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A low-order model for vortex shedding patterns behind vibrating
flexible cables

D. J. Olinger
Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609

~Received 13 May 1997; accepted 8 April 1998!

A recent focus in studies of vortex shedding behind circular cylinders has been on the use of
low-order dynamical systems such as circle maps to predict wake dynamics. These purely temporal
models have been limited by their inability to describe three-dimensional spatial flow variations
along the cylinder span, a hallmark of transitional flows such as the cylinder wake. In the present
work this limitation is overcome through development of a spatial-temporal map lattice which
utilizes a series of coupled circle map oscillators along the cylinder span. This model allows for the
study of vortex shedding patterns and wake dynamics behind vibrating flexible cables. Required
input for the model includes the forcing frequency, amplitude, mode shape, aspect ratio and
wavelength of the cable, Reynolds number, vortex convection velocity, and various phase angles.
Model output parameters studied in this work include vortex shedding patterns and wake response
frequency. Standing wave mode shapes and traveling waves along the cable span are modeled.
Lacelike vortex patterns are observed for the standing wave case. A physical mechanism for the
lacelike patterns is postulated. For traveling waves oblique shedding patterns are confirmed.
Nonharmonic forcing outside the classical lock-on region yields vortex dislocation patterns in the
wake. Honeycomb patterns are also observed for higher-order mode shapes at large forcing
amplitudes. The current work establishes a new class of models based on circle maps for modeling
spatially varying cylinder wakes. ©1998 American Institute of Physics.@S1070-6631~98!01108-8#

I. INTRODUCTION

In recent years the study of the nonlinear dynamics of
wakes behind circular cylinders has been the focus of in-
creased attention. For example, it has been shown that cer-
tain features of the wake of a rigid oscillating cylinder can be
predicted by low-dimensional iterative models, such as the
circle map.1,2 The circle map,3

un115un1V2
K

2p
sin~2pun!, ~1!

was used to study a cylinder wake subjected to an imposed
oscillation of controlled amplitude and frequency. The circle
map is a standard universal model describing systems with
two coupled oscillators. The parameters in the circle map can
be related to the wake situation as follows. The periodic
vortex shedding from a stationary cylinder~at frequency fso)
and the imposed cylinder oscillation~at fe) yield the un-
forced frequency ratio,V5fso/fe. The parameter K is analo-
gous to the imposed cylinder oscillation amplitude, A/D,
where D is the cylinder diameter.

The circle map models the dynamics of the two nonlin-
early coupled oscillators on a two-dimensional torus in phase
space. The angular measure on a Poincare´ section of this
torus,un , is obtained by strobing the two oscillator system at
the forcing frequency fe. The dynamics of the circle map are
studied by determining the forced frequency ratio,v5fs/fe

5 limn→` @(un2u0)/n#, where fs is the vortex shedding fre-
quency for the forced cylinder wake. Rational values of
v5p/q5fs/fe, where p and q are integers, correspond to

lock-on states at fractional ratios of the forcing frequency.
Irrationalv values correspond to quasiperiodic states outside
lock-on regions. Critical points for transition to chaos with
universal properties have also been shown to exist.

New phenomena, such as multiple lock-on regions at
fractional p/q ratios of the forcing frequency, were predicted
in the cylinder wake~and later confirmed experimentally!
using this perspective.1,2 The wake was also shown to pos-
sess universal properties and circle map dynamics near criti-
cal points for the onset of chaos. Certain aspects of this ap-
proach have also been used to describe wake dynamics in
other vortex shedding studies. Stansby4 observed circle map
dynamics~in the form of multiple lock-on regions! in forced
cylinder wakes, although these findings were not interpreted
from the dynamical system perspective, and instead were
classified as an ‘‘intermittent lock-on behavior.’’ Circle map
dynamics can also be identified in recent numerical and ex-
perimental studies.5–9 In particular, Bernhardtet al.9 have
observed multiple lock-on regions at higher Reynolds num-
ber of 18 000 based on cylinder diameter.

