the ' '

3D hull having th lenath. Additionall Inon—zero residual error. Therefore, an incorrect match wil
convex hul having the same lengtn. tionally a noVegroduce a large residual error and can be disregarded.
horizon validation method is proposed to further reduce th

ber of potential matchi Finall tchi We show experimental results to validate the correctness
number of potential matching cases. Finally, our matchingy - nethod. Our experiment builds a relationship between
algorithm is applied recursively to further reduce the skar

the camera and a Single Photon Emission Computed Tomog-

space. . .
) . ) . raphy (SPECT) system, which is used to collect the radioac-
brat'i<oer)1/ words: Convex Hull, Residual Error, Horizon, Cali- tivity information. Our 3D points are both retro-reflectaed

radioactive and we acquire the 2D image of points by camera
and the 3D coordinates by the SPECT. Since the 3D infor-
1. INTRODUCTION mation is collected by radioactivity, it is impossible fas to
mark the points for the correspondence. Therefore, by in-
3D-to-2D points matching is still an open topic in computerputting the identical 3D and 2D points set into our method,
vision. Projecting a 3D point set into a 2D plane yields awe can show the correct correspondence as well as the cam-
corresponding 2D point set. If the points are identical, weera parameters. We also designed a simulation procedure to
will lose the correspondence information through the proje study the performance of our method.
tion. On the other hand, if our input data is 3D and 2D point  The rest of the paper is organized as follows; section two
sets and we want to estimate the projection parameters basedl covers related work, followed by section 3 which is an in
on the 3D and 2D points’ coordinates, we have to know thelepth explanation of our approach. Then section four ceglin
points correspondence information. The traditional wdy [6 our experiments, and section four discusses the conclusion
to acquire the best matching 3D point set is to enumerate aiind future work.
potential matching cases via camera calibration compmutati
A s_ingle matching case yields a sgt of _projection parameters 1 Related Work
which we use to project the 3D points into the 2D plane. We
then calculate the residual errors, which we define as the difhe RANSAC algorithm [4] is one of the most popular al-
ference between the projected 2D points and the input 2Qorithm for 3D-to-2D points matching. Developed from the
points. We then choose the matching case with minimal residraditional ICP adn RANSAC algorithm [14], Fitzgibbon [5]
ual error as the correct one. To recover a best matching-correegistered the large number of 3D and 2D points by LM-ICP
spondence without any constraint requires a search space aforithm. Though it works well for a large number of ran-
N!for N points. dom points, it does not converge to a global optimum neces-



sarily. Furthermore, both algorithms require models ineord

to compute a match. For our application, we need an opti- A A
mal correspondence without providing a model and our point AR Y
number is small. Goshtasby [7] matched point patterns with ™ \\/,L:ioa“é v e ,
convex hull edges. However, he did not investigated the com- —_—N ¢

plete inherent relationship between the 3D and 2D convex
hulls. Cyr [3] introduced a new method to register 3D objects
to 2D projections using shape. Kita [8] introduced an iigeat
searching method for 3D volume data to 2D projection image
registration. This method can be adopted for 3D-to-2D oint _. .
matching. Ryo [9] developed another estimation method thgg'g' 1'_ (@) Co/nvex hull of 3D point sef; (b) Convex hull of
calculates the pose of 3D objects. All of theses methods d D point seiS'”.

not necessary converge to the best match.

Although calibration is not the main contribution of our cajculated camera parameters. Given a pair of 3D/2D point
work, it is an important factor in this paper. Pin-hole camer gets, the exact matching case and the correct projection pa-
modelis a close-form calibration model. Tsai [10] introddC  rameters are finally picked out by the minimum residual error
a calibration method to solve the pin-hole without distanti The residual error is introduced to measure the validity of

and skew. Tsai [16] improves the model by using a 2-step caly potential matching case. For 3D point §eand 2D projec-
ibration model. With the same input, this method can handlgg, setS’, we have

skew and distortion problem. At least 6 points in both 3D and
2D space are required with only a single camera and image.
Since we have the 3D and 2D point coordinates and only one
camera, we employ Tsai's calibration method in our points
matching algorithm.

