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Abstract We aim at reviewing and extending a number of recent results addressing
stability of certain geometric and analytic estimates in the Riemannian approxima-
tion of subRiemannian structures. In particular we extend the recent work of the
the authors with Rea (Math Ann 357(3):1175–1198, 2013) and Manfredini (Anal
Geom Metric Spaces 1:255–275, 2013) concerning stability of doubling properties,
Poincare’ inequalities, Gaussian estimates on heat kernels and Schauder estimates
from the Carnot group setting to the general case of Hörmander vector fields.
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1 Introduction

A subRiemannian manifold as a triplet (M,�, g0) where M is a connected, smooth
manifold of dimension n ∈ N, � denotes a subbundle of T M bracket-generating T M ,
and g0 is a positive definite smooth, bilinear form on�, see for instance [66]. Similarly
to the Riemannian setting, one endows (M,�, g0) with a metric space structure by
defining the Carnot–Caratheodory (CC) control distance: For any pair x, y ∈ M set

d0(x, y) = inf{δ > 0 such that there exists a curve γ ∈ C∞([0, 1]; M)

with endpoints x, y such that γ̇ ∈ �(γ ) and |γ̇ |g ≤ δ}.

Curves whose velocity vector lies in � are called horizontal, their length is defined
in an obvious way. Subriemannian metrics can be defined, by prescribing a smooth
distributions of vector fields X = (X1, . . . , Xm) in Rn , orthonormal with respect to
g0, and satisfying the Hörmander finite rank condition

rank Lie(X1, . . . , Xm)(x) = n, ∀x ∈ �. (1.1)

When attempting to extend knownRiemannian results to the subRiemannian setting
one naturally is led to approximating the sub-Riemannian metric (and the associated
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Regularity for subelliptic PDE. . . 175

distance function d0(·, ·)) with a one-parameter family of degenerating Riemannian
metric (associated to distance functions dε(·, ·)), which converge in the Gromov–
Hausdorff sense as ε → 0 to the original one. This approximation is described
in detail in from the point of view of the distance functions in Sect. 2.2 and from
the point of view of the Riemannian setting in Definition 3.7. The approximating
distance functions dε can be defined in terms of an extended generating frame of
smooth vector fields X ε

1, . . . , X ε
p, with p ≥ n and X ε

i = Xi for i = 1, . . . , m, that
converges/collapses uniformly on compact sets to the original familyX1, . . . , Xm as
ε → 0. This frame includes all the higher order commutators needed to bracket gen-
erate the tangent space. When coupled with uniform estimates, this method provides
a strategy to extend known Riemannian results to the subRiemannian setting. Such
approximations have been widely used since the mid-80’s in a variety of contexts. As
example we recall the work of Debiard [33], Koranyi [55,56], Ge [45], Rumin [77]
as well as the references in [67] and [68]. More recently this technique has been used
in the study of minimal surfaces and mean curvature flow in the Heisenberg group.
Starting from the existence theorem of Pauls [71], and Cheng et al. [24], to the regu-
larity results by Manfredini and the authors [15,16]. Our work is largely inspired to
the results of Manfredini and one of us [27] where the Nagel et al. estimates for the
fundamental solution of subLaplacians have been extended to the Riemannian approx-
imants uniformly as ε → 0. In the following we list in more detail the nature of the
stability estimates we investigate. Given a Riemannian manifold (Mn, g), with a Rie-
mannian smooth volume form expressed in local coordinates (x1, . . . , xn) as d vol =√

gdx1 . . . dxn , one can consider the corresponding heat operator acting on functions
u : M → R,

Lgu = ∂t u − 1√
g

n∑

i, j=1

∂i

(√
ggi j∂ j u

)
.

The study of such operators is closely related to certain geometric and analytic esti-
mates, namely: For K ⊂⊂ M and r0 > 0 there exists positive constants CD, CP , ..

below depending on K , r0, g such that for all x ∈ K and 0 < r < r0, one has

• (Doubling property)

vol(B(x, r)) ≥ CDvol(B(x, 2r)); (1.2)

• (Poincaré inequality)
´

B(x,r)
|u − u B(x,r)|dvol ≤ CPr

´
B(x,2r)

|∇gu|dvol;
• (Gaussian estimates) If hg denotes the heat kernel of Lg, x, y ∈ M and t > 0 one
has

C−1
g (vol(B(x,

√
t)))−n/2 exp

(
Ag

d(x, y)2

t

)

≤ |h(x, y, t) ≤ Cg(vol(B(x,
√

t)))−n/2 exp

(
Bg

d(x, y)2

t

)
(1.3)
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176 L. Capogna, G. Citti

and if appropriate curvature conditions hold

|∂s
t ∂i1 · · · ∂ik h(x, y, t, s) ≤ Cs,k,gt−s− k

2 (vol(B(x, t − s)))−n/2 exp

(
BG

d(x, y)2

t−s

)
;

(1.4)

• (Parabolic Harnack inequality) If Lgu = 0 in Q = M × (0, T ) and u ≥ 0 then

sup
B(x,r)×(t−r2,t−r2/2)

u ≤ Cg inf
B(x,r)×(t+r2/2,t+r2)

u. (1.5)

The connections between such estimates wasmade evident in the work of Saloff-Coste
[78] and Grigoryan [46], who independently established the equivalence

(Poincare) + (Doubling) <=> Gaussian estimates (1.3)

<=> Parabolic Harnack inequali t y (1.5).

See also related works by Biroli and Mosco [6], and Sturm [80].
This paper aims at describing the behavior of such estimates along a sequence of

metrics gε , that collapse to a subRiemannian structure as ε → 0.We will prove that the
estimates are stable as ε → 0 and explore some of the consequences of this stability.
Although, thanks to thework of Jerison [52], Nagel et al. [70] and Jerison and Sanchez-
Calle [53], the Poincarè inequality, the doubling property and the Gaussian bounds are
well known for subRiemannian structures, it is not immediate that they continue to hold
uniformly in the approximation as ε → 0. For one thing, the Riemannian curvature
tensor is unbounded as ε → 0, thus preventing the use ofLi-Yau’s estimates.Moreover,
as ε → 0 the Hausdorff dimension of the metric spaces (M, dε), where dε denotes
the distance function associated to gε , typically does not remain constant and in fact
increases at ε = 0 to the homogeneous dimension associated to the subRimannian
structure. The term multiscale from the title reflects the fact that the blow up of the
metric as ε → 0 isRiemannian at scales less than ε and subRiemannian at larger scales.

To illustrate ourworkwe introduce a prototype for the class of spaceswe investigate,
we consider the manifold M = R

2 × S1, with coordinates (x1, x2, θ). The horizontal
distribution is given by

� = span{X1, X2}, with X1 = cos θ∂x1 + sin θ∂x2 , and X2 = ∂θ .

The subRiemannian metric g0 is defined so that X1 and X2 form a orthonormal basis.
This is the group of Euclidean isometries defined below inExample 2.1. For each ε > 0
we also consider the Riemannian metric gε on M uniquely defined by the requirement
that X1, X2, εX3 is an orthonormal basis, with X3 = − sin θ∂x1 + cos θ∂x2 . Denote
by dε the corresponding Riemannian distance, by X∗

i the adjoint of Xi with respect
to Lebesgue measure and by �ε the fundamental solution of the Laplace-Beltrami
operator Lε =∑3

i=1 X∗
i Xi . Since Lε is uniformly elliptic, then there exists Cε, Rε >

0 such that for dε(x, y) < Rε the fundamental solution will satisfy

C−1
ε dε(x, y)−1 ≤ �ε(x, y) ≤ Cedε(x, y)−1.
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Regularity for subelliptic PDE. . . 177

As ε → 0 this estimate will degenerate in the following way: Rε → 0, Cε → ∞ and
for ε = 0 one will eventually have

�0(x, y) ≈ d0(x, y)−2.