Karniadakis and Triantafyllou10 observed quasiperiodic
and chaotic dynamics in a ‘‘receptivity region’’ near the
lock-on region boundary using spectral methods. Kar-
niadakis and Triantafyllou,11 in a numerical study of the
three-dimensional transitional wake, identified period-
doubling phenomena in spanwise wake velocity signatures.
Nakano and Rockwell,12 in observations on a frequency-
modulated cylinder wake, studied wake forcing near a criti-
cal golden mean point for the onset of chaos~without lock-
on! to determine whether the coherence of the wake response
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could be influenced. Lotfy and Rockwell13 used ‘‘phase
clock’’ concepts to interpret near wake structures from a
blunt trailing edge subjected to controlled oscillations. Since
the circle map~in the present context! is essentially a ‘‘phase
clock’’ describing the phase of the vortex at the strobe fre-
quency, fe, comparisons between the present work and Lotfy
and Rockwell may prove fruitful.

However, use of purely temporal dynamical systems,
such as the circle map or period doubling scenarios, has been
limited by their inability to describe spatial variations, a hall-
mark of transitional fluid flows such as the cylinder wake. In
fact, a recent focus area is the study of spatial variations
along the cylinder span particularly through flow visualiza-
tion studies. Some of the three-dimensional phenomena that
have been identified in stationary cylinder wakes include ob-
lique and parallel shedding,14 cellular shedding and vortex
dislocations,15–18and small-scale three-dimensional instabili-
ties ~mode A–B! at higher transitional Reynolds
numbers.19,20 Recent findings have been summarized in
Williamson.21

Three-dimensional wake structures behind vibrating cyl-
inders or cables have been given less attention. Griffin and
Ramberg22 studied the wake behind a vibrating flexible
cable, and proposed that the near wake at any point along the
cable span could be sensibly represented by the near wake of
a rigid cylinder vibrating under the same conditions of fre-
quency, amplitude, and Reynolds number. Ramberg and
Griffin23 studied the effect of vortex coherence on flow-
induced forces on vibrating cables. Triantafyllou24 described
the mechanisms giving rise to three-dimensional patterns in
two-dimensional flows. One such mechanism involves the
generation of three-dimensional wave patterns from a two-
dimensional nonuniformity, such as spanwise variations in
cylinder diameter. Nuzzi et al.25 detailed the three-
dimensional vortex formation from an oscillating cylinder
with an imposed spanwise diameter nonuniformity.

Newman and Karniadakis26–28utilized a parallel spectral
element Fourier method, developed by Henderson and
Karniadakis,29 to study flow over a flexible cable vibrations
at laminar and transitional Reynolds numbers. This work
quantified and compared the coupled cable-flow response for
both forced and flow-induced cable vibrations. Newman and
Karniadakis also identified two distinct vortex shedding re-
sponses, a ‘‘lacelike’’ structure for a standing wave cable
shape, and an oblique shedding structure for traveling waves
along the cylinder span.

The present work seeks to extend the use of low-order
iterative models to spatially varying wake flows, such as the
flow-induced vibration of a flexible cable. It overcomes the
limitations of the previous temporal dynamical systems by
developing a spatial-temporal model based on a series of
coupled circle map oscillators placed along the cylinder
span. This coupled map lattice is then used to predict vortex
shedding patterns and wake dynamics behind a vibrating
flexible cable with an externally imposed cable frequency,
amplitude, and mode shape. This work comprises part of a
larger effort to establish a dynamical systems framework to
predict and organize vortex shedding phenomena in vibrating
cylinder wakes.

Spatially coupled circle maps have been previously stud-
ied as models for high-dimensional chaos, with an emphasis
on the resulting space–time dynamics and chaotic behavior.
Alstrom and Ritala30 studied mode locking in coupled circle
maps with random phases and found very different behavior
compared to a single circle map. Kaneko31 investigated
coupled map lattices as a model for spatiotemporal chaos and
made some connections with Navier-Stokes equations.
Kaneko32 also has studied transitions among coherent, or-
dered, partially ordered and turbulent states in circle maps.
Tsanget al.33 studied globally coupled ordinary differential
equations with application to Josephson junction arrays. The
current work represents the first attempt to model wake flow
dynamics directly with coupled circle maps.

