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A low-order model for vortex shedding patterns behind vibrating
flexible cables

D. J. Olinger
Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609

(Received 13 May 1997; accepted 8 April 1998

A recent focus in studies of vortex shedding behind circular cylinders has been on the use of
low-order dynamical systems such as circle maps to predict wake dynamics. These purely temporal
models have been limited by their inability to describe three-dimensional spatial flow variations
along the cylinder span, a hallmark of transitional flows such as the cylinder wake. In the present
work this limitation is overcome through development of a spatial-temporal map lattice which
utilizes a series of coupled circle map oscillators along the cylinder span. This model allows for the
study of vortex shedding patterns and wake dynamics behind vibrating flexible cables. Required
input for the model includes the forcing frequency, amplitude, mode shape, aspect ratio and
wavelength of the cable, Reynolds number, vortex convection velocity, and various phase angles.
Model output parameters studied in this work include vortex shedding patterns and wake response
frequency. Standing wave mode shapes and traveling waves along the cable span are modeled.
Lacelike vortex patterns are observed for the standing wave case. A physical mechanism for the
lacelike patterns is postulated. For traveling waves oblique shedding patterns are confirmed.
Nonharmonic forcing outside the classical lock-on region yields vortex dislocation patterns in the
wake. Honeycomb patterns are also observed for higher-order mode shapes at large forcing
amplitudes. The current work establishes a new class of models based on circle maps for modeling
spatially varying cylinder wakes. €998 American Institute of Physid§1070-663(98)01108-§

I. INTRODUCTION lock-on states at fractional ratios of the forcing frequency.
, , Irrational w values correspond to quasiperiodic states outside
In recent years the study of the nonlinear dynamics 0f,cy_on regions. Critical points for transition to chaos with

wakes behind circular cylinders has been the focus of Ny niversal properties have also been shown to exist.