As a result of the work in [70] one has that for each ε > 0 there exists Cε > 0 such
that

C−1 d2
ε (x, y)

|Bε(x, d(x, y))| ≤ �ε(x, y) ≤ C
d2
ε (x, y)

|Bε(x, d(x, y))| .

The main result of [27] was to provide stable bounds for the fundamental solution
by proving that one can choose Cε independent of ε as ε → 0. In this paper we
extend such stable bounds to the degenerate parabolic setting and to the more general
subRiemannian setting.

Since our results will be local in nature, unless explicitly stated we will always
assume that M = R

n and use as volume the Lebesgue measure. The first result we
present is due to Rea and the authors [18] and concerns stability of the doubling
property.

Theorem 1.1 For every ε0 > 0, and K ⊂⊂ R
n there exist constants R, C > 0

depending on K , ε0 and on the subRiemannian structure, such that for every ε ∈
[0, ε0], x ∈ K and 0 < r < R,

|Bε(x, 2r)| ≤ C |Bε(x, r)|.

Here we have denoted by Bε the balls related to the dε distance function.

We present here a rather detailed proof of this result, amending some minor gaps
in the exposition in [18]. If the subRiemannian structure is equiregular, as an original
contribution of this paper, in Theorem 3.10 we also present a quantitative version of
this result, by introducing an explicit quasi-norms equivalent to dε . These families of
quasi-norms play a role analogue to the one played by the Koranyi Gauge quasi-norm
(2.5) in the Heisenberg group. We also sketch the proof of the stability of Jerison’s
Poincare inequality from [18].

Theorem 1.2 Let K ⊂⊂ R
n and ε0 > 0. The vector fields (X ε

i )i=1···p satisfy the
Poincare inequality

ˆ

Bε (x,R)

|u − u Bε (x,r)|dx ≤ CP

ˆ

Bε (x,2r)

|∇εu|dx

with a constant CP depending on K , ε0 and the subRiemannian structure, but indepen-
dent of ε. Here we have denoted by ∇εu the gradient of u along the frame X ε

1, . . . , X ε
p.

Our next results concerns the stability, as ε → 0, of the Gaussian estimates for the
heat kernels associated to the family of second order, sub-elliptic differential equations
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178 L. Capogna, G. Citti

in non divergence form

Lε,Au ≡ ∂t u −
p∑

i, j=1

aε
i j X ε

i X ε
j u = 0,

in a cylinder Q = � × (0, T ). Here {aε
i j }i, j=1,...,p is a constant real matrix such that

1

2
�−1

p∑

i=1

ξ2i ≤
p∑

i, j=1

aε
i jξiξ j ≤ 2�

p∑

i=1

ξ2i , (1.6)

for all ξ ∈ R
p, uniformly in ε > 0 and

�−1
m∑

i=1

ξ2i ≤
m∑

i, j=1

aε
i jξiξ j ≤ �

m∑

i=1

ξ2i , (1.7)

for all ξ ∈ R
m and ε > 0.

Theorem 1.3 Let K ⊂⊂ R
n,� > 0 and ε0 > 0. The fundamental solution �ε,A of

the operator Lε,A, is a kernel with exponential decay of order 2, uniform with respect
to ε ∈ [0, ε0] and for any coefficients matrix A satisfying the bounds above for the
fixed � > 0. In particular, the following estimates hold:

• For every K ⊂⊂ � there exists a constant C� > 0 depending on � but indepen-
dent of ε ∈ [0, ε0], and of the matrix A such that for each ε ∈ [0, ε0], x, y ∈ K
and t > 0 one has

C−1
�

e−C�
dε (x,y)2

t

|Bε(x,
√

t)| ≤ Pε,Aε (x, y, t) ≤ C�

e
− dε (x,y)2

C�t

|Bε(x,
√

t)| . (1.8)

• For s ∈ N and k-tuple (i1, . . . , ik) ∈ {1, . . . , m}k there exists a constant Cs,k > 0
depending only on k, s, X1, . . . , Xm,� such that

∣∣(∂s
t Xi1 · · · Xik Pε,Aε )(x, y, t)

∣∣ ≤ Cs,k
t

−2s−k
2 e

− dε (x,y)2

C�t

|Bε(x,
√

t)| (1.9)

for all x, y ∈ K and t > 0.
• For any A1, A2 ∈ M�, s ∈ N and k-tuple (i1, . . . , ik) ∈ {1, . . . , m}k there exists

Cs,k > 0 depending only on k, s, X1, . . . , Xm,� such that

|(∂s
t Xi1 · · · Xik Pε,A1)(x, y, t) − ∂s

t Xi1 · · · Xik Pε,A2)(x, y, t)|

≤ ||A1 − A2||Cs,k
t

h−2s−k
2 e

− dε (x,y)2

C�t

|Bε(x,
√

t)| , (1.10)
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where ||A||2 :=∑n
i, j=1 a2

i j .

Moreover, if �A denotes the fundamental solution of the operator LA =∑m
i, j=1 a0

i j Xi X j , then one has

X ε
i1 · · · X ε

ik
∂s

t �ε,Aε → Xi1 · · · Xik ∂
s
t �A0 (1.11)

as ε → 0 uniformly on compact sets and in a dominated way on subcompacts of �.

This theoremextends to the generalHörmander vector fields setting analogue results
proved by Manfredini and the authors in [17], in the setting of Carnot groups.

In a similar fashion, one of our main result in this paper is the extension to the
Hörmander vector fields setting of the Carnot groups Schauder estimates established
in previous work with Manfredini in [17]. To prove such extension we combine the
Gaussian bounds abovewith a refined version ofRothschild andStein [76] freezing and
lifting scheme, adapted to the multi-scale setting, to establish Schauder type estimates
which are uniform in ε ∈ [0, ε0], for the family of second order, sub-elliptic differential
equations in non divergence form

Lε,Aε u ≡ ∂t u −
n∑

i, j=1

aε
i j (x, t)X ε

i X ε
j u = 0, (1.12)

in a cylinder Q = � × (0, T ). Our standing assumption is that the coefficients of the
operator satisfy (1.6), and (1.7) for some fixed � > 0.

Theorem 1.4 Let α ∈ (0, 1), f ∈ C∞(Q) and w be a smooth solution of Lε,Aε w = f
on Q. Let K be a compact sets such that K ⊂⊂ Q, set 2δ = d0(K , ∂p Q) and denote
by Kδ the δ-tubular neighborhood of K . Assume that there exists a constant C > 0
such that

||aε
i j ||Ck,α

ε,X (Kδ)
≤ C,

for some value k ∈ N and for every ε ∈ [0, ε0]. There exists a constant C1 > 0
depending on α, C, ε0, δ, and the constants in Proposition 5.2, but independent of ε,
such that

||w||Ck+2,α
ε,X (K )

≤ C1

(
|| f ||Ck,α

ε,X (Kδ)
+ ||w||Ck+1,α

ε,X (Kδ)

)
.

Here we have set

||u||Cα
ε,X (Q) = sup

(x,t) �=(x0,t0)

|u(x, t) − u(x0, t0)|
d̃α
ε ((x, t), (x0, t0))

+ sup
Q

|u|.

and if k ≥ 1 we have let u ∈ Ck,α
ε,X (Q) if for all i = 1, . . . , m, one has Xi ∈ Ck−1,α

ε,X
(Q).
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Analogous estimates in the L p spaces, for operators independent of ε are well
known (see for instance [76] for the constant coefficient case and [9] for the Carnot
group setting). Our result yield a stable version, as ε → 0, of such estimates, which
is valid for any family of Hörmander vector fields.

