Document Type

Article

Publication Date

11-14-2006

Publication Title

Journal of Chemical Physics

Abstract

The present work investigates both the diffusivity and permeability of hydrogen (H) in palladium-silver (PdAg) and palladium-gold (PdAu) alloys over a 400-1200 K temperature range for Pd(100-X)M(X), M=Ag or Au and X=0%-48% using density functional theory (DFT) and kinetic Monte Carlo simulations (KMC). DFT has been employed to obtain octahedral (O)-, tetrahedral (T)-, and transition state (TS)- site energetics as a function of local alloy composition for several PdAg and PdAu alloys with compositions in supercells of X=14.18%, 25.93%, 37.07%, and 48.15% with the nearest (NNs) and next nearest neighbors (NNNs) varied over the entire range of compositions. The estimates were then used to obtain a model relating the O, T, and TS energies of a given site with NN(X), NNN(X), and the lattice constant. The first passage approach combined with KMC simulations was used for the H diffusion coefficient predictions. It was found that the diffusion coefficient of H in PdAg alloy decreases with increasing Ag and increases with increasing temperature, matching closely with the experimental results reported in the literature. The calculated permeabilities of H in these novel binary alloys obtained from both diffusivity and solubility predictions were found to have a maximum at approximately 20% Ag and approximately 12% Au, which agree well with experimental predictions. Specifically, the permeability of H in PdAg alloy with approximately 20% Ag at 456 K is three to four times that of pure Pd, while the PdAu alloy at 12% Au is four to five times that of pure Pd at 456 K.

Volume

125

Issue

18

DOI

10.1063/1.2387166

Publisher Statement

© 2006, American Institute of Physics. Available on publisher's site at http://jcp.aip.org/.

Share

 
COinS