2010

Grid Scale Energy Storage

Ben Collins
Worcester Polytechnic Institute

Sam Petersen

Ryan Pollin

Edmund Resor

Follow this and additional works at: http://digitalcommons.wpi.edu/gps-posters

Recommended Citation
http://digitalcommons.wpi.edu/gps-posters/67
Grid Scale Energy Storage

Ryan Pollin (Mechanical Engineering), Sam Petersen (Electrical and Computer Engineering), Edmund Resor (Mechanical Engineering), Ben Collins (Robotics Engineering)

Advisor: Professor Brian Savilonis (Mechanical Engineering)

Abstract

Grid energy storage can be used to meet New England’s peak energy demands, replacing highly polluting “peaker” oil power plants. The goal of this report is to determine the most economically and technologically feasible methods of energy storage and then determine whether or not these technologies are competitive against current oil power plants. The findings of the report indicate that pumped hydro can compete with oil peakers, and sodium sulfur batteries will compete within the near future.

Objective

850MW of grid scale energy storage can be implemented on the New England to replace all 856GWh now generated by oil peakers.

- Eliminates pollutants and emissions
- Potentially cheaper for end users
- Easily integrates PV, Wind, new energy sources
- More responsive to demand changes

Quantitative Results

<table>
<thead>
<tr>
<th></th>
<th>Efficiency</th>
<th>Lifetime (years)</th>
<th>Installation Cost ($/MW)</th>
<th>Selling Price ($/MWh)</th>
<th>Pollution (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Thermal</td>
<td>40%</td>
<td>50</td>
<td>700,000</td>
<td>103</td>
<td>242,000,000</td>
</tr>
<tr>
<td>Pumped Hydro</td>
<td>75-80%</td>
<td>75-100</td>
<td>1,000,000 -2,000,000</td>
<td>103</td>
<td>0</td>
</tr>
<tr>
<td>Sodium Sulfur</td>
<td>89%</td>
<td>15</td>
<td>1,500,000</td>
<td>106*</td>
<td>0</td>
</tr>
</tbody>
</table>

*To break even over lifetime

Pumped Hydro

- Pumps water uphill into an upper reservoir at night to store energy, and releases the water down hill into a lower reservoir through a turbine to release energy
- 70-80% of energy is retained
- Estimated $1-2 Billion for a 1GW facility
- Low maintenance costs
- Long lifespan (75-100 years)
- Zero emissions, but may alter ecosystem

Peaking Oil Plants

- Burns expensive petroleum based fuels in thermal generation
- Turns on within minutes, ideal for backup or emergency power
- Produces up to 5.8GWh on a peak day
- Sells electricity at around $1.03/kWh
- 242 million tons pollutants per year
 - 240 million tons CO₂
 - 1.6 million tons SO₂
 - 600,000 tons NOₓ
 - 4,800 tons CO
 - 12,000 tons other particulates

Sodium Sulfur Battery

- Durable, inexpensive to manufacture
- 15 year lifespan with little to no maintenance
- $1500/kW 89% energy recovery
- Estimated $1.5 Billion for a 1 GW facility
- Size of 470 standard cargo containers
- Up to 7 hour discharge
- 99% recyclable materials; Na and S common elements
- Zero emissions
- Selling at same price as oil generators, system pays for 93% of its cost over its lifespan by energy arbitrage
- System breaks even if NaS costs fall below$1416/kW

Conclusions

- Pumped Hydro storage is the best option, pending geographical locations
- Extremely long lifespan makes it easy to pay back and profit
- NaS systems are not yet cost effective over lifetime
- Any storage technology will be cleaner, as their energy stems from cleaner off-peak plants such as nuclear, hydroelectric, or renewables

Background Image by OJ Byrne

- The electrical load curve from New England on a typical summer day (June 9th 2008)