(a) 3D Vertices (b) 2D vertices

E= 1/ni |IS" — Proj(S, Calib(S, S"))|| 1)

=0

Wheren is the number of the points§ is one of the po-
2 OUR APPROACH tential matching case®roj() is the projection function with
the parameters of 3D point set and camera parameters and
2.1. Overview Calib() means the calibration. We want to try less timesof
to get the minimum residual errds.
In this paper, we combine calibration with points matching
computation as a whole tq create an ef_ficie_nt algorithm foaz' Convex Hull Matching
the global optimized matching case. To simplify the prohlem
we do not consider distortion in this paper. Although thaltot To extract topology information, convex hulls are computed
potential 3D-2D points matching cases dé most of the on both 3D and 2D point sets [Fig. 1]. A convex hull of a
cases can be disregarded. Only the potential matching sgtsint setS, is the unique convex polygon or polytope, which
that follow the topology restrictions between 3D and 2D poin containsS and all of whose vertices are points fra$n17].
sets are considered for the calibration computation. Tzeti Computing the convex hull is a well studied problem in com-
the topology information and simplify the computation, we putational geometry [2]. Yao [18] showed that the lower abun
have to compute the convex hull for both 3D and 2D pointto find convex hulls iD(nlnn). In two and three dimen-
sets. sions, the quick hull algorithm [1] [15] determines convex
Since we assume no distortion, a 2D convex hull corhulls for most point sets with time complexi®y(n ln n). How-
responds a circuit on the 3D convex hull(We make a simever, this method may fail when more than 3 points are co-
ple proof in Appendix A). With such a theorem, the topol- planar. Finally, O’'Rourke [12] provided@(n?) robust method
ogy degenerates the factorial method to an exponential onar 2D two and 3D convex hull computations.
Secondly, we claim that not all the 3D circuits, but only 3D  Based on the convex hull, we have split all the points into
horizons can be projected into 2D plane as a convex hultwo categories: boundary points, which are on the convex
Therefore, we propose a horizon validation method to iavalihull, and interior points, which are interior the convexlhul
date a large number of 3D circuits. Since each valid horizofror example, in the Fig. 1(a), the 3D poidtand C are
only contains part of the points, the remaining points, Whic boundary points and the 3D poift is an interior point. In
is not on the horizon, could be processed as another poitie Fig. 1(b), the 2D point’ andC’ are boundary points and
set. Therefore, a recursive method is adopted to search tifge 2D pointB’ is an interior point.
remaining points dynamically. After putting all the filtere Based on two primary theorer{iBheorem 1, Theorem 2 in
matching cases into the calibration computation, we craate Appendix A¥rom ComputationalGeometry [13] concern-
set of camera parameters. Residual error is computed via tlieg 3D and 2D convex hulls, it is easy to prove that all the
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Fig. 3. (a;b)m points circuit in 3D convex hull corresponding
to m points in the 2D convex hull. (c;d) Next layer points
matching

other words, if there is no such a 3D focus point that can view

Fig. 2. (a) Valid Region for an convex edge. (b) common@ll the edges on the 3D circuit, the circuitis not a valid kori

Valid Region intersected by multiple valid regions.

and therefore can be excluded. Here we developed a horizon
validation method to validate the circuits.
As shown in Fig. 2(a), for an edgg P, in the 3D circuit,

boundary points on the 2D convex hull correspond to a subsglere is always a pair of trianglesXE; P> Ps),(A Py P> Py))

of the boundary points on the 3D convex hull. Furthermoreassociated with it. If the edge is projected into a 2D plane as
based on Theorem 3 (Appendix A), we can claim the circuia 2D convex edge, the focus point must view one of the pair
of 2D boundary points [Fig. 1(b)] must correspond to a cir-of the triangles, but not both. Particularly, in Fig. 2(&)hie

cuit of 3D boundary points on 3D convex hull [Fig. 1(a)]. focal pointis in the region betwedn andVx, it can view the
This means, to match the-length 2D convex hull, we do not triangle A P, P» P;), but not A P, P, P;). Therefore, for each
have to try all the permutations of the 3D point set, but onlyedge, there is a valid region in 3D space that the focus point
them-length circuits on the 3D convex hull. With the insight could only exist in, which we call a "valid region{R).

from the topology, we shrink the searching space in the first

step.
It is not difficult to trace am length circuit on the 3D

Each edge is determined by its own valid regioR. For
two edges, there are two valid regions that can be interdecte
into a common valid regio R, (Fig. 2(b)). If there is a

convex hull. After tracing such a circuit, if the point num- focus point that can view these two edges, the focus point has

ber of 2D convex isn, we only need@m trials to search for

to be in the common valid regions withR. # null. In gen-

the correct matching case in the 3D and 2D boundary poirgral, if all of the edges have at least one common valid region

sets. In other words, we need trials to proceed clockwise
around the 2D boundary point set and anothetrials for
the counter-clockwise case. We use the terminol&gy to
denote the number of valich length circuits on am-vertex
convex hull.

