2013

Fukushima's Ice Wall: An Analysis

Garrett Brogan
Worcester Polytechnic Institute

Fran LaRovere
Worcester Polytechnic Institute

Casey Magrath
Worcester Polytechnic Institute

Zack McKinzie
Worcester Polytechnic Institute

Follow this and additional works at: http://digitalcommons.wpi.edu/gps-posters

Recommended Citation
Brogan, Garrett; LaRovere, Fran; Magrath, Casey; and McKinzie, Zack, "Fukushima's Ice Wall: An Analysis" (2013). Great Problems Seminar Posters. Book 325.
http://digitalcommons.wpi.edu/gps-posters/325

This Text is brought to you for free and open access by the Great Problems Seminar at DigitalCommons@WPI. It has been accepted for inclusion in Great Problems Seminar Posters by an authorized administrator of DigitalCommons@WPI.
Fukushima’s Ice Wall: An Analysis

Zack McKinzie (BME), Garrett Brogan (CHE), Francis LaRovere (ME), Casey Magrath (BME)
Advisor: Professor Jill Rulfs (Biology), Helen Vassalo (Business)

**Abstract**

Following the meltdown at the Fukushima nuclear reactor, irradiated ground water began to leak into the ocean. A permafrost wall was proposed as a possible solution to the problem. We utilized SWOT analysis to determine whether or not the permafrost wall is an effective and efficient solution. After consideration we have determined that the strengths and opportunities outweigh the weaknesses and threats.

**Methods**

- SWOT analysis was performed
- Strengths, Weaknesses, Opportunities, Threats
- Fukushima site compared to Oak Ridge National Labs; previous experimental site
- Data collected, interpreted, and compared; climate conditions, precipitation rates, and soil compositions
- Strengths and Opportunities weighed against Weaknesses and Threats

**Background**

- Earthquake on March 11, 2011 creates massive tsunami
- Shuts down back-up power to three reactors at Fukushima Daiichi nuclear power plant
- Lack of power results in meltdown
- Ground water flowing under reactors carries irradiated water to the ocean
- TEPCO, the company in charge of the reactors, plans to construct permafrost wall by 2015

**Strengths**

- Success with previous trial
- Reversibility
- Quick reconstruction if necessary

**Weaknesses**

- Pipe corrosion
- Could be breached
- Power taxing
- Inexperienced constructors

**Opportunities**

- Similar climate to successful trial
- Saturated ground
- Higher precipitation

**Threats**

- High seismic activity
- Heavy rain during hottest season
- All the eggs are in one basket

**Conclusion**

Our research has led us to determine that the proposed permafrost wall is a good idea. The strengths and opportunities outweigh the weaknesses and threats. The lack of any other method to deal with the radiation means that a temporary solution is required so that the radiation can be contained and processed some day. A permafrost wall is the best solution to the problem at this time.

**References**

We would like to thank Professor William Shields for his continued cooperation and correspondence.

---

**Abstract**

Following the meltdown at the Fukushima nuclear reactor, irradiated ground water began to leak into the ocean. A permafrost wall was proposed as a possible solution to the problem. We utilized SWOT analysis to determine whether or not the permafrost wall is an effective and efficient solution. After consideration we have determined that the strengths and opportunities outweigh the weaknesses and threats.

**Methods**

- SWOT analysis was performed
- Strengths, Weaknesses, Opportunities, Threats
- Fukushima site compared to Oak Ridge National Labs; previous experimental site
- Data collected, interpreted, and compared; climate conditions, precipitation rates, and soil compositions
- Strengths and Opportunities weighed against Weaknesses and Threats

**Background**

- Earthquake on March 11, 2011 creates massive tsunami
- Shuts down back-up power to three reactors at Fukushima Daiichi nuclear power plant
- Lack of power results in meltdown
- Ground water flowing under reactors carries irradiated water to the ocean
- TEPCO, the company in charge of the reactors, plans to construct permafrost wall by 2015

**Strengths**

- Success with previous trial
- Reversibility
- Quick reconstruction if necessary

**Weaknesses**

- Pipe corrosion
- Could be breached
- Power taxing
- Inexperienced constructors

**Opportunities**

- Similar climate to successful trial
- Saturated ground
- Higher precipitation

**Threats**

- High seismic activity
- Heavy rain during hottest season
- All the eggs are in one basket

**Conclusion**

Our research has led us to determine that the proposed permafrost wall is a good idea. The strengths and opportunities outweigh the weaknesses and threats. The lack of any other method to deal with the radiation means that a temporary solution is required so that the radiation can be contained and processed some day. A permafrost wall is the best solution to the problem at this time.

**References**

We would like to thank Professor William Shields for his continued cooperation and correspondence.