Theorem 1.5 Let α ∈ (0, 1), f ∈ C∞(Q) and w be a smooth solution of Lε,Aw = f
on Q. Let K be a compact sets such that K ⊂⊂ Q, set 2δ = d0(K , ∂p Q) and denote
by Kδ the δ-tubular neighborhood of K . Assume that there exists a constant C > 0
such that

||aε
i j ||Ck,α

ε,X (Kδ)
≤ C,

for some value k ∈ N and for every ε ∈ [0, ε0]. For any p > 1, there exists a
constant C1 > 0 depending on p, α, C, ε0, δ, and the constants in Proposition 5.2,
but independent of ε, such that

||w||
W k+2,p

ε,X (K )
≤ C1

(
|| f ||

W k,p
ε,X (Kδ)

+ ||w||
W k+1,p

ε,X (Kδ)

)
.

Here we have set

||w||
W k,p

ε,X
:=

k∑

i=1

∑

|I |=i

||X ε
i1 . . . X ε

ik
w||L p .

We conclude the paper with two, related, groups of applications of our stability
results. In the first we recall the notion of p-admissible structure (Definition 7.1),
originally introduced by Hajlasz and Koskela in [48]. This class of spaces supports
a rich analytic structure and allows for the development of a first-order (in the sense
of derivatives up to order one) potential theory. We review some recent results by the
authors and collaborators [1,18] concerning Harnack inequalities for weak solutions
of classes of quasilinear degenerate parabolic PDE in such spaces. The main point of
the section is that in view of Theorems 1.1 and 1.2, the Riemannian approximations of
a subRiemannian structure satisfy the hypothesis of p-admissible structure uniformly
in ε ≥ 0. Consequently, the Harnack inequalities hold uniformly across all scales.
This provides a powerful technique in the study of degenerate elliptic and parabolic
problems through the process of regularization and approximation. To exemplify this
observation in a simple case, we consider approximating Riemannian metrics gε with
generating frame X ε

1, . . . , X ε
n defined in an open set � ⊂ R

n , and a family of diver-
gence form parabolic linear equations analogue to (1.12), i.e.

Lε,Au ≡ ∂t u −
n∑

i, j=1

X ε,∗
i (aε

i j (u, x, t)X ε
j u) = 0, (1.13)

in a cylinder Q = � × (0, T ). We assume that the coefficients of the operator depend
smoothly on u and satisfy (1.6), and (1.7) for some fixed� > 0. Thanks to the stability
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estimates one can prove that there exists positive constants C, R > 0 depending only
on the fixed subRiemannian structure, but independent of ε, such that for any ε ≥ 0
and any non-negative weak solution u ≥ 0 of (1.13), one has

sup
Bε (x,r)

u ≤ C inf
Bε (x,r)

u

for anymetric ball Bε(x, 4r) ⊂ � and 0 < r < R. Clearly this yieldsHölder regularity
for u that is stable as ε → 0. Applying the Schauder estimates from Theorem 1.4 one
obtains higher order regularity, uniformly in ε → 0 and so in particular we obtain
smoothness of solutions in the case ε = 0. For further details and for a more general
version of this result, applied to weak solutions of quasilinear equations, we refer the
reader to Theorem 7.5.

In the last section we discuss one of the motivating applications of our work. We
outline how the structure stability results, the stability of the Schauder estimates and
of the Harnack inequalities can be used to prove regularity and long time existence
theorems for solutions of the subRiemannian mean curvature flow and the total cur-
vature flow of graphs over bounded sets in step 2 Carnot groups and even in some
non-nilpotent Lie groups. This is part of the work developed by the authors jointly
with Maria Manfredini in [14,17]. The notion of horizontal, or p-mean curvature has
arisen in the last 10 years thanks to the work of many researchers. The two main moti-
vations are Pansu conjecture, concerning the isoperimetric profile of the Heisenberg
group [19,26,43,49,51,69,73–75]; and the existence, regularity and uniqueness of
minimals surfaces [20–25,31,32,50,71], and [72]. The mean curvature flow and the
total curvature flow arise in connection to gradient descent for the perimeter functional
and as such can be used for both applications. Very little is known about both flows in
the subRiemannian setting and as far as we know the results in [14,17] are the first to
establish existence of long time smooth flows. For other contributions to this topics,
from different points of view, we recall the recent work in [35,36].

2 Definitions and preliminary results

Let X = (X1, . . . , Xm) denote a collection of smooth vector fields defined in an open
subset � ⊂ R

n satisfying Hörmander’s finite rank condition (1.1), that is there exists
an integer s such that the set of all vector fields, along with their commutators up to
order s spans Rn for every point in �,

rank Lie(X1, . . . , Xm)(x) = n, for all lx ∈ �. (2.1)

Example 2.1 The standard example for such families is the Heisenberg group H
1.

This is a Lie group whose underlying manifold isR3 and is endowed with a group law
(x1, x2, x3)(y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 − (x2y1 − x1y2)). With respect
to such law one has that the vector fields X1 = ∂x1 − x2∂x3 and X2 = ∂x2 + x1∂x3 are
left-invariant. Together with their commutator [X1, X2] = 2∂x3 they yield a basis of
R
3. A second example is given by the classical group of rigidmotions of the plane, also

known as the roto-translation groupRT . This is a Lie groupwith underlyingmanifold
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R
2 × S1 and a group law (x1, x2, θ1)(y1, y2, θ2) = (x1 + y1 cos θ − y2 sin θ, x2 +

y1 sin θ + y2 cos θ, θ1 + θ2).

Following Nagel, Stein and Wainger, [70, page 104] we define

X (1) = {X1, . . . , Xm} , X (2) = {[X1, X2], . . . , [Xm−1, Xm]} , etc. . . . (2.2)

letting X (k) denote the set of all commutators of order k = 1, . . . , r . Indicate by
Y1, . . . , Yp an enumeration of the components of X (1), X (2), . . . , X (r) such that Yi =
Xi for every i ≤ m. If Yk ∈ X (i) we say that Yk has a formal degree d(Yk) = d(k) = i .
The collection of vector fields {Y1, . . . , Yp} spans Rn at every point.

Example 2.2 If we consider the Heisenberg group vector fields X1 = ∂x1 − x2∂x3 and
X2 = ∂x2 + x1∂x3 with (x1, x2, x3) ∈ R

3, then X (1) := {X1, X2} and X (2) = {2∂x3}.
If we instead consider the vectors arising from the group of roto-translations one has
X1 = cos θ∂x1+sin θ∂x2 and X2 = ∂θ with (x1, x2, θ) ∈ R

2×S1 and X (1) = {X1, X2}
and X (2) = {sin θ∂x1 − cos θ∂x2}.
Example 2.3 Note that the sets X (i) may have non-trivial intersection. For instance,
consider the vector fields

X1 = cos θ∂x1 + sin θ∂x2; X2 = ∂θ ; X3 = ∂x3; and X4 = x23∂x4

in (x1, x2, x3, x4, θ) ∈ R
4 × S1. In this case r = 3 and

X (1) = {X1, X2, X3, X4}; X (2)

= {sin θ∂x1 − cos θ∂x2 , 2x3∂x4}; and X (3) = {±X1, 2∂x4}

with Y1 = X1, . . . , Y4 = X4, Y5 = sin θ∂x1 − cos θ∂x2 , y6 = 2x3∂x4 , Y7 = X1, Y8 =
−X1, and Y10 = 2∂x4 .

