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February 5, 2004AbstratGiven a graph L, in this paper we investigate the anti-Ramsey number �S(n; e; L),de�ned to be the minimumnumber of olors needed to edge-olor some graphG(n; e)with n verties and e edges so that in every opy of L in G all edges have di�erentolors. We all suh a opy of L totally multiolored (TMC).In [7℄ among many other interesting results and problems Burr, Erd}os, Grahamand T. S�os asked the following question: Let L be a onneted, bipartite graphwhih is not a star. Is it true then that�S(n; �n2; L)=n!1 as n!1?In this paper we prove a slightly weaker statement, namely we show that the state-ment is true if L is a onneted, bipartite graph whih is not a omplete bipartitegraph.1 Introdution1.1 Notation and de�nitionsWe let V (G) and E(G) denote the vertex-set and the edge-set of the graph G, and (A;B)or (A;B;E) denote a bipartite graph G = (V;E), where V = A [B, and E � A�B. Ingeneral, given any graph G and two disjoint subsets A;B of V (G), the pair (A;B) is thegraph restrited to A�B. N(v) is the set of neighbors of v 2 V . Hene the size of N(v)1



is jN(v)j = deg(v) = degG(v), the degree of v. For a vertex v 2 V and set U � V � fvg,we denote by NG(v; U) the neighbors of v in U , degG(v; U) = jNG(v; U)j. P4 denotes thepath with 4 verties. We denote by e(A;B) the number of edges of G with one endpointin A and the other in B. For non-empty A and B,d(A;B) = e(A;B)jAjjBjis the density of the graph between A and B.De�nition 1. The pair (A;B) is "-regular ifX � A; Y � B; jXj > "jAj; jY j > "jBjimply jd(X; Y )� d(A;B)j < ";otherwise it is "-irregular.A graph L is embeddable into another graph G, if G has a subgraph isomorphi to L,that is, if there is a one-to-one map (injetion) � : V (L)! V (G) suh that (x; y) 2 E(L)implies (�(x); �(y)) 2 E(G). Note that in this paper subgraph does not mean an induedsubgraph. In a graph two edges are alled strongly independent, if they are disjoint andall four verties span no other edges.1.2 Anti-Ramsey problemsIn traditional Ramsey theory (see e.g. [9℄) a typial question asks the following. Given agraph L and an integer r > 0, whih graphs G have the property that no matter how theedges of G are r-olored, there is a monohromati opy of L, in other words a subgraphof G isomorphi to L in whih all edges have the same olor.In anti-Ramsey theory we go in the opposite diretion and we try to �nd edge-oloringssuh that all opies of L have all edges of di�erent olors. We all suh a opy of L totallymultiolored (TMC). Anti-Ramsey numbers were introdued by Erd}os, Simonovits and S�os[8℄ in the 1970's, and have been atively studied reently (see e.g. [1, 2, 3, 4, 6, 7, 13℄).The following extremal anti-Ramsey numbers were introdued and studied in [6℄ and[7℄ (see also [10℄ and [11℄). De�ne �S(n; e; L) to be the smallest integer r suh that thereexists a graph G with n verties and e edges that has an edge-oloring in r olors suhthat every L in G is TMC. This notation omes from the fat that the value we seek isalso the strong hromati number of the hypergraph whih has as its set of points theedges of G, with (hyper)edges onsisting of the sets of edges of G whih form opies ofL. It turns out that the determination of �S(n; e; L) is surprisingly deep. It is loselyrelated, for example, to the elebrated funtion rk(n), the size of the largest subset off1; 2; : : : ; ng ontaining no k-term arithmeti progression. Among many other interestingresults and problems, in [6℄ and [7℄ the authors proved the following result for bipartiteL's whih ontain two strongly independent edges.2



Theorem 1. ([6℄) Suppose L is a bipartite graph having at least two strongly independentedges, and maximum degree at least two. Then for any � > 0, if e > �n2, we have�S(n; e; L) > �0n2;for some �xed positive onstant �0 depending on �.On the other hand, whenever L does not have two strongly independent edges (evenwhen L is not neessarily bipartite), then �S(n; e; L) an be muh smaller.Theorem 2. ([6℄) If no two edges of L are strongly independent and e < �12 � "�n2 forsome �xed " > 0, then �S(n; e; L) = O �n2= logn� :For the speial ase L = P4, even stronger results were obtained.Theorem 3. ([7℄) �S(n; nr3(n); P4) � n for a suitable  > 0:For any � > 0, we have �S(n; �n2; P4) > n for any  if n is suÆiently large.With this last result in mind, in [7℄ the authors asked the following question. Let Lbe a onneted, bipartite graph whih is not a star. Is it true then that�S(n; �n2; L)=n!1 as n!1?Note that the statement is learly not true for stars. In this paper we prove a slightlyweaker statement. Namely we show that the statement is true if L is a onneted, bipartitegraph whih is not a omplete bipartite graph.Theorem 4. For any �;  > 0 there exists an n0 = n0(�; ) suh that if n � n0, e > �n2and L is a onneted, bipartite graph whih is not a omplete bipartite graph, then�S(n; e; L) > n:However, the original question still remains open for omplete bipartite graphs thatare not stars, for instane for C4.In the next setion we provide the tools, inluding the Regularity Lemma. Then inSetion 3 we prove the theorem by essentially reduing the general ase to that of P4.
3