The use of diffusively coupled oscillators along the cyl-
inder span to model vortex shedding dynamics is not new.
However, previous work has generally focused on the use of
Ginzburg–Landau~GL!34–37 or van der Pol equations38,39 to
model the wake dynamics, instead of the circle maps applied
here. It is also interesting that coupled map lattices can
model natural patterns as diverse as seashell patterns,40 al-
though these models have generally been heuristic or rule
based. However, similarity of seashell and wake patterns~in
the form of parallel, dislocation, and chevron structures! was
a motivation for the present work by suggesting that a low-
order dynamical system with universal features could model
the similar patterns which occur in diverse physical systems.

The paper is organized as follows. In Sec. II the low-
order model is developed. Section III details the method for
determining vortex shedding patterns from the model. Sec-
tion IV presents a summary of wake structures predicted by
the coupled map lattice for various cable frequencies, vibra-
tion amplitudes, and standing wave mode shapes. Variation
of oscillation frequency and amplitude is studied for both
parallel and oblique shedding cases. The effect of traveling
waves along the cylinder span and nonharmonic forcing are
also studied. Comparison to previous experimental and nu-
merical results is made, and a physical mechanism for lace-
like structures in the standing wave case is postulated. Main
results and future directions are summarized in Sec. V.

II. THE COUPLED MAP LATTICE

The key steps in development of a coupled map lattice
~CML! include: ~1! identifying the relevant physics in the
flow; ~2! modeling the spatial dynamics of each physical
process by the simplest possible dynamics on the lattice;~3!
numerically iterating the resultant CML in time; and~4!
post-processing the CML iterates. In our model, a circle map
is used to describe the interaction between the cable vibra-
tion and near wake vortex shedding, justified by the earlier
success of the circle map in predicting wake dynamics.1,2 We
should also point out that earlier work41 showed that a circle
map could be developed using the Landau-Stuart
equation42,43 as a starting point. The Landau-Stuart equation
can be deduced from the Navier-Stokes equations, and is
also known to describe the wake evolution near the critical
Reynolds number.44,45 When an external forcing term is
added to this equation, one can generate a coupled dynamical
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system for the amplitude and phase of a disturbance in the
forced wake. Numerical studies of this system exhibit circle
map dynamics, and in the limit of low forcing, the system
reduces directly to a circle map.41

Circle map oscillators are placed at established lattice
points along the cable span as shown in Fig. 1, and coupled
together with a simple diffusion model. This results in the
coupled map lattice:

un11
k 5~122«!Fn

k1«~Fn
k111Fn

k21!, ~2!

Fn
k5un

k1V2
Kk

2p
sinF2pun

k2f1
k2

p

2 G , ~3!

where Eqs.~2! and ~3! are a diffusion model and modified
circle map, respectively. Here,k is an integer counter denot-
ing the lattice site along the cable span. When modeling a
wake flow with a circle map, the wake is effectively strobed
at the cable oscillation frequency, fe. As a result the wake
dynamics are studied at discrete timest5nDt5n/2pfe

wheren is an integer counter in time.
In the modified circle mapun

k represents the phase of the
vortex shedding process at discrete timen and spanwise lo-
cationk. un

k varies between 0 and 1, i.e., modulo 1. Random
initial conditionsu0

k are used. The unforced frequency ratio
V5fso/fe is defined as for the circle map, Eq.~1!. The forc-
ing term,

Kk5K0 cos@2p~k2nkt!/kwave#, ~4!

models the cylinder oscillation amplitude along the cylinder.
Both standing wave cable mode shapes (kt50), and travel-
ing waves along the cable (ktÞ0) can be specified. Here, kt

is the number of gridpoints which a traveling wave moves
per forcing cycle, while kwave is the imposed spatial wave-
length of the standing wave. Rigid cylinders (Kk

5constant) can also be modeled. Specification of input pa-
rametersV and Kk implies that a flexible cable with imposed
external forcing, as opposed to a freely vibrating cable, is
studied with the current model.

