Less Till, More Yield

Matt Morais
Worcester Polytechnic Institute

Chris Madden
Worcester Polytechnic Institute

Shelby McQueston
Worcester Polytechnic Institute

Maitane Sesma
Worcester Polytechnic Institute

Follow this and additional works at: http://digitalcommons.wpi.edu/gps-posters

Recommended Citation
Morais, Matt; Madden, Chris; McQueston, Shelby; and Sesma, Maitane, "Less Till, More Yield" (2013). *Great Problems Seminar Posters*. Book 210.
http://digitalcommons.wpi.edu/gps-posters/210

This Text is brought to you for free and open access by the Great Problems Seminar at DigitalCommons@WPI. It has been accepted for inclusion in Great Problems Seminar Posters by an authorized administrator of DigitalCommons@WPI.
No-Till, More Yield

Problem
Erosion of farmland in southeastern Idaho

How Does No-Till Work?
- Crops left on ground after annual harvest
- Root systems hold soil particles together
- Soil is not washed or blown away

Costs and Benefits

Tillage Comparison
No-Till
- Planting and spraying only

Conventional Tillage
- Cultivating
- Planting
- Disking
- Plowing

Assessment Steps
Measure changes in crop yield, soil erosion, and soil quality
- Compare to USDA's Web Soil Surveys from 1981 and 2011
- Talk to farmers and local soil surveyors

Acknowledgments
The team would like to thank Glenn Hoffmann, MLRA Soil Survey Office Leader, NRCS

References
Hoffmann, Glenn. Email interview. 12 Nov. 2013.

Background
- Prime farmland
- High winds
- 5.8 tons/acre/yr lost
- Sporadic heavy rainfall

Solution
No-till farming

Costs and Benefits

Economics of Conventional Tillage Vs. No-Till

- Increased crop yield
- Reduced soil erosion
- Low running cost
- More organic soil
- Better for environment
- Soil moisture control