2011

Re-Energizing the Way We Recycle Lithium-ion Batteries

Kyle Davidson
Worcester Polytechnic Institute

Nathaniel Goodale

Laura Hart

Sam Hastings

Follow this and additional works at: http://digitalcommons.wpi.edu/gps-posters

Recommended Citation
Davidson, Kyle; Goodale, Nathaniel; Hart, Laura; and Hastings, Sam, "Re-Energizing the Way We Recycle Lithium-ion Batteries" (2011). Great Problems Seminar Posters. Book 110.
http://digitalcommons.wpi.edu/gps-posters/110

This Text is brought to you for free and open access by the Great Problems Seminar at DigitalCommons@WPI. It has been accepted for inclusion in Great Problems Seminar Posters by an authorized administrator of DigitalCommons@WPI.
Re-Energizing the Way We Recycle
Lithium-Ion Batteries

Team Members: Kyle Davidson, Nathaniel Goodale, Laura Hart, Sam Hastings, Taylor Wilson
PLA: Ryan Weitz
Advisor: Prof. Diran Apelian

Abstract
Lithium-ion batteries are quickly becoming the dominant product in the rechargeable battery industry. As global production of these batteries increases, so does the rate at which the materials used to make them is depleted. Upon reaching end-of-life, most lithium-ion batteries make their way into the municipal waste stream, their components wasted. Others saw this problem and have developed exceptional processes by which lithium-ion batteries can be recycled. Despite these processes being available, the incentive to recycle is not, and the lack of supply to recycling companies renders the processes unprofitable. This project endeavors to provide the framework by which incentives to increase the recycling of lithium-ion batteries can be implemented.

Background
NOT classified as “hazardous waste” products by the US Environmental Protection Agency (EPA)
Over 2 billion landfilled in US each year
Market rapidly growing due to the increasing demand for electronic and portable devices.
Issue: Lack of supply of end-of-life batteries.

Why use lithium-ion batteries?
- High energy density – ability to store more charge in a smaller space
- Available in a variety of shapes and sizes
- Extremely light in weight
- Lower self-discharge rate

Questions Asked
- How are lithium-ion batteries being recycled today?
- What is the main problem faced with recycling lithium-ion batteries?
- What kind of recycling infrastructures are already in place?
- How is the market for lithium-ion batteries changing?
- Are there any environmental hazards involved with the recycling of lithium-ion batteries?
- Why is there a lack in the recycling of lithium-ion batteries?

Recommendation
Create infrastructure to incentivise the recycling of lithium-ion batteries.
Increase public awareness of recycling programs, benefits, necessity for recycling, and environmental sustainability.

What Others Have Done
Government mandated recycling of lithium-ion batteries

Our Approach
Tax incentivized recycling of lithium-ion batteries from state governments

The risks involved with not recycling batteries are uncontrolled (for example, batteries combusting in a landfill while no one is watching), while the downsides of recycling are known and planned against.

Our solution to the problem works through the idea of providing rewards for recycling rather than a requirement that reprimands people if they don’t recycle.

Information Gained
- Umicore and Kinsbursky Brothers currently have the technology for effectively recycling lithium-ion batteries.
- Environmental effects depend on method of disposal of recycling byproducts
- Major issue: Lack of supply of end-of-life batteries.
 - Lithium-ion batteries being disposed of in landfills rather than being recycled.

Conclusion
People are much more likely to respond to incentives rather than imposed requirements. This is the overarching basis of the solution proposed in this project. The idea of recycling is usually associated with the extra work needed to reclaim the materials of the recycled product. The proposed solution of a minimal tax to be refunded on return of the battery breaks this mindset in a fashion similar to the bottle collection system, with perceived rewards for doing the right thing. Studies of the methods by companies, such as Kinsbursky Brothers and Umicore, have revealed that the downsides to these recycling processes are minimal, and increasing the supply of end-of-life material to these companies would be beneficial for both the supply stream of materials and the environment.

Methodology
Research: Summon, Google Scholar
Determine focus: Policies of battery recycling
Interviews: Dr. Novis Smith, Mark Caffrey, Prof. Yan Wang
Develop recommendation: Tax incentives

Acknowledgements
- Prof. Diran Apelian
- Joanne Beller
- Mark Caffrey
- Dr. Novis Smith
- Prof. Yan Wang
- Ryan Weitz

References