2.1 Carnot–Caratheodory distance

For each x, y ∈ � and δ > 0 denote by �(δ) the space of all absolutely continuous
curves γ : [0, 1] → R

n , joining x to y (i.e., γ (0) = x and γ (1) = y) which are tangent
a.e. to the horizontal distribution span{X1, . . . , Xm}, and such that if we write

γ ′(t) =
m∑

i=1

αi (t)Xi |γ (t),

then
∑m

i=1 |αi (t)| ≤ δ a.e. t ∈ [0, 1]. The Carnot–Caratheodory distance between x
and y is defined to be

d0(x, y) := inf
�(δ) �=Empty Set

δ. (2.3)
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In [70], the authors introduce several other distances that eventually are proved to
be equivalent to d0(x, y). The equivalence itself yields new insight into the Carnot–
Caratheodory distance. Because of this, we will remind the reader of one of these
distances. For each x, y ∈ � and δ > 0 denote by �̂(δ) the space of all absolutely
continuous curves γ : [0, 1] → R

n , joining x to y and such that if one writes

γ ′(t) =
p∑

i=1

βi (t)Yi |γ (t),

then |βi (t)| ≤ δd(i). One then sets

d̂(x, y) := inf
�̂(δ) �=Empty Set

δ.

It is fairly straightforward (see [70, Proposition 1.1] to see that

Proposition 2.4 The function d̂ is a distance function in � and for any K ⊂⊂ �

there exists C = C(X1, . . . , Xm, K ) > 0 such that

C−1|x − y| ≤ d̂(x, y) ≤ C |x − y|maxi d(i).

It is far less trivial to prove the following (see [70, Theorem 4])

Theorem 2.5 The distance functions d0 and d̂ are equivalent.

2.2 The approximating distances

There are several possibile definitions for Riemannian distance functions which
approximate a Carnot–Caratheodory metric in the Gromov-Hausdroff sense.

Definition 2.6 Let {Y1, . . . , Yp} be a generating family of vector fields constructed
as in (2.2) from a family of Hörmander vector fields X1, . . . , Xm . For every ε > 0
denote by dε(·, ·) the Carnot–Caratheodory metric associated to the family of vector
fields (X ε

1, . . . , X ε
p), defined as

X ε
i =
⎧
⎨

⎩

Yi if i ≤ m,

εd(i)−1Yi if m + 1 ≤ i ≤ p,

Yi−p+m if p + 1 ≤ i ≤ 2p − m
. (2.4)

We will also define an extension of the degree function, setting dε(i) = 1 for all
i ≤ p, and dε(i) = d(i − p + m) if i ≥ p + 1. In order to simplify notations we will
denote X = X0, d0 = d and use the same notation for both families of vector fields
(dependent or independent of ε).
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Note that for every ε ∈ (0, ε̄) the sets {X ε
i } extends the original family of vector

fields (Xi ) to a new families of vector fields satisfying assumption (I) on page 107
[70], i.e. there exist smooth functions cl

jk , depending on ε, such that

[X ε
j , X ε

k ] =
∑

dε (l)≤dε ( j)+dε (k)

cl
jk X ε

l

and

{X ε
j }2p−m

j=1 span R
n at every point .

Remark 2.7 Note that the coefficients cl
jk will be unbounded as ε → 0. In principle

this could be a problem as the doubling constant in the proof in [70] depends indirectly
from theCr norm of these functions. In this survey we will describe a result, originally
proved in [18], showing that this is not the case.

Remark 2.8 It follows immediately from the definition that for fixed x, y ∈ � the
function dε(x, y) is decreasing in ε and for every ε ∈ (0, ε̄),

d0(x, y) ≥ dε(x, y)

Remark 2.9 Let us consider a special case where dim span (X1, . . . , Xm) is constant
and the vector fields X1, . . . , X p are chosen to be linearly independent in �. In this
casewe can consider two positive defined symmetric quadratic forms g0, andλ defined
respectively on the distribution H(x) = span (X1, . . . , Xm)(x), for x ∈ � and on
H⊥(x). The product metric g0 ⊕ λ is then a Riemannian metric on all of T �. The
form g0 is called a subRiemannian metric on �, corresponding to H . Next, for every
ε ∈ (0, ε̄] reconsider the rescaled metric gε := g0 ⊕ ε−1λ and the corresponding
Riemannian distance function dε in �. The latter is bi-Lipschitz equivalent to the
distancedε defined above. In [45,Theorem1.1]Geproved that that asmetric spaces, the
sequence (�, dε) converges to (�, d0) as ε → 0 in the sense of Gromov–Hausdorff.
In this limit the Hausdorff dimension of the space degenerates from coinciding with
the topological dimension, for ε > 0, to a value Q > n which may change from
open set to open set. We will go more in detail about this point in the next section. In
this sense the limiting approximation scheme we are using can be described by the
collapsing of a family of Riemannian metric to a subRiemannian metric. See also [68,
Theorem 1.2.1] for yet another related Riemannian approximation scheme.

Remark 2.10 From different perspectives, note that the subLaplacian associated to
the family X ε

1, . . . , X ε
m i.e. Lu = ∑m

i=1 X ε,2
i u is an elliptic operator for all ε > 0,

degenerating to a subelliptic operator for ε = 0.

2.3 A special case: the Heisenberg group H
1

In this section we describe the behavior of the distance dε (and of the corresponding
metric balls Bε(x, r) as ε → 0, by looking at the special case of the Heisenber group.
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In this setting we will also provide an elementary argument showing that the doubling
property holds uniformly as ε → 0.

Consider the vector fields from Example 2.1 X1 = ∂x1 − x2∂x3 , X2 = ∂x2 + x1∂x3
and X3 = ∂x3 with (x1, x2, x3) ∈ R

3. TheCarnot–Carathéodory distance d0 associated
to the subRiemannian metric defined by the orthonormal frame X1, X2 is equivalent
to a more explicitly defined pseudo-distance function, that we call gauge distance,
defined as

|x |4 =
(

x21 + x22

)2 + x23 , and ρ(x, y) = |y−1x |, (2.5)

where y−1 = (−y1,−y2,−y3) and y−1x = (x1−y1, x2−y2, x3−y3−(y1x2−x1y2))
is the Heisenberg group multiplication.

Lemma 2.11 For each x ∈ R
3,

A−1|x | ≤ d0(x, 0) ≤ A|x |, (2.6)

for some constant A > 0.

Proof Observe that the 1-parameter family of diffeomorpthisms

(x1, x2, x3) → δλ(x1, x2, x3) := (λx1, λx2, λ
2x3)

satisfies |δλ(x)| = λ|x |, and dδλ Xi = λXi ◦ δλ for i = 1, 2. Consequently
d0(δλ(x), δλ(y)) = λd0(x, y), and δλ(B(0, 1)) = B(0, λ). Since the unit ball B(0, 1)
is a boundedopenneighborhoodof the origin, itwill contain a set of the form |x | ≤ A−1

and will be contained in a set of the form |x | ≤ A. By applying δλ we then have that
for any R > 0,

{
x ∈ R

3||x | ≤ A−1R
}

⊂ B(0, R) ⊂ {x ∈ R
3||x | ≤ AR}

concluding the proof of (2.6). ��
Remark 2.12 Since the Heisenberg group is a Lie group, then it is natural to use a
left-invariant volume form to measure the size of sets, namely the Haar measure. It is
not difficult to see [29] that the Haar measure coincides with the Lebesgue measure in
R
3. It follows immediately from the previous lemma that the corresponding volume

of a ball B(x, r) is
|B(x, r)| = Cr4. (2.7)

As a consequence one can show that the Hausdorff dimension of the metric space
(H1, d0) is 4. The Hausdorff dimension of any horizontal curve (i.e. tangent to the
distribution generated by X1 and X2) is 1,while theHausdorff dimension of the vertical
z-axis is 2.

