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February 5, 2004Abstra
tGiven a graph L, in this paper we investigate the anti-Ramsey number �S(n; e; L),de�ned to be the minimumnumber of 
olors needed to edge-
olor some graphG(n; e)with n verti
es and e edges so that in every 
opy of L in G all edges have di�erent
olors. We 
all su
h a 
opy of L totally multi
olored (TMC).In [7℄ among many other interesting results and problems Burr, Erd}os, Grahamand T. S�os asked the following question: Let L be a 
onne
ted, bipartite graphwhi
h is not a star. Is it true then that�S(n; �n2; L)=n!1 as n!1?In this paper we prove a slightly weaker statement, namely we show that the state-ment is true if L is a 
onne
ted, bipartite graph whi
h is not a 
omplete bipartitegraph.1 Introdu
tion1.1 Notation and de�nitionsWe let V (G) and E(G) denote the vertex-set and the edge-set of the graph G, and (A;B)or (A;B;E) denote a bipartite graph G = (V;E), where V = A [B, and E � A�B. Ingeneral, given any graph G and two disjoint subsets A;B of V (G), the pair (A;B) is thegraph restri
ted to A�B. N(v) is the set of neighbors of v 2 V . Hen
e the size of N(v)1



is jN(v)j = deg(v) = degG(v), the degree of v. For a vertex v 2 V and set U � V � fvg,we denote by NG(v; U) the neighbors of v in U , degG(v; U) = jNG(v; U)j. P4 denotes thepath with 4 verti
es. We denote by e(A;B) the number of edges of G with one endpointin A and the other in B. For non-empty A and B,d(A;B) = e(A;B)jAjjBjis the density of the graph between A and B.De�nition 1. The pair (A;B) is "-regular ifX � A; Y � B; jXj > "jAj; jY j > "jBjimply jd(X; Y )� d(A;B)j < ";otherwise it is "-irregular.A graph L is embeddable into another graph G, if G has a subgraph isomorphi
 to L,that is, if there is a one-to-one map (inje
tion) � : V (L)! V (G) su
h that (x; y) 2 E(L)implies (�(x); �(y)) 2 E(G). Note that in this paper subgraph does not mean an indu
edsubgraph. In a graph two edges are 
alled strongly independent, if they are disjoint andall four verti
es span no other edges.1.2 Anti-Ramsey problemsIn traditional Ramsey theory (see e.g. [9℄) a typi
al question asks the following. Given agraph L and an integer r > 0, whi
h graphs G have the property that no matter how theedges of G are r-
olored, there is a mono
hromati
 
opy of L, in other words a subgraphof G isomorphi
 to L in whi
h all edges have the same 
olor.In anti-Ramsey theory we go in the opposite dire
tion and we try to �nd edge-
oloringssu
h that all 
opies of L have all edges of di�erent 
olors. We 
all su
h a 
opy of L totallymulti
olored (TMC). Anti-Ramsey numbers were introdu
ed by Erd}os, Simonovits and S�os[8℄ in the 1970's, and have been a
tively studied re
ently (see e.g. [1, 2, 3, 4, 6, 7, 13℄).The following extremal anti-Ramsey numbers were introdu
ed and studied in [6℄ and[7℄ (see also [10℄ and [11℄). De�ne �S(n; e; L) to be the smallest integer r su
h that thereexists a graph G with n verti
es and e edges that has an edge-
oloring in r 
olors su
hthat every L in G is TMC. This notation 
omes from the fa
t that the value we seek isalso the strong 
hromati
 number of the hypergraph whi
h has as its set of points theedges of G, with (hyper)edges 
onsisting of the sets of edges of G whi
h form 
opies ofL. It turns out that the determination of �S(n; e; L) is surprisingly deep. It is 
loselyrelated, for example, to the 
elebrated fun
tion rk(n), the size of the largest subset off1; 2; : : : ; ng 
ontaining no k-term arithmeti
 progression. Among many other interestingresults and problems, in [6℄ and [7℄ the authors proved the following result for bipartiteL's whi
h 
ontain two strongly independent edges.2