cr_eased attention. For examp!e_, it ha_s b_een shown that cer- New phenomena, such as multiple lock-on regions at
tain features of the wake of a rigid oscillating cylinder can beg, +tiona) p/q ratios of the forcing frequency, were predicted
p_redlcted ?32/ Iow—d_lmensmnal iterative models, such as th?n the cylinder wake(and later confirmed experimentally
circle map’ The circle mag, using this perspective? The wake was also shown to pos-
K sess universal properties and circle map dynamics near criti-
Onr1=0,+Q— > sin(276,), (1) cal points for the onset of chaos. Certain aspects of this ap-
proach have also been used to describe wake dynamics in
was used to study a cylinder wake subjected to an imposeather vortex shedding studies. Starfsbjpserved circle map
oscillation of controlled amplitude and frequency. The circledynamics(in the form of multiple lock-on regionsn forced
map is a standard universal model describing systems withylinder wakes, although these findings were not interpreted
two coupled oscillators. The parameters in the circle map cafrom the dynamical system perspective, and instead were
be related to the wake situation as follows. The periodicclassified as an “intermittent lock-on behavior.” Circle map
vortex shedding from a stationary cylindet frequency &) dynamics can also be identified in recent numerical and ex-
and the imposed cylinder oscillatiof@t f)) yield the un-  perimental studie¥® In particular, Bernhardet al® have
forced frequency ratid)) =f.,/f.. The parameter K is analo- observed multiple lock-on regions at higher Reynolds num-
gous to the imposed cylinder oscillation amplitude, A/D, ber of 18 000 based on cylinder diameter.
where D is the cylinder diameter. Karniadakis and Triantafylldd observed quasiperiodic
The circle map models the dynamics of the two nonlin-and chaotic dynamics in a ‘“receptivity region” near the
early coupled oscillators on a two-dimensional torus in phaséock-on region boundary using spectral methods. Kar-
space. The angular measure on a Poincametion of this niadakis and Triantafyllod® in a numerical study of the
torus, 8, , is obtained by strobing the two oscillator system atthree-dimensional transitional wake, identified period-
the forcing frequencyf The dynamics of the circle map are doubling phenomena in spanwise wake velocity signatures.
studied by determining the forced frequency raticsfs/f, Nakano and Rockwelf? in observations on a frequency-
=lim,_.[(6,— 6p)/n], where {is the vortex shedding fre- modulated cylinder wake, studied wake forcing near a criti-
quency for the forced cylinder wake. Rational values ofcal golden mean point for the onset of chdasthout lock-
w=plg=fs/f,, where p and q are integers, correspond toon) to determine whether the coherence of the wake response
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could be influenced. Lotfy and RockwHllused “phase Spatially coupled circle maps have been previously stud-
clock” concepts to interpret near wake structures from aied as models for high-dimensional chaos, with an emphasis
blunt trailing edge subjected to controlled oscillations. Sinceon the resulting space—time dynamics and chaotic behavior.
the circle mag(in the present contexis essentially a “phase Alstrom and Rital2’ studied mode locking in coupled circle
clock” describing the phase of the vortex at the strobe fresmaps with random phases and found very different behavior
guency, £, comparisons between the present work and Lotfycompared to a single circle map. Kan&kdnvestigated
and Rockwell may prove fruitful. coupled map lattices as a model for spatiotemporal chaos and
However, use of purely temporal dynamical systemsmade some connections with Navier-Stokes equations.
such as the circle map or period doubling scenarios, has bedéanekd? also has studied transitions among coherent, or-
limited by their inability to describe spatial variations, a hall- dered, partially ordered and turbulent states in circle maps.
mark of transitional fluid flows such as the cylinder wake. InTsanget al 33 studied globally coupled ordinary differential
fact, a recent focus area is the study of spatial variationgquations with application to Josephson junction arrays. The
along the cylinder span particularly through flow visualiza-current work represents the first attempt to model wake flow
tion studies. Some of the three-dimensional phenomena thaynamics directly with coupled circle maps.
have been identified in stationary cylinder wakes include ob-  The use of diffusively coupled oscillators along the cyl-
lique and parallel shedding,cellular shedding and vortex inder span to model vortex shedding dynamics is not new.
dislocations">~*and small-scale three-dimensional instabili- However, previous work has generally focused on the use of
ties (mode A-B at higher transitonal Reynolds Ginzburg—LandayGL)**~%"or van der Pol equatiof$*to
numbers®? Recent findings have been summarized inmodel the wake dynamics, instead of the circle maps applied
Williamson?! here. It is also interesting that coupled map lattices can
Three-dimensional wake structures behind vibrating cyl-model natural patterns as diverse as seashell paffeais,
inders or cables have been given less attention. Griffin anthough these models have generally been heuristic or rule
Ramberd® studied the wake behind a vibrating flexible based. However, similarity of seashell and wake pattéms
cable, and proposed that the near wake at any point along ttie form of parallel, dislocation, and chevron structureas
cable span could be sensibly represented by the near wake @fmotivation for the present work by suggesting that a low-
a rigid cylinder vibrating under the same conditions of fre-order dynamical system with universal features could model
guency, amplitude, and Reynolds number. Ramberg anthe similar patterns which occur in diverse physical systems.
Griffin?® studied the effect of vortex coherence on flow- The paper is organized as follows. In Sec. Il the low-
induced forces on vibrating cables. Triantafyffddescribed ~ order model is developed. Section Ill details the method for
the mechanisms giving rise to three-dimensional patterns idetermining vortex shedding patterns from the model. Sec-
two-dimensional flows. One such mechanism involves thdion IV presents a summary of wake structures predicted by
generation of three-dimensional wave patterns from a twothe coupled map lattice for various cable frequencies, vibra-
dimensional nonuniformity, such as spanwise variations irfion amplitudes, and standing wave mode shapes. Variation
cylinder diameter. Nuzzietal?® detailed the three- of oscillation frequency and amplitude is studied for both
dimensional vortex formation from an oscillating cylinder parallel and oblique shedding cases. The effect of traveling
with an imposed spanwise diameter nonuniformity. waves along the cylinder span and nonharmonic forcing are
Newman and Karniadak% 22 utilized a parallel spectral also studied. Comparison to previous experimental and nu-
element Fourier method, developed by Henderson antherical results is made, and a physical mechanism for lace-
Karniadakis®® to study flow over a flexible cable vibrations like structures in the standing wave case is postulated. Main
at laminar and transitional Reynolds numbers. This workresults and future directions are summarized in Sec. V.
guantified and compared the coupled cable-flow response for
both forced and flow-induced cable vibrations. Newman an
Karniadakis also identified two distinct vortex shedding re—ql' THE COUPLED MAP LATTICE
sponses, a “lacelike” structure for a standing wave cable  The key steps in development of a coupled map lattice
shape, and an oblique shedding structure for traveling waveCML) include: (1) identifying the relevant physics in the
along the cylinder span. flow; (2) modeling the spatial dynamics of each physical
The present work seeks to extend the use of low-ordeprocess by the simplest possible dynamics on the lattB)e;
iterative models to spatially varying wake flows, such as thenumerically iterating the resultant CML in time; and)
flow-induced vibration of a flexible cable. It overcomes thepost-processing the CML iterates. In our model, a circle map
limitations of the previous temporal dynamical systems byis used to describe the interaction between the cable vibra-
developing a spatial-temporal model based on a series dion and near wake vortex shedding, justified by the earlier
coupled circle map oscillators placed along the cylindersuccess of the circle map in predicting wake dynarhicé/e
span. This coupled map lattice is then used to predict vorteshould also point out that earlier wéfkshowed that a circle
shedding patterns and wake dynamics behind a vibratinghap could be developed using the Landau-Stuart
flexible cable with an externally imposed cable frequencyequatiot?*3as a starting point. The Landau-Stuart equation
amplitude, and mode shape. This work comprises part of aan be deduced from the Navier-Stokes equations, and is
larger effort to establish a dynamical systems framework talso known to describe the wake evolution near the critical
predict and organize vortex shedding phenomena in vibratingeynolds numbet**> When an external forcing term is
cylinder wakes. added to this equation, one can generate a coupled dynamical
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forced wake. Numerical studies of this system exhibit circle