The input parameterf1
k represents the phase angle be-

tween the vortex shedding event and the cylinder motion at a
givenk location in a two-dimensional wake. The dependence
of f1

k with cable vibration amplitude is presented in Fig. 2
from a classical Galerkin method applied to a two-

dimensional cylinder flow.46 Comparison with previous
investigations47 is shown. The phase anglef1

k models the
shear layer from one side of the cylinder, withf2

k5f1
k1p

used for the second shear layer. Thep phase shift is required
to model the out-of-phase movement of the cable with re-
spect to each individual shear layer. The CML treats the
dynamics of the two shear layers independently with no
shear layer interaction in the transverse direction. Thep/2
phase angle in Eq.~3! places the forcing in-phase with theun

k

term ~vortex shedding! if f1
k50. This term is required due to

the sine~as opposed to cosine! function in the forcing term.
The diffusion model, Eq.~2!, is derived from a simple

explicit finite difference technique applied to a diffusive par-
tial differential equation~see the Appendix!. The diffusion
coefficient is given by

«5
nDt

~Dz!2
5

V~k* 21!2

2p St Re~AR!2
, ~5!

where Dt5(2pfe)
21, Re5U`D/n, and the Roshko-

Williamson relation,14,48 St5~0.212-4.5/Re)/cosb are used.
Here, the input parameters k* and AR are the number of
lattice points and cable aspect ratio, respectively.

Periodic-free boundary conditions are established with

un
k* 5un

1 to model parallel vortex shedding, for both forced
and unforced~baseline! cases. To model oblique vortex

shedding, periodic boundary conditions,un
k* 5un

111, are es-
tablished. This is justified sinceun

k is treated modulo 1.
While the linear diffusion model, Eq.~2!, implies a trivial
linear distribution ofun

k with k ~i.e., oblique shedding! for
the baseline oblique shedding case, our interest is in the re-
sponse of this case to the imposed forcing. For the unforced
oblique shedding case, the oblique shedding angleb is re-
quired as input, and AR5~Uc/U`)/(St tanb), where
Uc/U`5f(Re) is a nondimensional vortex convection
velocity.14 For this case, the diffusion coefficient is given by

FIG. 1. Schematic of the coupled map lattice.

FIG. 2. Phase angle between the vortex shedding event and cylinder motion
~or lift force! determined using a two-dimensional numerical Galerkin
method.
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«5
nDt

~Dz!2
5

V~k* 21!2St tan2 b

2p Re~Uc /U`!2
. ~6!

This expression is derived similar to Eq.~5!, however, the
two equations differ since we choose to express Eq.~6! in
terms of the input parameters appropriate to the periodic
boundary conditions for oblique shedding. Typically,
k*5100 lattice sites, and 104 time iterations are used in the
numerical iteration of the coupled map lattice, and the results
represent the asymptotic dynamics.

III. VORTEX SHEDDING PATTERNS

The vortex shedding patterns presented in Sec. IV are
developed by interpreting the phase of the vortex shedding
processun

k as follows~see Fig. 1!. A value of un
k50 corre-

sponds to incipient vortex formation~the start of the vortex
formation process!, while a value ofun

k51 corresponds to
the vortex shedding event~the start of the next shedding
cycle!. The phase of sheddingun

k is then transformed into a
downstream vortex core location (x/D)n

k at every lattice
point through

~x/D !n
k5un

kx* 5
un

kUc

St U`
, ~7!

since x* 5(Uc /U`)/St yields a characteristic nondimen-
sional vortex spacing in the streamwise direction.14 This
transformation implicitly identifies time with the streamwise
direction. This is justified by the assumption that the vortex
convection velocity is constant with downstream distance
x/D,14 i.e., uniformly traveling vortex structures.