Next we turn our attention to the balls in the metrics gε and the associated distance
functions dε . To better describe the approximate shape of such balls we define the
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pseudo-distance function dG,ε(x, y) = Nε(y−1x) corresponding to the regularized
gauge function

N 2
ε (x) = x21 + x22 + min

{
|x3|, ε−2x23

}
. (2.8)

Our next goal is to show that the Riemannian distance function dε is well approximated
by the gauge pseudo-distance dG,ε .

Lemma 2.13 There exists A > 0 independent of ε such that for all x, y ∈ R
3

A−1dG,ε(x, y) ≤ dε(x, y) ≤ AdG,ε(x, y). (2.9)

The estimate (2.9) yields immediately

Corollary 2.14 The doubling property holds uniformly in ε > 0.

Remark 2.15 Before proving (2.9) it is useful to examine a specific example: compare
two trajectories from the origin 0 = (0, 0, 0) to the point x = (0, 0, x3). The first is
the segment γ1 defined by s → (0, 0, x3s), for s ∈ [0, 1]. The length of this segment
in the Riemannian metric gε given by the orthonormal frame X1, X2, εX3 is

�ε(γ1) = ε−1|x3|.

We also consider a second trajectory γ2 given by the subRiemannian geodesic between
the two points. In view of (2.6) the length of this curve in the subRiemannian metric
g0 defined by the orthonormal frame X1, X2 is proportional to

√|x3| and coincides
with the length in the Riemannian metric gε , i.e.

�ε(γ2) = �0(γ2) ≈ √|x3|.

Since dε is computed by selecting the shortest path between two points in the gε metric,
then if

√|x3| > ε one will have dε(x, 0) ≤ √|x3| ≈ Nε(x), whereas at small scales
(i.e. for d0(x, 0) < ε) one will have dε(x, 0) ≤ ε−1|x3|. By left translation invariance
of dG,ε we have that for any two points x = (x1, x2, s) and x ′ = (x1, x2, t),

dε(x, x ′) ≤ C min
(
ε−1|t − s|,√|t − s|

)
. (2.10)

From this simple example one can expect that at large scale (i.e. for points
d0(x, 0) > ε) the Riemannian and the subRiemannian distances are approximately
the same dε(x, 0) ≈ d0(x, 0).

Proof From the invariance by left translations of both dG,ε and dε it is sufficient
to prove that dε(x, 0) and Nε(x) are equivalent. We begin by establishing the first
inequality in (2.9), i.e. we want to show that there exists a positive constant A such
that

A−1Nε(x) ≤ dε(0, x).

Consider a point x = (x1, x2, x3) ∈ R
3 and three curves
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• A length minimizing curve γ : [0, 1] → R
3 for the metric gε , such that

dε(0, x) = �ε(γ ) :=
ˆ 1

0

√
a2
1(t) + a2

2(t) + ε−2a2
3(t)dt,

where γ ′(t) =∑i=1,3 ai (t)Xi |γ (t).

• An horizontal curve γ1 : [0, 1] → R
3 with one end-point at the origin (t = 0) and

such that γ ′
1(t) = a1(t)X1|γ (t) + a2(t)X2|γ (t). Denote by P = γ1(1) and observe

that P = (x1, x2, p3) for some value of p3 such that
´ 1
0 a3(t)dt = x3 − p3.

• A vertical segment γ2 : [0, 1] → R
3 with endpoints P and x , such that γ ′

2(t) =
a3(t)X3|γ2(t). Note that

ε−1|x3 − p3| ≤
∣∣∣∣ε

−1
ˆ 1

0
a3(t)dt

∣∣∣∣ ≤
ˆ 1

0
|a3(t)|ε−1dt

= �ε(γ2) ≤ �ε(γ ) ≤ dε(x, p).

Observe that in view of the equivalence (2.6),

C−1
√

x21 + x22 ≤ d0(P, 0) ≤ �0(γ1) = �ε(γ1) ≤ �ε(γ ),

for some constant C > 0. On the other hand one also has

ε−1|x3 − p3| ≤ dε(x, p) ≤ dε(x, 0) + dε(0, p) ≤ dε(x, 0) + �ε(γ1) ≤ 2dε(0, x).

Hence if |p3| ≤ 1
2 |x3| then |x3 − p3| ≥ 1

2 |x3| and consequently

dε(x, 0) = �ε(γ ) ≥ ε−1|x3 − p3| ≥ min(ε−1|x3|,
√|x3|).

The latter yields immediately that dε(x, 0) ≥ C−1Nε(x), for some value of C > 0
independent of ε > 0. Next we consider the case |p3| > 1

2 |x3|. This yields

min(ε−1|x3|,
√|x3|) ≤ 1

2
min(ε−1|p3|,

√|p3|) ≤ √|p3| ≤ |P| ≤ Cd0(P, 0)

C�0(γ1) = C�ε(γ1) ≤ C�ε(γ ) = Cdε(x, 0),

where |P| is defined as in (2.6). In summary, so far we have proved the first half of
(2.9).

To prove the second half of the inequality we consider an horizontal segment �1
joining the origin to Q = (x1, x2, 0). Note that d0(0, Q) = dε(0, Q) = �0(�1) =
�ε(�1). In view of (2.10) one has

dε(0, x) ≤ dε(0, Q) + dε(Q, x) = d0(0, Q) + C min(ε1|x3|,
√|x3|) ≤ C Nε(x).

The latter completes the proof of (2.9). ��
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Remark 2.16 Similar arguments continue to hold more in general, in the setting of
Carnot groups.

As a consequence of Lemma 2.13, one has that for ε > 0 the metric space (R3, dε)

is locally bi-Lipschitz to the Euclidean space, and hence its Hausdorff dimension will
be 3. As ε → 0 the non-horizontal directions are penalized causing a sharp phase
transition between the regime at ε > 0 and ε = 0.

The intuition developed through this example hints at the multiple scale aspect of
the dε metrics: At scales smaller than ε > 0 the local geometry of the metric space
(R3, dε) is roughly Euclidean; For scales larger than ε > 0 it is subRiemannian. This
intuition will inform the proofs of the stability for the doubling property in the next
section.

3 Stability of the homogenous structure

The volume of Carnot–Caratheodory balls, and its doubling property, has been studied
in Nagel, Stein and Wainger’s seminal work [70]. In this section we recall the main
results in this paper and show how to modify their proof so that the stability of the
doubling constant as ε → 0 becomes evident.

3.1 The Nagel–Stein–Wainger estimates

Consider the Carnot–Caratheodory metric dε(·, ·) associated to the family of vector
fields (X ε

1, . . . , X ε
p), defined in (2.4). Denote by Be(x, r) = {y|dε(x, y) < r} the

corresponding metric balls.
For every n-tuple I = (i1, . . . , in) ∈ {1, . . . , 2p − m}n , and for ε̄ ≥ ε ≥ 0 define

the coefficient

λε
I (x) = det(X ε

i1(x), . . . , X ε
in

(x)).