Theorem 1. ([6℄) Suppose L is a bipartite graph having at least two strongly independentedges, and maximum degree at least two. Then for any � > 0, if e > �n2, we have�S(n; e; L) > �0n2;for some �xed positive 
onstant �0 depending on �.On the other hand, whenever L does not have two strongly independent edges (evenwhen L is not ne
essarily bipartite), then �S(n; e; L) 
an be mu
h smaller.Theorem 2. ([6℄) If no two edges of L are strongly independent and e < �12 � "�n2 forsome �xed " > 0, then �S(n; e; L) = O �n2= logn� :For the spe
ial 
ase L = P4, even stronger results were obtained.Theorem 3. ([7℄) �S(n; 
nr3(n); P4) � n for a suitable 
 > 0:For any � > 0, we have �S(n; �n2; P4) > 
n for any 
 if n is suÆ
iently large.With this last result in mind, in [7℄ the authors asked the following question. Let Lbe a 
onne
ted, bipartite graph whi
h is not a star. Is it true then that�S(n; �n2; L)=n!1 as n!1?Note that the statement is 
learly not true for stars. In this paper we prove a slightlyweaker statement. Namely we show that the statement is true if L is a 
onne
ted, bipartitegraph whi
h is not a 
omplete bipartite graph.Theorem 4. For any �; 
 > 0 there exists an n0 = n0(�; 
) su
h that if n � n0, e > �n2and L is a 
onne
ted, bipartite graph whi
h is not a 
omplete bipartite graph, then�S(n; e; L) > 
n:However, the original question still remains open for 
omplete bipartite graphs thatare not stars, for instan
e for C4.In the next se
tion we provide the tools, in
luding the Regularity Lemma. Then inSe
tion 3 we prove the theorem by essentially redu
ing the general 
ase to that of P4.
3



2 ToolsIn the proof the Regularity Lemma of Szemer�edi [12℄ plays a 
entral role. Here we willuse the following variation of the lemma.Lemma 1 (Regularity Lemma { Degree form). For every " > 0 there is an M =M(") su
h that if G = (V;E) is any graph and d 2 [0; 1℄ is any real number, then there isa partition of the vertex-set V into t + 1 sets (so-
alled 
lusters) C0; C1; :::; Ct, and thereis a subgraph G0 = (V;E 0) with the following properties:� t �M ,� jC0j � "jV j,� all 
lusters Ci; i � 1; are of the same size,� degG0(v) > degG(v)� (d+ ")jV j for all v 2 V ,� G0jCi = ; i � 1; (Ci are independent in G0),� all pairs G0jCi�Cj ; 1 � i < j � t, are "-regular, ea
h with density 0 or ex
eeding d.This form (see [10℄) 
an easily be obtained by applying the original Regularity Lemma(with a smaller value of "), adding to the ex
eptional set C0 all 
lusters in
ident to manyirregular pairs, and then deleting all edges between any other 
lusters where the edgeseither do not form a regular pair or they do but with a density at most d.We will also use a simple lemma from [6℄.Lemma 2. Let X be a set of N elements, 0 < � < 1, k = d 2�e. Suppose that B1; : : : ; Bk �X satisfy jBij � �N . Then there exist 1 � i < j � k withjBi \ Bjj > �2N5 :Proof: Suppose the 
ontrary and let us bound the size of the union of the sets.N � jB1 [ : : : [ Bkj � kXi=1 jBij � X1�i<j�k jBi \Bjj �� k�N �  k2!�2N5 > 2N � 910N > N;whi
h is a 
ontradi
tion.
4



