Improving the Enzi Interface

Allison Corriveau
Worcester Polytechnic Institute

Kevin Payne

Amanda Pierce

Ryan Thornhill

Follow this and additional works at: http://digitalcommons.wpi.edu/gps-posters

Recommended Citation
Corriveau, Allison; Payne, Kevin; Pierce, Amanda; and Thornhill, Ryan, "Improving the Enzi Interface" (2011). Great Problems Seminar Posters. Book 103.
http://digitalcommons.wpi.edu/gps-posters/103

This Text is brought to you for free and open access by the Great Problems Seminar at DigitalCommons@WPI. It has been accepted for inclusion in Great Problems Seminar Posters by an authorized administrator of DigitalCommons@WPI.
Improving the Enzi Interface
Allison Corriveau (CHE), Kevin Payne (CHE), Ryan Thornhill (TBD), Amanda Pierce (TBD)

Abstract
Living in a country where frequent power outages can be extremely challenging. In many cases there is no generator to restore power during the outage because they are too expensive for developing countries to purchase.

Now imagine a low cost uninterruptible power supply (UPS) that the people of these countries could afford. That is the purpose for the Enzi Interface developed by the company Waste To Watts (W2W). The purpose of this project is to aid W2W improving the Enzi.

1. Background
Waste to Watts is a company, based out of Atlanta, Georgia, that strives to combat energy poverty. They are developing a product that is called the Enzi Interface. The Enzi is a low cost high performance UPS that is made mostly from electronic waste, also known as e-waste. The power outages and large power supply shortages can make India a prime spot for implementing the Enzi, which has a high frequency of power outages and a large amount of e-waste. The power outages and large amounts of e-waste makes India a prime spot for the Enzi to make its debut.

2. Goals/Objectives
- Researched used lead-acid batteries and the possibility of implementing a battery desulfator.
- Researched the possibility of integrating refurbished/recycled solar panels.
- Propose components of recycled e-waste for use in W2W follow-on product lines.
- Researched and analyzed common devices in the e-waste streams in India and the U.S.

3. Methods
Research On:
- Used batteries
- Desulfators
- Refurbished/recycled solar panels
- E-waste streams in India and U.S.
 - Most common devices in the streams
 - Components in the devices

Interviews/E-mail conversations with:
- Jim Dunn, Future Solar Systems LLC
- Jim Gardner, Metech Recycling
- Chris Hamman, Waste to Watts
- Creative Recycling Systems, e-waste recycler in the U.S.

We created:
- LED light kit. Served to identify simple electrical components and learn to solder.
- A desulfator where we used e-waste for the making of it.

We disassembled an old cathode ray tube television and analyzed different electrical components.

Visited Metech Recycling in Worcester, an electronics recycling center. We were able to see how electronics were disassembled and what devices were most commonly recycled.

4. Results
- Used Batteries:
 - Car batteries discarded when capacity < 80% but are not actually dead.
- Desulfators:
 - Sulfation occurs on the plates of the batteries and causes poor function. Desulfators send pulses to the plates and rid the plates of the sulfates.
- Refurbished/Recycled Solar Panels:
 - First solar panels installed in the 1990s and ~25-35 years.
- E-waste Stream in India:
 - Generated: ~146,000 tons per year
 - Recycled: ~14,600 tons per year
- E-waste Stream in the U.S.:
 - Generated (2010): ~1.8 million tons
 - Recycled (2010): ~650,000 tons
- Most Common Devices in E-waste Streams:
 - Cathode Ray Tube (CRT) Televisions
 - Old Computer Monitors
 - Central Processing Units (CPU)
- Electrical Components in such Devices:
 - Copper Wire
 - Microprocessors
 - Resistors
 - Capacitors
 - Inductors
 - AV Input/Output
 - Heat Sinks
 - Potentiometers
 - Jumper Wires
 - Other Misc. Parts

5. Recommendations
- Invest in a Battery Load Tester to test old batteries and recondition the "good" old batteries.
- Integrate a desulfator. The desulfator (schematic) we found can be made for $20 brand new. Cost reduced by using e-waste.
- Wait about 15-20 years when availability of old solar panels is higher. Then try to integrate them into the Enzi.
- Form a partnership with an e-waste recycler to obtain components easier.

Acknowledgments
We would like to make a special thank you to:
- Christopher Hamman (ECE), WPI Alum, Liaison from Waste to Watts
- Fred Looff (ECE), Project Advisor
- Diran Apelian, GPS: Grand Challenges Professor
- Svetlana Nikitina, GPS: Grand Challenges Professor
- Patrick Bobell (ECE), Peer Learning Assistant

References
- "Battery Desulfation." BEUK, 2011, 1 December 2011 <http://reuk.co.uk/Battery-Desulfation.htm>