map dynamics, and in the limit of low forcing, the system FIG. 2. Phase angle between the vortex shedding event and cylinder motion

reduces directly to a circle mgﬁ,_ (or lift force) determined using a two-dimensional numerical Galerkin
Circle map oscillators are placed at established latticd®"°%

points along the cable span as shown in Fig. 1, and coupled

together with a simple diffusion model. This results in the
coupled map lattice: dimensional cylinder floW® Comparison with previous

investigation§’ is shown. The phase anglg‘ models the
shear layer from one side of the cylinder, witi= ¢+ 7
K - used for the second shear layer. The@hase shift is required
Fk=ok+Q— > sin 2mok— pk— E}’ (3)  to model the out-of-phase movement of the cable with re-
7 spect to each individual shear layer. The CML treats the
where Eqgs(2) and(3) are a diffusion model and modified dynamics of the two shear layers independently with no
circle map, respectively. Herk,is an integer counter denot- shear layer interaction in the transverse direction. T2
ing the lattice site along the cable span. When modeling @hase angle in Eq3) places the forcing in-phase with tioé
wake flow with a circle map, the wake is effectively strobedterm (vortex sheddingif ¢>‘{=0. This term is required due to
at the cable oscillation frequency,.fAs a result the wake the sine(as opposed to cosihéunction in the forcing term.
dynamics are studied at discrete timésnAt=n/2xf, The diffusion model, Eq(2), is derived from a simple
wheren is an integer counter in time. explicit finite difference technique applied to a diffusive par-
In the modified circle map9n represents the phase of the tial differential equation(see the Appendix The diffusion
vortex shedding process at discrete timand spanwise lo- coefficient is given by
cationk. ¢ varies between 0 and 1, i.e., modulo 1. Random

0k 1=(1—-28)FK+e(FK 1+ FK Y, 2
k

2
initial conditions 0('3 are used. The unforced frequency ratio o= vAt _ Q(k*—1) (5)
O =f./fis defined as for the circle map, EQ). The forc- (Az)? 27 StREAR)?’
Ing term, where At=(2wf)~Y, Re=U,D/», and the Roshko-
KX=Ko cog 2m(k—nky)/Kyavel, (4)  Williamson relation:**® St=(0.212-4.5/Re)/cog are used.

Here, the input parameters kand AR are the number of

models the cylinder oscillation amplitude along the cylinder., =" . _ )
lattice points and cable aspect ratio, respectively.