(VR. = VRi(\VR2...\VR; # null, | is the edge num-

ber), the circuit is proved to be a horizon. Otherwise, if the
common valid region is null, no matter where we put the fo-
cal point we can not view the circuit as a horizon. Therefore,
we consider the circuit to be invalid. Though we have not

Considering the constraint on convex hull point matchinganalyzed the horizon validation mathematically, basechen t

we search for a length circuit on the 3D convex hull for
the first matching step, instead of an exhausfiWesearch.

results of our simulation shown in Section 3.3, this aldonit
is an improvement of approximatey(2") over an exhaus-

This first convex hull matching step reduces the computative search.

tional complexity fromO(N!) to O(2mH*(N-m)!).

2.3. Horizon Validation

2.4. Recursive Computation

As shown in Fig. 3(a;b), during the matching procedure, we

If a 3D circuit could be projected into a 2D plane as a convexdynamically split the point sets inte matched points and

hull, all of the points and edges in that circuit should bébkés

(N — m) remaining points in both 3D and 2D point sets by

to a certain focus point. Such a circuit is called horizon. Inthe circuit. Since the twoN —m) remaining point sets can be



considered new an independent potential matching set, we de 3. EXPERIMENTS
veloped a recursive method to deal with the remaining points

If (N —m) is still large, we can compute the convex hulls for 3.1. Camera Parameters

2D, 3D (IV — m) point sets and create the potential matchin

cases forit. As shown in Fig. 3(c;d), we deal with the remain- he. pinh(zjle lTOdel [10] has 13 pa_ra;meters incl(;Jding ttTe dis-
ing point sets just like the initial point sets. By recurdjve tortion and skew. For each potential correspondence betwee

repeating the procedure mentioned above until the rerrgalininthe 3D and 2D point sets, we compute the camera parameters

points number is small enough, we can reduce the potentig?at optimally projects the 3D \_/vorlq points into the 2D im-
matching cases t0(2" [] m; [ H™ ), wherer is the num- age. We use a closed-form calibration method that computes

S the intrinsic and extrinsic parameters by solving the peesp
ber of layers (recursive calls) of point set splitting. Ie&sy to  tive projection equation.

tell that the algorithm has no computational benefit when the

number of the remaining points is fewer than 4. Therefore, ¢ ) >

we can shrink the problem space uii — m) < 4. X = Proj(Ch X ) 2)
Not only the circuit searching but also the horizon valida- WhereProj() is the projection functionCP is the set of

tion can be recursively propagated. Initially, the validio®d  amera parameters aid , X are the point coordinates in

is set to infinite before we begin the horizon validation com-3p world and 2D camera plane, respectively. Camera param-
putation. After the first level horizon validation, we go t®t  atercp can be decomposed into

next layer of circuit searching. Since the focal point skoul

not be changed when we search the circuit in next layer, the CP=A-P ©)
common valid region of the next layer can only stay inside

the common valid region of the previous layer. We can prop- f: 0 IC,

agate the common valid region of the first level horizon as th@vhereA = | 0  f, IC, | isthe setof intrinsic param-
initial valid region to the next layer, which is no longer infi 0 0 1

nite. During the valid region propagation, the common valideters;f, andf, are the scaled focal lengths ah@, andIC,,
region may be split into several pieces by the edges and trare the image center coordinates. The extrinsic parameters
angles. Fortunately, most of the pieces turn out to be idvaliare P = [R|T], whereR is a3 x 3 rotation matrix andl’ is

very quickly. the translation vector. Given a set of at least 6 pairs ofgoin

—~w —C
Sincem < n, the 2D convex hull is the benchmark for in both X andX , we can linearly compute the camera pa-
each recursive convex matching. To optimize the computaameters,A and P [6]. After the basic camera parameters
tion, we can pre-compute all the layers of 2D convex hull.are computed, we can re-project the 3D points into 2D plane.
However, when we delete: points from the 3D point sets Then a second step is performed for the distortion parame-
dynamically, we have to recompute the 3D convex hull forters [16]. The computed camera parameters are then used to

