2014

Analyzing Treatment Plans for Malaria Using Artemisia annua

Dan Amirault
Worcester Polytechnic Institute

Kayleah Griffen
Worcester Polytechnic Institute

Follow this and additional works at: http://digitalcommons.wpi.edu/gps-posters

Recommended Citation
http://digitalcommons.wpi.edu/gps-posters/340

This Text is brought to you for free and open access by the Great Problems Seminar at DigitalCommons@WPI. It has been accepted for inclusion in Great Problems Seminar Posters by an authorized administrator of DigitalCommons@WPI.
Analyzing the Optimal Treatment for Malaria Using the *Artemisia annua*

Dan Amirault- Biomedical Engineering
Kayleah Griffen- Mechanical Engineering

Abstract
Malaria is a parasitic disease impacting 3 billion people worldwide. The *Plasmodium falciparum* is drug resistant to 90% of antimalarial compounds. Artemisinin is being used in a variety of forms to treat Malaria, and the best way is in edible tablets created from organic *Artemisia annua*.

Description of Treatments

- **ACT**: Artemisinin Combination Therapy, produced in bacterial plasmids or extracted from *A. annua*, combined with other antimalarials
- **pACT**: Organic *A. annua*, edible tablet created from plant leaves
- **Transgenic**: Metabolically engineered *A. annua*, also edible tablet created from plant leaves

Analysis of Treatments

Sustainability

- **Effectiveness**
 - Transgenic produces 7.65 times the amount of AN produced in pACT (3)
 - ACT resistance rapidly compared to pACT (4)

- **Resistance**
 - WHO approves ACTs (5)
 - pACTs already widely accepted in developing countries (4)

- **Artemisinin Content**
 - pACT 0.10-0.30 / treatment (4)
 - ACT costs $6 / treatment (6)
 - pACT production could occur in developing country (4)
 - ACT production is costly and non-domestic (6)

Results and Discussion

- pACT= best treatment option
- Clonally propagated yields 1.4% Artemisinin content consistently (4)
- Least likely for drug resistance
- Already accepted in developing countries
- 0.10-0.30 / treatment (4)
- Production occurs in developing country
- Method shown below

Measures for Attribution

Analyze mortality rates and incidence rates of malaria recorded by the WHO. Analyze the economic impact on a country based on GDP. Analyze if socially acceptable by people by studying compliance.

Project Goals/Objectives

Determine the ideal treatment for malaria derived from the *A. annua* by analyzing the benefits and costs of ACTs, pACT and transgenic *A. annua*.

Economic Feasibility

- pACT cost 0.10-0.30 / treatment (4)
- ACT costs $6 / treatment (6)
- pACT production could occur in developing country (4)
- ACT production is costly and non-domestic (6)

Why Malaria?

- Endangers 3 billion people worldwide
- 90% cases in Africa (2)
- 10% reduction of GDP (1)
- Injects the *Plasmodium falciparum* parasite (1)

Analysis

- **Public Acceptance**
- **WHO Approval**
- **Delivery to Body**

Social Acceptability

- WHO approves ACTs (5)
- pACTs already widely accepted in developing countries (4)

Acknowledgments

We would like to thank our professors Jill and Helen. We would also like to give a special thanks to Rebecca Zinno for her help with writing and research, Pamela Weathers for her insight on the *A. annua*, and Jim and Jess for their design skills.

References