2 ToolsIn the proof the Regularity Lemma of Szemer�edi [12℄ plays a entral role. Here we willuse the following variation of the lemma.Lemma 1 (Regularity Lemma { Degree form). For every " > 0 there is an M =M(") suh that if G = (V;E) is any graph and d 2 [0; 1℄ is any real number, then there isa partition of the vertex-set V into t + 1 sets (so-alled lusters) C0; C1; :::; Ct, and thereis a subgraph G0 = (V;E 0) with the following properties:� t �M ,� jC0j � "jV j,� all lusters Ci; i � 1; are of the same size,� degG0(v) > degG(v)� (d+ ")jV j for all v 2 V ,� G0jCi = ; i � 1; (Ci are independent in G0),� all pairs G0jCi�Cj ; 1 � i < j � t, are "-regular, eah with density 0 or exeeding d.This form (see [10℄) an easily be obtained by applying the original Regularity Lemma(with a smaller value of "), adding to the exeptional set C0 all lusters inident to manyirregular pairs, and then deleting all edges between any other lusters where the edgeseither do not form a regular pair or they do but with a density at most d.We will also use a simple lemma from [6℄.Lemma 2. Let X be a set of N elements, 0 < � < 1, k = d 2�e. Suppose that B1; : : : ; Bk �X satisfy jBij � �N . Then there exist 1 � i < j � k withjBi \ Bjj > �2N5 :Proof: Suppose the ontrary and let us bound the size of the union of the sets.N � jB1 [ : : : [ Bkj � kXi=1 jBij � X1�i<j�k jBi \Bjj �� k�N �  k2!�2N5 > 2N � 910N > N;whih is a ontradition.
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3 Proof of Theorem 4Let ; � > 0 be �xed real numbers; assume that  � 1 without loss of generality. WritejV (L)j = l. Suppose that G is a graph with n verties and e edges where e > �n2 and nis suÆiently large. Suppose further that the edges of G are olored by at most n olors.We will show that there is a opy of L in G that is not TMC, implying the theorem. Thuswe want to �nd an embedding � : V (L) ! V (G) suh that the embedded opy of L isnot TMC.Let us denote the two olor lasses in the bipartition of L by A and B. Sine L is nota omplete bipartite graph, it ontains a vertex from A and a vertex from B whih arenot adjaent. Furthermore, sine L is onneted there is an edge leaving both of theseverties. Finally the other endpoints of these two edges must be onneted by an edge,beause otherwise we have two strongly independent edges in L, and then a muh strongerresult is true than Theorem 4 (see Theorem 1). Thus by the above, there is an induedP4 in L, whih we denote by (a1; b1; a2; b2) where ai 2 A; bi 2 B; i = 1; 2. Denote theremaining verties of L (if there are any) in A by a3; : : : ; ajAj and in B by b3; : : : ; bjBj. Firstwe will �nd an embedding of this P4 with a repeated olor, then an arbitrary embeddingof the rest of L, thus giving a opy of L in G that is not TMC.Let us apply the degree form of the Regularity Lemma (Lemma 1) for G withd = �2 and " = � �14�15l : (1)Denote N = jC1j = : : : = jCtj = n� jC0jt :Let us remove �rst from G0 the verties of C0 and all the edges inident to them. Thenwe remove all exeptional edges (u; v) for whih if u 2 Ci, v 2 Cj; i; j � 1 then either wehave degG0(u; Cj) < (d� ")N = ��2 � "�N;or degG0(v; Ci) < (d� ")N = ��2 � "�N:Let us denote the resulting graph by G00.By the "-regularity of the pair G0jCi�Cj with density exeeding d, at most 2"N2 exep-tional edges of the pair G0jCi�Cj are removed, and thus at most 2"n2 exeptional edges ofG0 are removed in total whih are not adjaent to C0.Then using (1) we havejE(G00)j = 12 Xv2V (G00) degG00(v) � 12 Xv2V (G00) (degG0(v)� jC0j)� 2"n2 >> 12 Xv2V (G00) (degG(v)� (d+ ")n� jC0j)� 2"n2 � 12 Xv2V (G00) degG(v)� d+ 6"2 n2 =5