Both standing wave cable mode shapes=(), and travel- S " ) .
ing waves along the cable &0) can be specified. Here, k - Periodic-free boundary conditions are established with
is the number of gridpoints which a traveling wave moves?h = 65 to model parallel vortex shedding, for both forced
per forcing cycle, while §, is the imposed spatial wave- and unforced(basellne cases. To model oblique vortex
length of the standing wave. Rigid cylinders XK shedding, periodic boundary condmoré = 01+1 are es-
=constant) can also be modeled. Specification of input patablished. This is justified smcczé?k is treated modulo 1.
rameterd) and K¢ implies that a flexible cable with imposed While the linear diffusion model, Ec(2), implies a trivial
external forcing, as opposed to a freely vibrating cable, idinear distribution ofeﬁ with k (i.e., oblique sheddingfor
studied with the current model. the baseline oblique shedding case, our interest is in the re-
The input parametedfi represents the phase angle be-sponse of this case to the imposed forcing. For the unforced
tween the vortex shedding event and the cylinder motion at ablique shedding case, the oblique shedding aggie re-
givenk location in a two-dimensional wake. The dependencequired as input, and AR(U./U.)/(SttanB), where
of ¢'§ with cable vibration amplitude is presented in Fig. 2U./U,=f(Re) is a nondimensional vortex convection
from a classical Galerkin method applied to a two-velocity* For this case, the diffusion coefficient is given by
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vAt  Q(k*—1)%Sttarf B ©
e= = .
(Az)> 2wReU./U,)?
This expression is derived similar to E¢p), however, the
two equations differ since we choose to express (Bfin
terms of the input parameters appropriate to the periodic
boundary conditions for oblique shedding. Typically,
*=100 lattice sites, and fQime iterations are used in the
numerical iteration of the coupled map lattice, and the results
represent the asymptotic dynamics.

Ill. VORTEX SHEDDING PATTERNS

The vortex shedding patterns presented in Sec. IV are
developed by interpreting the phase of the vortex shedding
processﬁﬁ as follows(see Fig. 1 A value of 0ﬁ=0 corre-
sponds to incipient vortex formatiofthe start of the vortex
formation process while a value of0ﬁ=1 corresponds to
the vortex shedding everithe start of the next shedding
cycle). The phase of sheddin@ﬁ is then transformed into a
downstream vortex core Iocatiorx/@)ﬁ at every lattice
point through

65U,

(x/D)ﬁ=0ﬁx*=S,:Ux, (@)
since x* =(U./U.,)/St yields a characteristic nondimen-
sional vortex spacing in the streamwise directidriThis
transformation implicitly identifies time with the streamwise
direction. This is justified by the assumption that the vortex
convection velocity is constant with downstream distance
x/D,* i.e., uniformly traveling vortex structures.

The resultant wake structure is convected downstream
without any additional diffusive coupling between adjacent
lattice sites after the initial formation region in the near
wake. The variation of the forced frequency ratio along the
cable span can also be determined fronnk:f‘;/fe
=lim,_ . (6X— 65/n). A streamwise “shift” is applied to
one shear layer with

(x/D)K'=(x/D)k

2— o
1+ — } )

where é(/D)ﬁ’ is a corrected vortex core location. The term
(2— w")/2 derives from geometric considerations by noting
the shift required to properly model the alternate vortex spac-
ing in the natural shedding cagsee Fig. 3 where w*=1,
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and (2- w")/2= 1/2..ThIS shift is apﬁ)(llgd to the _Second ShearFIG. 3. Vortex shedding patterns for a rigid cylindé€a) Initial random
layer for all cases in Sec. IV onae“ is determined by the gistribution of 6 for unforced shedding case (K0). After a sufficient
map. The model also accounts for shedding of njordess number of shedding cycles the wake structure evolvetbrcahe parallel

than one vortex core per forcing cycle.

shedding case for whicR=w=0.9. (c) Lock-on state =0.9, K=0.9,
w=1.0). A shift in vortex spacing betweefb) and (c) is observed(d) A

p/g=3/4 lock-on state @ =0.725, K=0.9, w=3/4) with nonuniform vor-

IV. RESULTS AND DISCUSSION

tex spacing. k=100, AR=25, Re=100, U./U,=0.88 (from Ref. 14,
periodic-free boundary conditions. Closed and open symbols represent vor-

In the following results, Re 100, to match the numeri- tex core locations for each shear layer, respectively.