3 Proof of Theorem 4Let 
; � > 0 be �xed real numbers; assume that 
 � 1 without loss of generality. WritejV (L)j = l. Suppose that G is a graph with n verti
es and e edges where e > �n2 and nis suÆ
iently large. Suppose further that the edges of G are 
olored by at most 
n 
olors.We will show that there is a 
opy of L in G that is not TMC, implying the theorem. Thuswe want to �nd an embedding � : V (L) ! V (G) su
h that the embedded 
opy of L isnot TMC.Let us denote the two 
olor 
lasses in the bipartition of L by A and B. Sin
e L is nota 
omplete bipartite graph, it 
ontains a vertex from A and a vertex from B whi
h arenot adja
ent. Furthermore, sin
e L is 
onne
ted there is an edge leaving both of theseverti
es. Finally the other endpoints of these two edges must be 
onne
ted by an edge,be
ause otherwise we have two strongly independent edges in L, and then a mu
h strongerresult is true than Theorem 4 (see Theorem 1). Thus by the above, there is an indu
edP4 in L, whi
h we denote by (a1; b1; a2; b2) where ai 2 A; bi 2 B; i = 1; 2. Denote theremaining verti
es of L (if there are any) in A by a3; : : : ; ajAj and in B by b3; : : : ; bjBj. Firstwe will �nd an embedding of this P4 with a repeated 
olor, then an arbitrary embeddingof the rest of L, thus giving a 
opy of L in G that is not TMC.Let us apply the degree form of the Regularity Lemma (Lemma 1) for G withd = �2 and " = � �14
�15l : (1)Denote N = jC1j = : : : = jCtj = n� jC0jt :Let us remove �rst from G0 the verti
es of C0 and all the edges in
ident to them. Thenwe remove all ex
eptional edges (u; v) for whi
h if u 2 Ci, v 2 Cj; i; j � 1 then either wehave degG0(u; Cj) < (d� ")N = ��2 � "�N;or degG0(v; Ci) < (d� ")N = ��2 � "�N:Let us denote the resulting graph by G00.By the "-regularity of the pair G0jCi�Cj with density ex
eeding d, at most 2"N2 ex
ep-tional edges of the pair G0jCi�Cj are removed, and thus at most 2"n2 ex
eptional edges ofG0 are removed in total whi
h are not adja
ent to C0.Then using (1) we havejE(G00)j = 12 Xv2V (G00) degG00(v) � 12 Xv2V (G00) (degG0(v)� jC0j)� 2"n2 >> 12 Xv2V (G00) (degG(v)� (d+ ")n� jC0j)� 2"n2 � 12 Xv2V (G00) degG(v)� d+ 6"2 n2 =5



= 12 Xv2V (G) degG(v)� 12 Xv2C0 degG(v)� d+ 6"2 n2 � jE(G)j � d+ 7"2 n2 � �2n2: (2)Furthermore, in G00 for every pair G00jCi�Cj and X � Ci, Y � Cj, jXj; jY j � (")1=3N ,if there is an edge between Ci and Cj in G0 (and so the density ex
eeds d), then by (1)and the "-regularity of the pair G0jCi�Cj we havedG00(X; Y ) � dG0(X; Y )� 2"N2jXjjY j � d� "� 2(")1=3 > �3 : (3)Finally, for any u 2 Ci and CjdegG0(u; Cj) � (d� ")N implies degG00(u; Cj) � (d� 2")N > �3N: (4)In the remainder of the proof we will �rst distinguish two 
ases. In both 
ases wewill �rst embed the P4 = (a1; b1; a2; b2) in L in su
h a way that the embedded edges(�(a1); �(b1)), (�(b1); �(a2)), and (�(a2); �(b2)) will 
ontain a repeated 
olor and for somepair (Ci; Cj) we will havejNG00(�(a1); Cj) \NG00(�(a2); Cj)j � 15 ��3�2N; (5)and jNG00(�(b1); Ci) \NG00(�(b2); Ci)j � 15 ��3�2N: (6)(5) and (6) guarantee that we will be able to �nish the embedding of the rest of L, andthus we will get a 
opy of L in G00 (and thus in G) that is not TMC.Case 1: There is a 
olor 
lass (say red) in G00 whi
h 
ontains a star with at least k =d 6�e leaves. Let us 
onsider this red star and denote the middle vertex by u and the leavesby v1; v2; : : : ; vk. Assume that u 2 Cj. Apply Lemma 2 with X = Cj, Bi = NG00(vi; Cj)and � = �3 . By (4) we have in fa
tjBij � �3N for every 1 � i � k:Then we get two Bi's, say for simpli
ity B1 and B2, su
h thatjB1 \ B2j � 15 ��3�2N: (7)Assume that v1 2 Ci. Let us embed P4 in this 
ase in the following way:�(a1) = v1; �(b1) = u; �(a2) = v2;and let �(b2) be a vertex w in B1 \ B2 for whi
h we havejNG00(u; Ci) \NG00(w;Ci)j � ��3�2N: (8)6