The resultant wake structure is convected downstream
without any additional diffusive coupling between adjacent
lattice sites after the initial formation region in the near
wake. The variation of the forced frequency ratio along the
cable span can also be determined fromvk5fs

k/fe

5 limn→` (un
k2u0

k/n). A streamwise ‘‘shift’’ is applied to
one shear layer with

~x/D !n
k85~x/D !n

k F11
22vk

2 G , ~8!

where (x/D)n
k8 is a corrected vortex core location. The term

(22vk)/2 derives from geometric considerations by noting
the shift required to properly model the alternate vortex spac-
ing in the natural shedding case~see Fig. 3! wherevk51,
and (22vk)/251/2. This shift is applied to the second shear
layer for all cases in Sec. IV oncevk is determined by the
map. The model also accounts for shedding of more~or less!
than one vortex core per forcing cycle.

IV. RESULTS AND DISCUSSION

In the following results, Re5100, to match the numeri-
cal simulations of Newman and Karniadakis.26–28 In Fig. 3,
typical vortex shedding patterns for parallel shedding along
the cable span are presented. These show that the model can
predict well-known parallel shedding phenomena behind a
rigid circular cylinder (Kk5constant!. Figure 3~a! shows the
vortex shedding pattern resulting from the initial randomu0

k

distribution for the first few vortex shedding cycles. The
shedding pattern evolves into parallel shedding in Fig. 3~b!
after approximately 100 shedding cycles. Figure 3~a! and
Fig. 3~b! are unforced shedding cases. In Fig. 3~c!, the wake

FIG. 3. Vortex shedding patterns for a rigid cylinder.~a! Initial random
distribution of u0

k for unforced shedding case (Kk50). After a sufficient
number of shedding cycles the wake structure evolves to~b! the parallel
shedding case for whichV5v50.9. ~c! Lock-on state (V50.9, Kk50.9,
v51.0!. A shift in vortex spacing between~b! and ~c! is observed.~d! A
p/q53/4 lock-on state (V50.725, Kk50.9, v53/4) with nonuniform vor-
tex spacing. k*5100, AR525, Re5100, Uc /U`50.88 ~from Ref. 14!,
periodic-free boundary conditions. Closed and open symbols represent vor-
tex core locations for each shear layer, respectively.
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is forced atV50.9, Kk50.9 resulting in a lock-on state with
v51.0. The well-known shift in vortex spacing is observed
between Fig. 3~b! and Fig. 3~c!. Finally, in Fig. 3~d! wake
structures near lock-on regions associated with fractional p/q
ratios of the forcing frequency are studied. Anv5p/q53/4
lock-on case is presented withV50.725, Kk50.9, andv
53/4. Nonuniform vortex spacing is observed between suc-
cessive vortex lines in one shear layer. It is observed that
p53 vortices are shed during q54 forcing cycles~corre-
sponding to a downstream distance of qx* ! consistent with
the v5p/q53/4 state.

In Fig. 4, a forced cable vibration within the lock-on
region (V51, K050.01) is studied. The vortex shedding
pattern for a standing wave mode shape with nodes at z/D
56.25 and 18.75~anti-nodes at z/D50, 12.5, and 25! is pre-

sented. Here, the cable mode shape, aspect ratio AR525, and
cable amplitude A/D50.68~at an anti-node! are set to match
the numerical simulations of Newman and Karniadakis.26–28