S , . P
the remaining point sets again and compute a new 3D ConVeB?ojecteach poink accordingto Eq 2 and the residual error

hull for next recursive step. is computed by Eq 1. We select the camera parameters from

Finally, for each potential point set, we do a calibrationthe parameter set which generate the lowest residual error.
computation of the projection matrix. Then we re-projeet th

3D points into 2D by perspective projection and calculaée th o )
residual error. The points matching case with the smallest-2- Verification Using Real Camera Data
residual error is determined to be the correct matching.caseyy jjlustrate this method using a 7 point data set as in Fig.
4. Recalling that at least 6 point pairs are needed to cakula
CP, we use 1 extra point to provide redundancy. In this case,
2.5. Missing Points the 2D optical data comes from an AXIS PTZ 2130 camera
with resolution 0f640 x 480 pixels. As mentioned in Section
During the projection, some of the 3D points may be lost3.4, a reasonable estimation for the maximum distortioorerr
caused by overlapped, darkened or out of the image rangis.9 pixels. Then we add radioactivity into the centers afret
Then the 3D point number is less then the 2D point number flective spheres and put the 7-sphere phantom into SPECT.
m. Currently, our basic idea is that we choaes@D points The 3D data acquired has a resolution26f x 256 x 256
from m first to make the point number equivalent betweervoxels. Each voxel is a cube with 2.33mm on each side, for
the 3D and 2D point sets. Then we put new point sets witl volume of 12.65mrh Since the 3D information is acquired
the equal point number into the matching algorithm. Giverby the radioactivity, all the spheres are identical.
the time complexity for our algorithm i©(2"), if there are Using brute-force matching, 7 points neégd= 5040 cal-
some missing points in 3D point set, the time complexity isibration computations which completes in 1.26 seconds. In
o((m)2m). our experiment, we repeat the data acquisition 6 times with



Trial Residual Time Con-| Potential
Error sumption Matching
(Pixel) (Sec) Cases
1. 2.48 0.313 780
2. 0.37 0.328 780
3. 0.48 0.343 780
4, 3.24 0.322 780
5. 1.12 0.375 1002
6. 3.18 0.329 780
| Mean [ 1.810 | 0.335 | 817.0 |

Table 1. Time Consumption for the Real Data.

3. Project the 3D points into the 2D camera plane.
4. Shuffle the order of the 2D point set.
5. Put them into our algorithm for the best matching case.

6. Select camera parameters that yield the smallest resid-
ual error.

To test our convex hull based points matching algorithm,
we generated 8 sets of data with 7 to 14 points, and put them
into our algorithm to show the matching results and compu-
tation time. Previously, we mentioned a brute-force maughi
method, a basic convex hull based matching method(Section
3.1) and an improved method with horizon validation(Setctio
3.2). We compared these three methods to show the average

different camera parameters [Fig. 4]. The results for such gme consumptipn in.the simulgtion [Fig. 5,]' Although we
trials are shown in Table 1. cannot exhaustively list all possible topologies, we réftea

In the experiments, all final matches are optimal. Th oints generation of certain point number with uniformuist
average value for the ’residual error is 2.051 pixels ' If waution 3000 times. After 83000 iterations of the simulation,

have known the 3D coordinates of the retro-reflective mark'Ehe mean results are shown in Fig. 5. Fig. 5@) §hows the
ers, the closed-form method developed by Tsai [16] work&gomparison of tr_]e average number of vallq potential match-
well. Moreover, this result shows that the current lensogist "9 C3S€S and '_:'g' 5(b) shows the comparison of the average
tion usually has little influence in the imaging procedurd an time consumptlon. _From the F'g.' 5 our_method provides
does not change the projection topology. Such resultsfgigni an exponential solution for the pomt_matchlng problem.-For
that our solution is applicable for the point matching pesbl merly, the brute-force method required 1.26 seconds for 7!

even with real cameras. For our solution, the average potel.‘ff:‘"br"’Ition computations for optimal matching of 7 poirtts.

tial matching cases are 817, which is much smaller fHan is reasonable to state that when the number of points is in-

In this experiment, we can not change the point number a reased to 13, the brgte—_fqrce ma_tching takes more than 18
will. Therefore, we have to design a simulation procedure t ays to calculate making it impractical. Based on the simula
show the resul£s with different point number tion results, only 77.03 seconds on average is requiredfsir b

matching for 13 points. The time consumption of the method
is approximatelyO(2").