Using (3) with X = (B1 \B2) n fug and Y = NG00(u; Ci) guarantees that su
h a w 
anbe 
hosen.The above embedding of P4 has a repeated 
olor (red) and (7) and (8) imply that itsatis�es (5) and (6). Note that here a
tually we get somewhat more; the endpoints ofP4 are also 
onne
ted in the embedding, so in this 
ase we 
an embed L even if it is a
omplete bipartite graph.Case 2: There is no mono
hromati
 star with at least d 6�e leaves.However, this and (2) imply that in this 
ase there is a mono
hromati
 (say blue)mat
hing M in G00 su
h that jM j � 1d 6�e �2n2
n > �214
n: (9)Write U = V (M) for the vertex set of M . (9) implies thatjU j > �27
 n:Write also Ui = U\Ci. De�ne I = ni j jUij > �214
No, and set U 0 = [i2IUi and U 00 = UnU 0.Clearly jU 00j � �214
n. Sin
e jU j > �27
n, we have two verti
es y; z 2 U 0 adja
ent in M . Lety 2 Ci and z 2 Cj. In G00 we have at least one edge between Ci and Cj, and hen
e by (3)we have dG00(Ui; Uj) > �3 : (10)We will remove some additional ex
eptional edges from G00jUi�Uj and then we embedL in the remaining bipartite graph. For a vertex u 
overed by M , let us denote its pair inM by u0. We will remove all ex
eptional edges (u; v) from G00jUi�Uj for whi
h if u 2 Ci,v 2 Cj, then either we havejNG00(u; Cj) \NG00(v0; Cj)j < ��3�2N; (11)or jNG00(v; Ci) \NG00(u0; Ci)j < ��3�2N: (12)For a �xed u 2 Ci, the number of ex
eptional edges violating (12) in
ident to u is atmost "1=3N , sin
e otherwise we get a 
ontradi
tion with (3) by 
hoosing X = NG00(u0; Ci)and Y to be the other endpoints of the ex
eptional edges. Thus the total number of ex
ep-tional edges violating (12) is at most "1=3N2. Similarly, the total number of ex
eptionaledges violating (11) is at most "1=3N2.By (1) and (10), if we remove the ex
eptional edges, we still have more than�3 jUijjUjj � 2"1=3N2 � 0��3  �214
!2 � 2"1=31AN2 > 0edges in G00jUi�Uj . 7



Let us take one su
h non-ex
eptional edge (u; v) whi
h does not belong to M and weembed �(a1) = v0, �(b1) = v, �(a2) = u and �(b2) = u0. Again we have a repeated 
olor(blue), and the embedding satis�es (5) and (6) (sin
e both (11) and (12) do not hold).To �nish the embedding the rest of L, in both 
ases we do the following. We embedthe remaining verti
es in L into a 
omplete bipartite graph in the 
ommon neighborhoodsin (5) and (6).We embed a3 into a vertexu 2 (NG00(�(b1); Ci) \NG00(�(b2); Ci)) n f�(a1); �(a2)gsu
h that jNG00(u; Cj) \NG00(�(a1); Cj) \NG00(�(a2); Cj)j � 15 ��3�3N:(3) guarantees that su
h a u exists.Continuing this way, we always embed ar; 3 < r � jAj into a vertexu 2 (NG00(�(b1); Ci) \NG00(�(b2); Ci)) n [r�1s=1�(as)su
h that ���NG00(u; Cj) \ �\r�1s=1NG00(�(as); Cj)���� � 15 ��3�rN:(3) always guarantees that su
h a u exists.Finally we embed B n fb1; b2g into verti
es in\jAjs=1NG00(�(as); Cj) n f�(b1); �(b2)g:This is an embedding of L into G00 (and thus into G) whi
h 
ontains a repeated 
olor.This 
ompletes the proof of Theorem 4. 24 A
knowledgementThe �rst author thanks M. Simonovits for helpful dis
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