Figure 4~a! shows a lacelike shedding pattern derived from
the model. Iso-vorticity visualizations from Newman and
Karniadakis’s numerical work are shown in Fig. 4~b! for
comparison. It is observed that the vortices shed simulta-
neously from the two shear layers near vibration anti-nodes,
while alternate shedding occurs near vibration nodes. New-
man and Karniadakis have confirmed this variation in wake
structures along the cable span. The similar qualitative struc-
ture between the two cases implies that the coupled map
lattice correctly models the phase between the shedding
event and cable oscillation along the cylinder span. Compari-
son of Fig. 4~a! and Fig. 4~c! shows that the model can be
‘‘tuned’’ ~through variation of K0) to model vortex shedding
patterns over a range of forcing amplitudes. We believe the
modified lacelike structure of Fig. 4~c! should be observable
in future experimental or numerical studies with large struc-
tural damping~i.e., lower oscillation amplitudes!. Variation
of the diffusion coefficiente was found to have less of an
effect on the resultant lacelike structure compared to K0

variation.
We next briefly postulate a physical mechanism associ-

ated with the lacelike structures in Fig. 4. The lacelike struc-
ture arises due to the out-of-phase oscillation~modeled
through the sinusoidal Kk term! of adjacent cable anti-nodes
for the standing wave case. In Fig. 5 anti-nodes 1 and 2
oscillate 180° out-of-phase. Near anti-node 1, shedding of
shear layer A is delayed due to movement of the cableto-
ward the shear layer, while separation of the opposite shear
layer B is enhanced. This separation enhancement~or inhi-
bition! effect has been observed in Durginet al.49 Near anti-
node 2 the opposite effect occurs, separation of shear layer A
is enhanced, and shear layer B shedding delayed. When the
flexible cable is 180° out-of-phase from the position shown
in Fig. 5 ~anti-node 1 at maximum negativey position!, the
cable induces the previously delayed vortices to shed.

Figure 6 studies the effect of nonharmonic forcing on the
wake response~i.e.,V5fso/feÞ1). This type of forcing may
have more dramatic effects on vortex shedding patterns for a

FIG. 4. ~a! Lacelike structures for standing wave cable mode shapes from
the coupled map lattice (K050.01).~b! Iso-vorticity visualization from the
numerical work of Newman and Karniadakis~Ref. 27! showing a lacelike
structure.~c! ‘‘Tuned’’ lacelike structure (K050.0005) from the coupled
map lattice. In~a! and ~c!, V51.0, k* 5100, kwave5100, A/D50.68 at
antinode~see Fig. 2!, AR525, Re5100, Uc /U`50.88, e50.15, periodic-
free boundary conditions.

FIG. 5. Physical mechanism for lacelike vortex structures behind standing
wave cable mode shapes.
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flexible cable vibration, as opposed to rigid cylinder vibra-
tion, since for a standing wave vibration the cable vibration
amplitude varies from zero~at nodes! to a maximum at the
vibration anti-nodes. As a result, even for slight variations in
V from 1.0, a portion of the cylinder span~near the nodes!
will lie outside the lock-on region on a forcing amplitude-
frequency diagram. This is shown in Fig. 6~a! where the
nonharmonic oscillation of a flexible cable is represented by
a vertical line. This figure points out that care must be taken
in interpreting oscillating cable results. While oscillating
rigid cylinder results can be interpreted using a single point
on the amplitude-frequency diagram, cable results require a
sequence of amplitude-frequency points to be considered.

This effect is confirmed in Fig. 6~b! whereV50.99, and
all other input parameters are set identical to Fig. 4~a!. Vor-
tex dislocations and lower frequency cells occur near the
node locations. Figure 6~c! presents the variation in forced
frequency ratio,v5fs/fe, along the cylinder span, showing
that the model can predict vortex shedding response frequen-
cies. Figure 6~c! shows that quasiperiodic states~vÞp/q,
vÞ1! occur in the lower frequency cell near the node region,
bracketed by lock-on regions (v51). The wake structure
adjusts to the alternating lock-on and quasiperiodic regions
through formation of vortex dislocation structures. The asso-
ciation between quasiperiodic states and dislocations has
been observed in studies of spanwise frequency cells in sta-
tionary cylinder flows.14–16

Interpreting these nonharmonic forcing results using the
ampitude-frequency diagram of Fig. 6~a! suggests that addi-
tional lock-on states may occur along the cylinder span in
addition to thev51 lock-on regions near cable anti-nodes.
The vertical line in Fig. 6~a! denoting this case passes
through multiple lock-on regions1,2 outside the primary one.
These additional lock-on regions are observed and high-
lighted in Fig. 6~c!. We have also plotted the wake response
frequency from the standing wave case of Fig. 4~a! for com-
parison to the nonharmonic forcing. For the standing wave
case, the vortex shedding frequency remains locked-on to the
cable frequency across the entire span, consistent with results
from Newman and Karniadakis’s studies.