Fig. 4. 6 samples with the same image resolutidd x 480
but different camera parameters.

3.3. Simulation and Result o ) ) )
Fixing the point number to 9, Fig. 6 shows the time con-

Based on the closed-form calibration method, we want to knogumption distribution for the 3000 trials with random posi-
the average time complexity for our algorithm with pointssse tions. From that map, it is easy to tell that for most of the
that have a different number of points. An evaluation is prorandom cases, the time consumptions are less than 10 sec-
posed to simulate experiments with more pseudo-points viands. We also show that the distribution of time consump-
the following steps. tion is roughly Gaussian. Based on the simulation resulis, o
1. Generate the coordinates for a set of 3D points. method decreases the searching time for the best match by the
2. Generate a set of camera parameters. convex hull based enumerator.
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Comparison for potential matching cases

X1 -Xs ©n-Y Z1-7Z

Xi—Xo Yi-Ys Zi—2 ©) e
. . —— Brute-force /
Combined with Eq 4, Eq 5 and Eq 6, we can get 1810 | g oocie Gonvex HullMatching P
1E+09 ] orizon Validation
T Ty -y @ e e //
Ty — T2 Yi — Y2 o 1Es07
where the(z}, y!) is the coordinate of 2D point]. Ifthe o e // //
pointw; is the 2D projection point of;, v; is on the line seg- £ 10000 L
mentation ofv v5. 5 00 T —
Based on the conclusion above, we pick arandom pgint £ 1 ,
on the line segment; v». We have known that the projection : 15
pointv; is on the line segmentjv5. Connecting the; and - "
v;, we can claim that all the points on the line segment . . . . . . . . . |
are projected into the line segmerifv,. Then we draw a 7 8 0 0 0n 12 138 115
conclusion that all the points interior the trianghe; vovs Points Number
are projected into the interior of the trianghe) v5v5. ()
A conclusion here is an interior point of 3D convex hull Comparison for time consumption
can not be projected to a boundary point of 2D convex hull, -
(v ¢ CH(S)) — (v ¢ CH(S").0 N R //
—#— Basic Convex Hull Matching

Theorem 3.

Given 2D point seS’[Fig. 8(b)] which is the projection
of 3D point setS[Fig. 8(a)], if v{,v} are adjacent points in
the 2D convex hull of’, thenvy, v, are also adjacent in the

1E+6 Horizon Validation

10000

100000 /
/
/

Average Time Consum ption (Sec)

3D convex hull ofS, wherev} v are 2D projections of 3D 1000 —
pointsv; andws. - /
Proof: As shown in Fig. 8, suppose that 2D lin&v} is a /
convex edge irt’ but the corresponding 3D ling v- is not a 10 / —
convex edge ir5. Choose 3D points on linewv; v, between . : = , , , , ,
v1 and vz, We have(vs ¢ CH(S + {Ug})) Ué is the 2D ?/: 9 10 1 12 13 14

0.1

projection ofv; and lies on the linev}. By Theorem 1, we
have(v; € CH(S" + {v5})). However, since we also have
(v € CH(S")) — (v e CH(S))(Lemmal.), we have a con- (0)
tradiction against the hypothesisv, ¢ CH(S). Therefore,

theorem 3 is proved]

Points Number

Fig. 5. Comparison between different methods. (a) Compar-
ison of average potential matching cases. (b) Comparison of
average time consumption.

9 Points, Basic Convex Hull based 9 Points, Horizon Validation Matching,
matching, 3000 trials 3000 trials
@ 600 500
2 500 { A § 400 h
8 [\ [—— Matchingcase} 8 H A —+— Matching case$
g 490 FRAWR o 300 —H AV
£ 300 7 = 200 N/ \
L S V
g 2007 % 2 oo 1 \
100 s ¥ \\
LN 0
-100 2 4 6 8 10 100 2 4 6 8 10
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(a) Basic Convex Hull based matching (b) Improved Horizon Validation Matching

without Distortion Tolerance

Fig. 6. The time consumption distribution for the 3000 trials
of 9 random point sets.



- :Ifo-éal Point

Fig. 7. Triangle Projection.

Focal Point

-
1.

AP
(a) 3D Vertices (b) 2D Vertices

Fig. 8. Corresponding convex hull edge in 3D (a) and 2D (b).
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