cal simulations of Newman and Karniadakis?®In Fig. 3,
typical vortex shedding patterns for parallel shedding along

the cable span are presented. These show that the model cdistribution for the first few vortex shedding cycles. The
predict well-known parallel shedding phenomena behind ahedding pattern evolves into parallel shedding in Fig) 3

rigid circular cylinder (K=constant Figure 3a) shows the
vortex shedding pattern resulting from the initial randeﬁn

after approximately 100 shedding cycles. Figui@) 3and
Fig. 3(b) are unforced shedding cases. In Fi¢c)3the wake
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sented. Here, the cable mode shape, aspect ratioe25Rand
cable amplitude A/B-0.68(at an anti-nodgare set to match
the numerical simulations of Newman and KarniadaRig®
Figure 4a) shows a lacelike shedding pattern derived from
the model. Iso-vorticity visualizations from Newman and
Karniadakis's numerical work are shown in Figb# for
comparison. It is observed that the vortices shed simulta-
neously from the two shear layers near vibration anti-nodes,
while alternate shedding occurs near vibration nodes. New-
man and Karniadakis have confirmed this variation in wake
structures along the cable span. The similar qualitative struc-
ture between the two cases implies that the coupled map
lattice correctly models the phase between the shedding
event and cable oscillation along the cylinder span. Compari-
son of Fig. 4a) and Fig. 4c) shows that the model can be
“tuned” (through variation of k) to model vortex shedding
patterns over a range of forcing amplitudes. We believe the
modified lacelike structure of Fig.(d should be observable

FIG. 4. (a) Lacelike structures for standing wave cable mode shapes frorrln future experimental or numerical studies with |arge struc-

the coupled map lattice (& 0.01)(b) Iso-vorticity visualization from the
numerical work of Newman and KarniadakiRef. 27 showing a lacelike
structure.(c) “Tuned” lacelike structure (K=0.0005) from the coupled
map lattice. In(a) and (c), 1=1.0, K =100, k=100, A/D=0.68 at
antinode(see Fig. 2, AR=25, Re=100, U./U.,.=0.88, e=0.15, periodic-
free boundary conditions.

is forced at() =0.9, K=0.9 resulting in a lock-on state with

tural damping(i.e., lower oscillation amplitudgsVariation

of the diffusion coefficiente was found to have less of an
effect on the resultant lacelike structure compared tp K
variation.

We next briefly postulate a physical mechanism associ-
ated with the lacelike structures in Fig. 4. The lacelike struc-
ture arises due to the out-of-phase oscillationodeled
through the sinusoidal 'Kterm) of adjacent cable anti-nodes

w=1.0. The well-known shift in vortex spacing is observedfor the standing wave case. In Fig. 5 anti-nodes 1 and 2

between Fig. @) and Fig. 3c). Finally, in Fig. 3d) wake

oscillate 180° out-of-phase. Near anti-node 1, shedding of

structures near lock-on regions associated with fractional p/ghear layer A is delayed due to movement of the cable

ratios of the forcing frequency are studied. Ar=p/g=3/4
lock-on case is presented with=0.725, K=0.9, andw

ward the shear layer, while separation of the opposite shear
layer B is enhanced. This separation enhancertmninhi-

=3/4. Nonuniform vortex spacing is observed between sucbition) effect has been observed in Durgihal *° Near anti-
cessive vortex lines in one shear layer. It is observed thatode 2 the opposite effect occurs, separation of shear layer A

p=3 vortices are shed during=g} forcing cycles(corre-
sponding to a downstream distance of* fjxonsistent with
the w=p/q=3/4 state.

is enhanced, and shear layer B shedding delayed. When the
flexible cable is 180° out-of-phase from the position shown
in Fig. 5 (anti-node 1 at maximum negatiweposition, the

In Fig. 4, a forced cable vibration within the lock-on cable induces the previously delayed vortices to shed.

region (=1, K,=0.01) is studied. The vortex shedding

Figure 6 studies the effect of nonharmonic forcing on the

pattern for a standing wave mode shape with nodes at z/vake responsé.e., ) =fg,/f.# 1). This type of forcing may