The effect of large amplitude forcing on the wake struc-
ture is studied in Fig. 7. Here, the intent is to study the
chaotic regime (K0.1) in the circle map. Figure 7 shows
that the wake remains ordered within the lock-on region even
at high forcing amplitudes. Disordered~chaotic! wake pat-
terns are not observed, instead an interesting honeycomb pat-
tern is observed for a higher-order mode shape (kwave550,
k* 5100). Simultaneous shedding occurs near cable anti-
nodes so that the vortex elements from both shear layers
coincide. Some preliminary experimental evidence of honey-
comb structures has been observed in higher-order mode
cable vibrations.50

FIG. 6. ~a! Forcing amplitude versus forcing frequency schematic showing
that ranges in amplitude-frequency must be considered when interpreting
oscillating cable results. For the oscillating flexible cable in a shear flow
only one node and anti-node are shown. A W-shaped pattern is required if
additional nodes~anti-nodes! are considered.~b! Vortex dislocation pattern
for nonharmonic forcing case. One shear layer is shown.~c! Vortex shed-
ding response frequency fs /fe vs z/D. V50.99, K050.10, k*5100, kwave

5100, A/D50.68 at antinode, AR520, Re5100, Uc /U` 50.88, periodic-
free boundary conditions.

FIG. 7. Honeycomblike wake structure for higher-order mode shape at large
forcing amplitude.V51.0, K051.2, k* 5100, kwave550, A/D50.68 at an-
tinode, AR525, Re5100, Uc /U` 50.88, periodic-free boundary conditions.
Simultaneous shedding occurs near cable anti-nodes.
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In Fig. 8, the effect of traveling waves along the cable
span on vortex shedding patterns is studied. Figure 8~a!
shows the resultant oblique shedding for a traveling wave.
The traveling wave retains a standing wave shape during its
translation. The oblique shedding response associated with
traveling waves has been observed by Newman and
Karniadakis.27 As in Ref. 27 the anti-nodes~and oblique
wave front! travel across the full cable span during one shed-
ding cycle due to the imposed periodic boundary conditions.
The vortices are shed at the input oblique shedding angleb
510°, a typical oblique shedding angle from low Reynolds
number experimental wake studies.14,16

The traveling wave case requires the periodic boundary

conditions,un
k* 5un

111, discussed in Sec. II. Figure 8~b! pre-
sents the vortex shedding pattern using this boundary condi-
tion for standing wave forcing (kt50). Some similarity with
the lacelike structure of Fig. 4~a! is noted, however, a com-
bined oblique/lacelike structure is observed here. Compari-
son of Figs. 8~a! and 8~b! shows that the oblique shedding
pattern is determined by the traveling wave motion, and not
solely a function of imposed boundary conditions.

V. CONCLUSIONS

Before presenting the main conclusions of this work, it is
appropriate to summarize input information needed for the
model, particularly those requiring experimental or numeri-

cal evidence. Input parameters include the frequency and
amplitude of forcing, the number of lattice sites, and the
free-stream Reynolds number. The vortex convection veloc-
ity, Uc /U` , and the Strouhal-Williamson relation for vortex
shedding frequencies are input from experimental studies.
The phase between the cylinder motion and the vortex shed-
ding event as a function of cylinder oscillation amplitude for
a two-dimensional wake flow~see Fig. 2! is determined from
numerical studies. The cylinder aspect ratio and the spatial
wavelength of the cable mode shape are required for the
standing wave cases. The nondimensional cylinder oscilla-
tion amplitude at vibration anti-nodes is required as input for
the flexible cable cases to utilize Fig. 2. Input of the traveling
wave velocity and oblique shedding angle are required for
traveling wave cases at the current stage of model develop-
ment. Output parameters studied in this work include the
vortex shedding patterns and wake response frequency ratio,
fs/fe.

