Document Type

Article

Publication Date

8-1-1993

Publication Title

Physics of Fluids A-Fluid Dynamics

Abstract

A forced Landau-Stuart equation is studied in order to derive a low-dimensional model describing the temporal behavior of a paradigm open flow, the two-dimensional forced cylinder wake. Numerical results from the model exhibit several characteristics of circle maps, and compare qualitatively to previous experimental results for an oscillating cylinder wake. The low-dimensional model is also shown to reduce to a circle map in the limit of small forcing amplitudes. Observation of circle map dynamics in the forced Landau-Stuart equation strengthens the conjecture that globally unstable fluid flows are amenable to a dynamical systems approach focusing on the study of low-dimensional iterative maps. The established connection between the Landau-Stuart equation and the circle map unifies certain aspects of spatiotemporal stability and low-dimensional chaos theory.

Volume

5

Issue

8

First Page Number

1947

Last Page Number

1951

DOI

10.1063/1.858821

Publisher Statement

© 1993, The American Institute of Physics. Available on publisher's site at http://pof.aip.org/.

Share

 
COinS