=6.25 and 18.7%anti-nodes at z/B0, 12.5, and 2bis pre-

have more dramatic effects on vortex shedding patterns for a
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10 L P \_./\_—.:::..______ forcing amplitudeQ)=1.0, K,=1.2, K =100, k,,,=50, A/D=0.68 at an-
D s N tinode, AR=25, Re=100, U./U,, =0.88, periodic-free boundary conditions.
oL Simultaneous shedding occurs near cable anti-nodes.
This effect is confirmed in Fig.(6) where()=0.99, and
all other input parameters are set identical to Fig).4Vor-
tex dislocations and lower frequency cells occur near the
__—@=plq=1/1Lockon___ © node locations. Figure(6) presents the variation in forced
1.000 - frequency ratiow="f./f., along the cylinder span, showing
-------- Q=10 that the model can predict vortex shedding response frequen-
006 | _(F‘g' 42) cies. Figure ) shows that quasiperiodic statés+p/d,
o =09 w#1) occur in the lower frequency cell near the node region,
:\:,,, bracketed by lock-on regionswE1). The wake structure
0.992 |- ,lkgdggg adjusts to the alternating lock-on and quasiperiodic regions
£ through formation of vortex dislocation structures. The asso-
ciation between quasiperiodic states and dislocations has
0.988 |- been observed in studies of spanwise frequency cells in sta-
| | i ! ! tionary cylinder flows:*-16
0 5 10 15 20 Interpreting these nonharmonic forcing results using the
) ampitude-frequency diagram of Fig(ah suggests that addi-

F1G. 6. (a) Forci i torcing § hematic show tional lock-on states may occur along the cylinder span in
. 6. (a) Forcing amplitude versus forcing frequency schematic showing - _ ; ; i
that ranges in amplitude-frequency must be considered when interpretin ddition to thew=1 lock-on regions near cable anti-nodes.

oscillating cable results. For the oscillating flexible cable in a shear flow1n€ vertical line in Fig. €) denoting this case passes
only one node and anti-node are shown. A W-shaped pattern is required through multiple lock-on regiod€ outside the primary one.
additional nodeganti-nodey are consideredb) Vortex dislocation pattern These additional lock-on regions are observed and high—

for nonharmonic forcing case. One shear layer is shde@nVortex shed- - . .
ding response frequency/f, vs z/D. 1=0.99, Ky=0.10, K =100, Kywe lighted in Fig. Gc). We have also plotted the wake response

=100, A/D=0.68 at antinode, AR20, Re=100, U,/U, =0.88, periodic-  frequency from the standing wave case of Fi@) 4or com-
free boundary conditions. parison to the nonharmonic forcing. For the standing wave

case, the vortex shedding frequency remains locked-on to the
cable frequency across the entire span, consistent with results
flexible cable vibration, as opposed to rigid cylinder vibra-from Newman and Karniadakis’s studies.
tion, since for a standing wave vibration the cable vibration = The effect of large amplitude forcing on the wake struc-
amplitude varies from zer@at node§ to a maximum at the ture is studied in Fig. 7. Here, the intent is to study the
vibration anti-nodes. As a result, even for slight variations inchaotic regime (K>1) in the circle map. Figure 7 shows
Q) from 1.0, a portion of the cylinder spanear the nodgs that the wake remains ordered within the lock-on region even
will lie outside the lock-on region on a forcing amplitude- at high forcing amplitudes. Disorderddhaotio wake pat-
frequency diagram. This is shown in Fig(ap where the terns are not observed, instead an interesting honeycomb pat-
nonharmonic oscillation of a flexible cable is represented byern is observed for a higher-order mode shapg, /&< 50,
a vertical line. This figure points out that care must be takerk* =100). Simultaneous shedding occurs near cable anti-
in interpreting oscillating cable results. While oscillating nodes so that the vortex elements from both shear layers
rigid cylinder results can be interpreted using a single pointoincide. Some preliminary experimental evidence of honey-
on the amplitude-frequency diagram, cable results require eomb structures has been observed in higher-order mode
sequence of amplitude-frequency points to be considered. cable vibrations®
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40 cal evidence. Input parameters include the frequency and
amplitude of forcing, the number of lattice sites, and the
free-stream Reynolds number. The vortex convection veloc-
ity, U./U.. , and the Strouhal-Williamson relation for vortex
shedding frequencies are input from experimental studies.
The phase between the cylinder motion and the vortex shed-
ding event as a function of cylinder oscillation amplitude for
; > a two-dimensional wake flowsee Fig. 2is determined from
~— Traveling Wave numerical studies. The cylinder aspect ratio and the spatial
AN A S I — wavelength of the cable mode shape are required for the
0O 5 10 15 20 25 30 35 standing wave cases. The nondimensional cylinder oscilla-
z/D tion amplitude at vibration anti-nodes is required as input for
the flexible cable cases to utilize Fig. 2. Input of the traveling