For afixed0 ≤ ε ≤ ε̄ and for a fixed constant 0 < C2,ε < 1, choose Iε = (iε1, . . . , iεn)

such that
|λε

Iε (x)|rdε (Iε ) ≥ C2,εmaxJ |λε
J (x)|rdε (J ), (3.1)

where the maximum ranges over all n-tuples. Denote Jε the family of remaining
indices, so that {X ε

iε, j
: iε, j ∈ Iε} ∪ {X ε

iε,k
: iε,k ∈ Jε} is the complete list

X ε
1, . . . , X ε

2p−m . When ε = 0 we will refer to I0 as a choice corresponding to the

n-tuple X0
i01

, . . . , X0
i0n

realizing (3.1). One of the main contributions in Nagel, Stein
and Wainger’s seminal work [70], consists in the proof that for a v and a x fixed, and
letting

Qε(r) =
{

u ∈ R
n : |u j | ≤ rdε (iε j )

}
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denote a weighted cube in R
n , then the quantity |λε

Iε
(x)| provides an estimates of the

Jacobian of the exponential mapping u → �ε,v,x (u) defined for u ∈ Q(r) as

�ε,v,x (u) = exp

⎛

⎝
∑

iε, j ∈Iε

u j X ε
iε, j

+
∑

iε,k∈Jε

vk X ε
iε,k

⎞

⎠ (x). (3.2)

More precisely, for ε ≥ 0 and fixed one has

Theorem 3.1 [70, Theorem 7] For every ε ≥ 0, and K ⊂⊂ R
n there exist Rε > 0

and constants 0 < C1,ε, C2,ε < 1 such that for every x ∈ K and 0 < r < Rε , if Iε is
such that (3.1) holds, then

(i) if |vk | ≤ C2εrd(iεk), �ε,v,x is one to one on the box Qε(C1,εr)

(ii) if |vk | ≤ C2εrd(iεk) the Jacobian matrix of �ε,v,x satisfies on the cube Qε(C1,εr)

1

4

∣∣λε
Iε (x)
∣∣ ≤ ∣∣J�ε,v,x

∣∣ ≤ 4
∣∣λε

Iε (x)
∣∣

(iii) �ε,v,x (Qε(C1,εr)) ⊂ Bε(x, r) ⊂ �ε,v,x (Qε(C1,εr/C2,ε))

As a corollary one has that the volume of a Carnot–Caratheodory ball centered
in x can be estimated by the measure of the corresponding cube and the Jacobian
determinant of �ε,v,x .

Corollary 3.2 ([70, Theorem 1]) For every ε ≥ 0, and K ⊂⊂ R
n and for Rε > 0

as in Theorem 3.1, there exist constants C3ε, C4ε > 0 depending on K , Rε, C1,ε and
C2ε such that for all x ∈ K and 0 < r < Rε one has

C3ε

∑

I

∣∣λε
I (x)
∣∣ rd(I ) ≤ |Bε(x, r)| ≤ C4ε

∑

I

∣∣λε
I (x)
∣∣ rd(I ), (3.3)

Estimates (3.3) in turn implies the doubling condition (1.2) with constants depend-
ing eventually on Rε, C1ε and C2ε .

3.2 Uniform estimates as ε → 0

Having already proved the stability of the doubling property in the special case of the
Heisenberg group, in this section we turn to the general case of Hörmander’s vector
fields and describe in some details results from [18] establishing that the constants
C1ε C2ε do not vanish as ε → 0. Without loss of generality one may assume that both
constants are non-decreasing in ε. In fact, if that is not the case one may consider a
new pair of constants C̃i,ε = infs∈[ε,ε̄] Ci,s , for i = 1, 2.

Proposition 3.3 For every ε ∈ [0, ε̄], the constants Rε, C1,ε and C2,ε in Theorem 3.1
may be chosen to be independent of ε, depending only on the Cr+1 norm of the vector
fields, on the number ε̄, and on the compact K .
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Proof The proof is split in two cases: first we study the range ε < r < R0 which
roughly corresponds to the balls of radius r having a sub-Riemannian shape. In this
range we show that one can select the constants Ci,ε to be approximately Ci,0. The
second case consists in the analysis of the range r < ε < ε̄. In this regime the balls are
roughly of Euclidean shape and we show that the constants Ci,ε can be approximately
chosen to be Ci,ε̄ .

Let us fix ε ∈ (0, ε̄], R = R0 and r < R0. We can start by describing the family
Iε defined in (3.1), which maximize λε

I (x). We first note that for every ε > 0 and for
every i, m + 1 ≤ i ≤ p we have

X ε
i rdε (i) = εd(i)−1rYi , X ε

i+p−mrdε (i+p−m) = rd(i)Yi . (3.4)

In the range 0 < r < ε < ε̄ one can assume without loss of generality that
the n-tuple satisfying the maximality condition (3.1) will include only vectors of
the form {εd(iε1)−1Yiε1 , . . . , ε

d(iεn)−1Yiεn } for some n-index Iε = (iε1, . . . , iεn), with
1 ≤ iεk ≤ p. In fact, if this were not the case and the n-tuple were to include a
vector of the form X ε

j = Y j−p+m for some p < j , then we could substitute such

vector with X ε
j−p+m = Y j−p+mεd( j−p+m)−1 and from (3.4) infer that the value of

the corresponding term |λε
Iε
(x)|rdε (Iε ) would increase.

Similarly, in the range 0 < ε < r < ε̄ one can assume that the n-tuple satisfying
the maximality condition (3.1) will include only vectors of the form {Yiε1 , . . . , Yiεn }
for some n-index Iε = (iε1, . . . , iεn), with 1 ≤ iεk ≤ p. Note that the corresponding
expression

∣∣λε
Iε (x)
∣∣ rdε (Iε )−1 = ∣∣det(Yiε1 , . . . , Yiεn )(x)

∣∣ r
∑

Iε d(iεk )

would then be one of the terms in the left hand side of (3.1) for ε = 0, and thus is
maximized by C−1

2,0|λ0I0(x)|rd(I0)−1.

Case 1: In view of the argument above, for every ε < r < R0 the indices Iε defined
by the maximality condition (3.1) can be chosen to coincide with indices of the family
I0 and do not depend on ε. On the other hand the vector excluded from Iε will be not
only those in J0 but also the ones that have been added with a weight factor of a power
of ε,

{
X ε

k : k ∈ Jε

} =
{

X0
i0,k : i0,k ∈ J0

}
∪
{
εd(i0,k)−1X0

i0,k : i0,k ∈ I0, i0,k > m
}

∪
{
εd(i0,k )−1X0

i0,k : i0,k ∈ J0, i0,k > m
}

.

In correspondence with this decomposition of the set of indices we define a splitting
in the v-variables in (5.14) as

v = (v̂, ṽ, v̄).
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Consequently for every ε < r the function �ε,v,x (u) can be written as

�ε,v,x (u) = exp

⎛

⎝
∑

iε j ∈Iε

u j X ε
iε j

+
∑

iεk∈Jε

vk X ε
iεk

⎞

⎠ (x)

= exp

⎛

⎝
∑

i0 j ∈I0

u j X0
i0 j

+
∑

iεk∈Jε

vk X ε
iεk

⎞

⎠ (x)

= exp

⎛

⎝
∑

i0 j ∈I0

u j X0
i0 j

+
∑

i0k∈J0

v̂kYi0k +
∑

i0k∈I0,i>m

ṽkε
d(i0k)−1Yi0k

+
∑

i0k∈J0,i0,k>m

v̄kε
d(i0k)−1Yi0k

⎞

⎠ (x)

= �0,v̂k+v̄kε
d(i0k )−1,x

(
u1, . . . um, um+1 + ṽm+1ε

d(i0m+1)−1, . . . , un

+ ṽnε
d(i0n)−1

)
. (3.5)

Let us define mappings

F1,ε,v(u) =
(

u1, . . . , um, um+1 + ṽm+1ε
d(i0m+1)−1, . . . , un + ṽnεd(i0n)−1

)
,

and

F2,ε(v) =
(
v̂1 + v̄1ε

d(i01)−1, . . . , v̂2p−m + v̄2p−mεd(i0,2p−m )−1
)

.