= 12 Xv2V (G) degG(v)� 12 Xv2C0 degG(v)� d+ 6"2 n2 � jE(G)j � d+ 7"2 n2 � �2n2: (2)Furthermore, in G00 for every pair G00jCi�Cj and X � Ci, Y � Cj, jXj; jY j � (")1=3N ,if there is an edge between Ci and Cj in G0 (and so the density exeeds d), then by (1)and the "-regularity of the pair G0jCi�Cj we havedG00(X; Y ) � dG0(X; Y )� 2"N2jXjjY j � d� "� 2(")1=3 > �3 : (3)Finally, for any u 2 Ci and CjdegG0(u; Cj) � (d� ")N implies degG00(u; Cj) � (d� 2")N > �3N: (4)In the remainder of the proof we will �rst distinguish two ases. In both ases wewill �rst embed the P4 = (a1; b1; a2; b2) in L in suh a way that the embedded edges(�(a1); �(b1)), (�(b1); �(a2)), and (�(a2); �(b2)) will ontain a repeated olor and for somepair (Ci; Cj) we will havejNG00(�(a1); Cj) \NG00(�(a2); Cj)j � 15 ��3�2N; (5)and jNG00(�(b1); Ci) \NG00(�(b2); Ci)j � 15 ��3�2N: (6)(5) and (6) guarantee that we will be able to �nish the embedding of the rest of L, andthus we will get a opy of L in G00 (and thus in G) that is not TMC.Case 1: There is a olor lass (say red) in G00 whih ontains a star with at least k =d 6�e leaves. Let us onsider this red star and denote the middle vertex by u and the leavesby v1; v2; : : : ; vk. Assume that u 2 Cj. Apply Lemma 2 with X = Cj, Bi = NG00(vi; Cj)and � = �3 . By (4) we have in fatjBij � �3N for every 1 � i � k:Then we get two Bi's, say for simpliity B1 and B2, suh thatjB1 \ B2j � 15 ��3�2N: (7)Assume that v1 2 Ci. Let us embed P4 in this ase in the following way:�(a1) = v1; �(b1) = u; �(a2) = v2;and let �(b2) be a vertex w in B1 \ B2 for whih we havejNG00(u; Ci) \NG00(w;Ci)j � ��3�2N: (8)6



Using (3) with X = (B1 \B2) n fug and Y = NG00(u; Ci) guarantees that suh a w anbe hosen.The above embedding of P4 has a repeated olor (red) and (7) and (8) imply that itsatis�es (5) and (6). Note that here atually we get somewhat more; the endpoints ofP4 are also onneted in the embedding, so in this ase we an embed L even if it is aomplete bipartite graph.Case 2: There is no monohromati star with at least d 6�e leaves.However, this and (2) imply that in this ase there is a monohromati (say blue)mathing M in G00 suh that jM j � 1d 6�e �2n2n > �214n: (9)Write U = V (M) for the vertex set of M . (9) implies thatjU j > �27 n:Write also Ui = U\Ci. De�ne I = ni j jUij > �214No, and set U 0 = [i2IUi and U 00 = UnU 0.Clearly jU 00j � �214n. Sine jU j > �27n, we have two verties y; z 2 U 0 adjaent in M . Lety 2 Ci and z 2 Cj. In G00 we have at least one edge between Ci and Cj, and hene by (3)we have dG00(Ui; Uj) > �3 : (10)We will remove some additional exeptional edges from G00jUi�Uj and then we embedL in the remaining bipartite graph. For a vertex u overed by M , let us denote its pair inM by u0. We will remove all exeptional edges (u; v) from G00jUi�Uj for whih if u 2 Ci,v 2 Cj, then either we havejNG00(u; Cj) \NG00(v0; Cj)j < ��3�2N; (11)or jNG00(v; Ci) \NG00(u0; Ci)j < ��3�2N: (12)For a �xed u 2 Ci, the number of exeptional edges violating (12) inident to u is atmost "1=3N , sine otherwise we get a ontradition with (3) by hoosing X = NG00(u0; Ci)and Y to be the other endpoints of the exeptional edges. Thus the total number of exep-tional edges violating (12) is at most "1=3N2. Similarly, the total number of exeptionaledges violating (11) is at most "1=3N2.By (1) and (10), if we remove the exeptional edges, we still have more than�3 jUijjUjj � 2"1=3N2 � 0��3  �214!2 � 2"1=31AN2 > 0edges in G00jUi�Uj . 7