30

20

x/D

10

40 wave velocity and oblique shedding angle are required for
30 |- traveling wave cases at the current stage of model develop-
ment. Output parameters studied in this work include the
20 vortex shedding patterns and wake response frequency ratio,
g f/f,.
10 ~ A low-order model based on a series of coupled circle
map oscillators along the cylinder span has been developed.
0 & It is shown that this simple map can model vortex shedding
Node T L 1‘ Node patterns in the wake of forced flexible cables. Wake phenom-
0 5 10 15 20 25 30 35 ena modeled include vortex dislocations, lacelike structures
for standing wave cable shapes, oblique shedding for travel-
z/D ing waves along the cable span, and honeycomblike wake

FIG. 8. Oblique shedding patterns for traveling wave along cable gpan. structures. These_ r_eSUItS establish f’i new class _Of Ipw-o_rder
Traveling wave caseb) standing wave cas€ =1.0, K,=0.01, k=100, models for describing vortex shedding patterns in vibrating
Kwave=100, A/D=0.68 at antinode, Re100, U/U.. =0.88, periodic bound-  cylinder wakes, and are part of an ongoing effort to develop
ary conditions,8=10°, AR=(U./U..)/(Sttang)=30. a circle map framework for organizing and predicting ob-

served phenomena in spatially varying wake flows.

In Fig. 8, the effect of traveling waves along the cable Before closing it is appropriate to discuss certain limita-
span on vortex shedding patterns is studied. Figu® 8 tions of the present map. At the current state of development,
shows the resultant oblique shedding for a traveling wavethe model is purely kinematic, and does not contain any dy-
The traveling wave retains a standing wave shape during it8@mics such as hydrodynamic forces. Comparison with nu-
translation. The oblique shedding response associated witherical simulations are largely qualitative, although quanti-
traveling waves has been observed by Newman anthtive agreement was found for wake response frequencies in
Karniadakis’’ As in Ref. 27 the anti-nodegand oblique a standing wave case, and anti-node travel velocities in ob-
wave fronj travel across the full cable span during one shed{ique shedding cases. The present observations and these
ding cycle due to the imposed periodic boundary conditionslimitations lead naturally to the question: why does a fluid
The vortices are shed at the input oblique shedding afgle flow governed by coupled field equations follow the dynam-
=10°, a typical oblique shedding angle from low Reynoldsics of a simple map? Our results imply that one should be
number experimental wake StUd'JééG o able to extract the latter from the Navier-Stokes equations.

The traveling wave case requires the periodic boundaryyithoyt this step, the connections implied can be viewed as
conditions,df = 6;+1, discussed in Sec. II. Figurét pre-  ynsatisfying. Some wofk in this needed direction has al-
sents the vortex shedding pattern using this boundary cond}eady been described in Sec. II.
tion for standing wave forcing ¢k 0). Some similarity with Future extensions to the model intended to overcome

the lacelike structure of Fig.(d) is noted, however, & COM-  s,ma of these limitations includél) study of free-stream

bined oblique/lacelike structure is observed here. Compariz ;
. . "“shear flow effects on the vortex shedding patte(@sdevel-
son of Figs. &) and 8b) shows that the oblique shedding opment of an iterative map, based on low-order harmonic

pattern is determined by the traveling wave motion, and not . . .
solely a function of imposed boundary conditions. oscillators, to model freely vibrating cables and hydrody-

namic wake-cable coupling and forces; aB8id development

of a two-dimensional vector map modeling streamwise and

spanwise velocity dynamics for comparison to particle-
Before presenting the main conclusions of this work, it isimage-velocimetry(PIV) visualizations. Preliminary results

appropriate to summarize input information needed for thdor the shear flow case suggest that combined standing wave-

model, particularly those requiring experimental or numeri-dislocation patterrf§ can be predicted by the model.

V. CONCLUSIONS
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