Document Type

Article

Publication Date

4-1-2010

Publication Title

SIAM Journal on Scientific Computing

Abstract

In this paper, we describe block matrix algorithms for the iterative solution of a large-scale linear-quadratic optimal control problem involving a parabolic partial differential equation over a finite control horizon. We consider an "all at once" discretization of the problem and formulate three iterative algorithms. The first algorithm is based on preconditioning a symmetric positive definite reduced linear system involving only the unknown control variables; however inner-outer iterations are required. The second algorithm modifies the first algorithm to avoid inner-outer iterations by introducing an auxiliary variable. It yields a symmetric indefinite system with a positive definite block preconditioner. The third algorithm is the central focus of this paper. It modifies the preconditioner in the second algorithm by a parallel-in-time preconditioner based on the parareal algorithm. Theoretical results show that the preconditioned algorithms have optimal convergence properties and parallel scalability. Numerical experiments confirm the theoretical results.

Volume

32

Issue

3

First Page Number

1180

Last Page Number

1200

DOI

10.1137/080717481

Publisher Statement

© 2010, SIAM Publications.

Included in

Mathematics Commons

Share

 
COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.