Let us take one suh non-exeptional edge (u; v) whih does not belong to M and weembed �(a1) = v0, �(b1) = v, �(a2) = u and �(b2) = u0. Again we have a repeated olor(blue), and the embedding satis�es (5) and (6) (sine both (11) and (12) do not hold).To �nish the embedding the rest of L, in both ases we do the following. We embedthe remaining verties in L into a omplete bipartite graph in the ommon neighborhoodsin (5) and (6).We embed a3 into a vertexu 2 (NG00(�(b1); Ci) \NG00(�(b2); Ci)) n f�(a1); �(a2)gsuh that jNG00(u; Cj) \NG00(�(a1); Cj) \NG00(�(a2); Cj)j � 15 ��3�3N:(3) guarantees that suh a u exists.Continuing this way, we always embed ar; 3 < r � jAj into a vertexu 2 (NG00(�(b1); Ci) \NG00(�(b2); Ci)) n [r�1s=1�(as)suh that ���NG00(u; Cj) \ �\r�1s=1NG00(�(as); Cj)���� � 15 ��3�rN:(3) always guarantees that suh a u exists.Finally we embed B n fb1; b2g into verties in\jAjs=1NG00(�(as); Cj) n f�(b1); �(b2)g:This is an embedding of L into G00 (and thus into G) whih ontains a repeated olor.This ompletes the proof of Theorem 4. 24 AknowledgementThe �rst author thanks M. Simonovits for helpful disussions on the topi.Referenes[1℄ N. Alon, On a onjeture of Erd}os, Simonovits and S�os onerning anti-Ramseytheorems, Journal of Graph Theory, 7, 1983, 91-94.[2℄ N. Alon, H. Lefmann, V. R�odl, On an anti-Ramsey type result, in Sets, graphs andnumbers, Budapest, 1991, Vol. 60 of Colloq. Math. So. J�anos Bolyai, North-Holland,Amsterdam, 9-22.[3℄ M. Axenovih, T. Jiang, Anti-Ramsey numbers for small omplete bipartite graphs,to appear in Ars Combinatoria. 8



[4℄ M. Axenovih, T. Jiang, A. K�undgen, Bipartite anti-Ramsey numbers of yles andpath overs in bipartite graphs, to appear in the Journal of Graph Theory.[5℄ B. Bollob�as, Extremal Graph Theory, Aademi Press, London (1978).[6℄ S.A. Burr, P. Erd}os, P. Frankl, R.L. Graham, V.T. S�os, Further results on maximalantiramsey graphs, in Graph Theory, Combinatoris and Appliations, Vol. I, JohnWiley and Sons, New York, 1988, 193-206.[7℄ S.A. Burr, P. Erd}os, R.L. Graham, V.T. S�os, Maximal antiramsey graphs and thestrong hromati number, Journal of Graph Theory, 13, 1989, 263-282.[8℄ P. Erd}os, M. Simonovits, V.T. S�os, Anti-Ramsey theorems, in In�nite and �nite sets,(Colloq., Keszthely, 1973; dediated to P. Erd}os on his 60th birthday), Vol. II, NorthHolland, Amsterdam, Vol. 10 of Colloq. Math. So. J�anos Bolyai, 633-643.[9℄ R.L. Graham, B.L. Rothshild, J.H. Spener, Ramsey Theory, 2nd ed., John Wileyand Sons, New York, 1990.[10℄ J. Koml�os and M. Simonovits, Szemer�edi's Regularity Lemma and its appliations ingraph theory, in Combinatoris, Paul Erd}os is Eighty (D. Mikl�os, V.T. S�os, and T.Sz}onyi, Eds.), pp. 295-352, Bolyai Soiety Mathematial Studies, Vol. 2, Budapest,1996.[11℄ M. Simonovits, Some of my favorite Erd}os theorems and related results, theories, inPaul Erd}os and his mathematis, II., Budapest (Hungary), 2002, pp. 555-625.[12℄ E. Szemer�edi, Regular partitions of graphs, Colloques Internationaux C.N.R.S. No260 - Probl�emes Combinatoires et Th�eorie des Graphes, Orsay (1976), 399-401.[13℄ T. Jiang, D.B. West, On the Erd}os-Simonovits-S�os onjeture about the anti-Ramseynumber of a yle, Combinatoris, Probability and Computing, 12, 2003, 585-598.
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