Document Type

Article

Publication Date

7-1-1989

Publication Title

Proceedings of the American Mathematical Society

Abstract

Given a graph F, define the group Fr to be that generated by the vertices of F, with a defining relation xy = yx for each pair x, y of adjacent vertices of F. In this article, we examine the groups Fr, where the graph F is an n-gon, (n > 4). We use a covering space argument to prove that in this case, the commutator subgroup F.' contains the fundamental group of the orientable surface of genus 1 + (n - 4)2n-3 . We then use this result to classify all finite graphs F for which Fr is a free group.

Volume

106

Issue

3

First Page Number

573

Last Page Number

578

DOI

10.2307/2047406

Publisher Statement

First published in Proceedings of the American Mathematical Society in 106(3), published by the American Mathematical Society.

Included in

Mathematics Commons

Share

 
COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.