In view of (3.5) we can write

�ε,v,x (u) = �0,F2,ε (v),x (F1,ε,v(u)). (3.6)

Note that for any ε ≥ 0 and for a fixed v, the mapping u → F1,ε,v(u) is invertible
and volume preserving in allRn . Moreover J�ε,v,x (u) = J�0,F2,ε (v),x (F1,ε,v(u)). In
view of (3.6) and of Theorem 3.1, as a function of u, the mapping�ε,v,x (u) is defined,
invertible, and satisfies the Jacobian estimates in Theorem 3.1 (ii)

1

4

∣∣∣λ0I0(x)

∣∣∣ ≤ ∣∣J�0,F2,ε (v),x (F1,ε,v(u))
∣∣ = ∣∣J�ε,v,x (u)

∣∣ ≤ 4
∣∣∣λ0I0(x)

∣∣∣

for all u such that F1,ε,v(u) ∈ Q0(C1,0r) and for v such that

∣∣∣Fk
2,ε(v)

∣∣∣ =
∣∣∣v̂k + v̄kε

d(i0k )−1
∣∣∣ ≤ C2,0rd(i0k ),

|u1| ≤ C1,0rd(i01) · · · |um | ≤C1,0rd(i0m ),

∣∣∣um+1+ṽm+1ε
d(i0m+1)−1

∣∣∣≤C1,0rd(i0m+1),
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when k = 1, . . . , 2p − m. ��
The completion of the proof of Case 1 rests on the following two claims:

Claim 1 let ε < r < R0. There exists C6 > 0, independent of ε, such that for all v

satisfying |vk | ≤ C6rd(iεk) one has |Fk
2,ε(v)| = |v̂k + v̄kε

d(i0k )−1| ≤ C2,0rd(i0k).

Proof of the claim If we choose C6 < min{C1,0, C2,0} and

|v̂k |, |ṽk |, |v̄k | ≤ min
{
C1,0, C2,0

} rd(iεk)

4
, |u j | ≤ C1,0

rd(iε j )

4
,

it follows that

|v̂k | ≤ C2,0
rd(i0k)

4
, |ṽk |, |v̄k | ≤ C1,0

r

4
, |u j | ≤ C1,0

rd(iε j )

4
.

So that

|v̂k | ≤ C2,0
rd(i0k)

4
, εd(i0k)−1|ṽk |, εd(i0k )−1|v̄k | ≤ C1,0

rd(i0k)

4
, |u j | ≤ C1,0

rd(i0 j )

4
,

completing the proof of the claim. ��
Claim 2 Let ε < r < R0 and v fixed such that |vk | ≤ C6rd(iεk) for k = 1, . . . , 2p−m.
One has that

Qε

(
C−1
5 r
)

⊂ F−1
1,ε,v

(
Q0(C1,0r)

) ⊂ Qε(C5r)

for some constant C5 > 0 independent of ε ≥ 0.

Proof of the claim Choose C5 sufficiently large so that 2max{C−1
5 , C6} ≤ C1,0 and

observe that if u ∈ Qε(C
−1
5 r) then for k = 1, . . . , m we have |uk | ≤ C1,0rd(iε,k) =

C1,0rd(i0,k) while for k = m + 1, . . . , n we have |Fk
1,ε,v(u)| = |uk + ṽkε

d(i0k )−1| ≤
max{C−1

5 , C6}rd(i0k)(1+ ε̄d(i0k )−1) ≤ C1,0rd(i0k). This proves the first inclusion in the
claim. To establish the second inclusion we choose C5 large enough so that 2(C1,0 +
C2,ε̄ ) ≤ C5 and observe that if F1,ε,v(u) ∈ Q0(C1,0r) then for k = m + 1, . . . , n one
has |uk | ≤ |uk + ṽkε

d(i0k)−1| + |ṽk |εd(i0k)−1 ≤ 2(C1,0 + C2,ε̄ )rd(i0k) ≤ C5rd(i0k). The
corresponding estimate for the range k = 1, . . . , m is immediate.

In view of Claims 1 and 2, and of Theorem 3.1 It follows that for ε < r and
these choices of constants (independent of ε)1 the function �ε,v,x (u) is invertible on
Q0(C1,0r) and (i), (ii) and (iii) are satisfied.

Case 2: As remarked above, in the range 0 < r < ε < ε̄ one can assume that
the n-tuple satisfying the maximality condition (3.1) will include only vectors of
the form {εd(iε1)−1Yiε1 , . . . , ε

d(iεn)−1Yiεn } for some n-index Iε = (iε1, . . . , iεn), with

1 R0 in place of Rε , C5 in place of C1,ε and C6 in place of C2,ε .
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1 ≤ iεk ≤ p. Note that in view of (3.4) and the maximality condition (3.1) the
corresponding term

∣∣λε
Iε (x)
∣∣ rdε (Iε )

can be rewritten and estimated as follows

∣∣λε
Iε (x)
∣∣ rdε (Iε ) = εd(Iε )−nrn

∣∣det(Yiε1 , . . . , Yiεn )(x)
∣∣ .

It is then clear that the maximizing n-tuple Iε in (3.1) will be identified by the low-
est degree d(Iε) among all n-tuples corresponding to non-vanishing determinants
det(Yiε1 , . . . , Yiεn ) in a neighborhood of the point x . Since this choice does not depend
on ε > r , then one has that Iε = Iε̄ . In other words, if we denote

(X ε̄ )iε̄,k∈Iε̄ =
{
ε̄d(iε̄,1)−1Yiε̄,1 , . . . , ε̄

d(iε̄,n)−1Yiε̄,n

}

then the maximality condition (3.1) in the range 0 < r < ε < ε̄ can be satisfied
independently from ε by selecting the family of vector fields:

(X ε)iε,k∈Iε =
{
εd(iε̄,1)−1Yiε̄,1 , . . . , ε

d(iε̄,n)−1Yiε̄,n

}

The complementary family Jε becomes

{
Y ε

iεk
: iεk ∈ Jε

}
=
{
εd(iε̄,k )−1Yiε̄,k : i0,k ∈ Jε̄ , with iε̄,k ≤ p

}

∪ {Yiε̄,k−p+m : iε̄,k ∈ Jε̄ , with iε̄,k > p
}

(3.7)

If we denote Aε , and Bε these three sets, and split the v-variable from (5.14) as
v = (v̂, ṽ), then it is clear that

Y ∈ Aε iff
ε̄d(iε̄,k )−1

εd(iε̄,k )−1
Y ∈ Aε̄ ,

and in this case the values of dε and dε̄ are the same on the corresponding indices.
Analogously Y ∈ Bε iff Y ∈ Bε̄ and the degrees are the same.

For every ε > r the map �ε,v,x (u) then can be written as

�ε,v,x (u) = exp

⎛

⎝
∑

iε j ∈Iε

u j X ε
iε j

+
∑

iεk∈Jε

vk X ε
iεk

⎞

⎠ (x)

= exp

⎛

⎝
∑

iε̄ j ∈Iε̄

u j X ε
iε̄ j

+
∑

iε̄k∈Jε̄

vk X ε
iε̄k

⎞

⎠ (x)
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= exp

⎛

⎝
∑

iε̄ j ∈Iε̄

u j
εd(iε̄,k )−1

ε̄d(iε̄,k )−1
X ε̄

iε̄ j
+

∑

iε̄k∈Jε̄ and iε̄ j ≤p

v̂k
εd(i0,k)−1

ε̄d(i0,k)−1
X ε̄

i0k

+
∑

iε̄k∈Jε̄ and iε̄ j >p

ṽk X ε̄
iε̄k

⎞

⎠ (x)

This function is defined and invertible for

|ṽk |, |v̂k |ε
d(iε̄,k )−1

ε̄d(iε̄,k )−1
≤ C2,ε̄rdε̄ (iε̄k ), |u j |ε

d(i0, j )−1

ε̄d(iε̄, j )−1
≤ C1,ε̄rdε̄ (iε̄ j ).