A low-order model based on a series of coupled circle
map oscillators along the cylinder span has been developed.
It is shown that this simple map can model vortex shedding
patterns in the wake of forced flexible cables. Wake phenom-
ena modeled include vortex dislocations, lacelike structures
for standing wave cable shapes, oblique shedding for travel-
ing waves along the cable span, and honeycomblike wake
structures. These results establish a new class of low-order
models for describing vortex shedding patterns in vibrating
cylinder wakes, and are part of an ongoing effort to develop
a circle map framework for organizing and predicting ob-
served phenomena in spatially varying wake flows.

Before closing it is appropriate to discuss certain limita-
tions of the present map. At the current state of development,
the model is purely kinematic, and does not contain any dy-
namics such as hydrodynamic forces. Comparison with nu-
merical simulations are largely qualitative, although quanti-
tative agreement was found for wake response frequencies in
a standing wave case, and anti-node travel velocities in ob-
lique shedding cases. The present observations and these
limitations lead naturally to the question: why does a fluid
flow governed by coupled field equations follow the dynam-
ics of a simple map? Our results imply that one should be
able to extract the latter from the Navier-Stokes equations.
Without this step, the connections implied can be viewed as
unsatisfying. Some work41 in this needed direction has al-
ready been described in Sec. II.

Future extensions to the model intended to overcome
some of these limitations include:~1! study of free-stream
shear flow effects on the vortex shedding patterns;~2! devel-
opment of an iterative map, based on low-order harmonic
oscillators, to model freely vibrating cables and hydrody-
namic wake-cable coupling and forces; and~3! development
of a two-dimensional vector map modeling streamwise and
spanwise velocity dynamics for comparison to particle-
image-velocimetry~PIV! visualizations. Preliminary results
for the shear flow case suggest that combined standing wave-
dislocation patterns28 can be predicted by the model.

FIG. 8. Oblique shedding patterns for traveling wave along cable span.~a!
Traveling wave case,~b! standing wave case.V51.0, K050.01, k* 5100,
kwave5100, A/D50.68 at antinode, Re5100, Uc /U` 50.88, periodic bound-
ary conditions,b510°, AR5~Uc /U` )/~St tanb!530.
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APPENDIX: DIFFUSION MODEL

The diffusion model, Eq.~2!, is developed as follows.
The diffusive vorticity transport equation:

]v

]t
52u–¹v1v•¹u1n“2v, ~A1!

wherev andu are the vorticity and velocity vectors, used as
the starting point. Neglecting streamwise and transverse vor-
ticity (vx , vy50), streamwise and transverse variations in
spanwise vorticity (]vz /]x5]vz /]y50), spanwise veloc-
ity variations (]u/]z5]v/]z5]w/]z50), and the spanwise
velocity component (w50), yields

]wz

]t
5n

]2vz

]z2
. ~A2!

Next, vz5un
k , associating the parameterun

k with the span-
wise vorticity. This is justified from our earlier established
correspondence betweenun

k51 and the vortex shedding
event~Sec. III!, where a critical level of spanwise vorticity is
attained when the vortex sheds.

Application of a simple explicit finite difference tech-
nique to Eq.~A2! then results in,

un11
k 5~122«!un

k1«~un
k111un

k21!, ~A3!

where

«5
nDt

~Dz!2
. ~A4!

The coupling between Eqs.~A3! and ~3! requiresFn
k5un

k ,
and Eq.~2!,

un11
k 5~122«!Fn

k1«~Fn
k111Fn

k21! ~A5!

results.
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