Recall that with the present choice of r < ε < ε̄, we haveC1,ε̄rdε̄ (iε̄ j ) = C1,ε̄rdε (iε̄ j ) =
C1,ε̄rdε (iε j ). If we set

|v̂k |, |ṽk | ≤ C2,ε̄rdε̄(iε̄k ) ,

|u j | ≤ C1,ε̄rdε̄ (iε̄ j ),

and argue similarly to Case 1, then the function �ε,v,x will satisfy conditions i), ii),
and iii) on Q(C1,ε̄r) and hence on Q(C1,εr), with constants independent of ε. ��

3.3 Equiregular subRiemannian structures and equivalent pseudo-distances

The intrinsic definition, based on a minimizing choice, of the Carnot–Caratheodory
metric is not convenient when one needs to produce quantitative estimates, as we will
do in the following sections. It is then advantageous to use equivalent pseudo-distances
which are explicitly defined in terms of certain systemof coordinates. In the last section
we have already encountered two special cases, i.e. the norms | · | defined in (2.5) and
its Riemannian approximation (2.8). In this section we extend this construction to a
all equi-regular subRiemannian structures. For � ⊂ R

n consider the subRiemannian
manifold (�,�, g) and iteratively set �1 := �, and �i+1 = �i +[�i ,�] for i ∈ N.
The bracket generating condition is expressed by saying that there exists an integer
s ∈ N such that �s

p = R
n for all p ∈ M .

Definition 3.4 A subRiemannian manifold (�,�, g) is equiregular if, for all i ∈ N,
the dimension of �i

p is constant in p ∈ �. The homogenous dimension

Q =
s−1∑

i=1

[
dim(�i+1

p ) − dim(�i
p)
]
, (3.8)

coincides with the Hausdorff dimension with respect to the Carnot–Caratheodory
distance.

This class is generic as any subRiemannian manifold has a dense open subset on
which the restriction of the subRiemannian metric is equiregular.
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Example 3.5 Systems of free vector fields, as defined in Definition 5.4, yield a distri-
bution � that supports an equiregular subRiemannian structure for any choice of the
horizontal metric g.

Example 3.6 An analytic Lie group G is called a homogenous stratified Lie group if
its Lie algebra admits a stratification G = V 1 ⊕ · · · ⊕ V r with [V i , V j ] = V i+ j

and [V i , V r ] = 0. Given a positive definite bilinear form g0 on V 1 we call the pair
(G, g0) a Carnot group and the corresponding left invariant metric g0 is a equiregular
sub-Riemannian metric.

Next we assume we have a equiregular subRiemannian manifold (�,�, g) and
consider an orthonormal horizontal basis X1, . . . , Xm of �. Following the process in
(2.2) one can construct a frame Y1, . . . , Yn for Rn where Y1, . . . , Ym is the original
horizontal frame and Ym+1, . . . , Yn are commutators such that (Y1, . . . , Ymk )|p spans
�k

p, for k = 1, . . . , s. The degree d(i) of Yi is the order of commutators needed to
generate Yi out of the horizontal span, i.e. d(i) = k if Yi ∈ �k

p but Yi /∈ �k−1
p . In

particular one has d(i) = 1 for i = 1, . . . , m. The equiregularity hypothesis allows
one to choose Y1, . . . , Yn linearly independent. Next we extend g to a Riemannian
metric g1 on all of T � by imposing that Y1, . . . , Yn is an orthonormal basis.

Definition 3.7 For any ε ∈ (0, ε̄] we define the Riemannian metric gε by setting
that {εd(i)−1Yi , i = 1, . . . , n} is an orthonormal frame. Denote by dε(x, y) the corre-
sponding Riemannian distance function.

Remark 3.8 Repeating the proof of [70, Theorem 4] one immediately sees that dε as
defined here is comparable to the distance dε defined in Sect. 2.2, with equivalence
constants independent of ε > 0.

We define canonical coordinates around a point x0 ∈ � as follows. SinceY1, . . . , Yn

is a generating frame for T � then for any point x in a neighborhood ω of x0 one has
that there exists a unique n-tuple (x1, . . . , xn) such that

exp

(
n∑

i=1

xi Yi

)
(x0) = x . (3.9)

We will set x = (x1, . . . , xn) and use this n-tuple as local coordinates in ω.

Definition 3.9 For every x = (x1, . . . , xn) ∈ ω we define a pseudo-distance
dG,ε(x, x0) := Nε(x1, . . . , xn) with

Nε(x1, . . . , xn) :=
√√√√

m∑

i=1

x2i +
n∑

i=m+1

min
(
ε−(d(i)−1)|xi |, |xi |1/d(i)

)
. (3.10)

For ε = 0 we set

N0(x1, . . . , xn) :=
√√√√

m∑

i=1

x2i +
n∑

i=m+1

|xi |1/d(i).
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Theorem 3.10 For every compact x0 ∈ K ⊂ ω there exists C = C(K ,�, g, ω) > 0,
independent of ε ∈ (0, ε̄] , such that

C−1dG,ε(x, x0) ≤ dε(x, x0) ≤ CdG,ε(x, x0)

for all x ∈ K .

Remark 3.11 Note that for ε = 0 the equivalence is a direct consequence of the Ball-
Box theorem proved byNagel et al. [70] orMitchell [65, Lemma 3.4]. This observation
replaces the estimates (2.6) from the Heisenberg group setting.

The proof of Theorem 3.10 follows as a corollary of the following

Proposition 3.12 In the hypothesis of Theorem 3.10 one has that there exists R =
R(K ,�, g, ω) > 0, C = C(K ,�, g, ω) > 0, independent of ε ∈ (0, ε̄] , such that
for all x ∈ K and r ∈ (0, R),

BG,ε(x0, C−1r) ⊂ Bε(x0, r) ⊂ BG,ε(x0, Cr),

where

BG,ε(x0, r) :=
{

x ∈ R
n such that max

i=1,...,s

[
min
(
ε−(d(i)−1)|xi |, |xi |1/d(i)

)]
< r

}
.

Proof The proof follows closely the arguments in the previous section and is based on
the results in [70]. In view of the equiregularity hypothesis note that Y1, . . . , Yn are lin-
early independent and the construction in (2.4) yields the distribution X ε

1, . . . , X ε
2n−m

over �. Recall from (5.14), Proposition 3.3 and Theorem 3.1 that if Iε, Jε are chosen
as in (3.1) and for any v = (v1, . . . , vn−m) such that |vk | ≤ C2εrd(iεk), one has

Bε(x0, r) ≈ �ε,v,x0(Qε(r)), (3.11)

with constants independent from ε ≥ 0, where Qε = {u ∈ R
n : |u j | ≤ rdε (iε j )}, and

�ε,v,x (u) = exp

⎛

⎝
∑

iε, j ∈Iε

u j X ε
iε, j

+
∑

iε,k∈Jε

vk X ε
iε,k

⎞

⎠ (x).

The n-tuple Iε contains n indexes related either to the horizontal vector fields
X ε
1, . . . , X ε

m or to the commutators X ε
m+1, . . . , X ε

n . The latter may consist of weighted
versions X ε

m+1, . . . , X ε
n or unweighted versions X ε

n+1, . . . , X ε
2n−m . In either case the

same vector will appear both in the weighted and in the unweighted version (either
among the Iε indexes or in the complement Jε). Comparing the representation �ε,v,x0
with the x-coordinates representation (3.9) one has

exp

(
n∑

i=1

xi Yi

)
(x0) = exp

⎛

⎝
∑

iε, j ∈Iε

u j X ε
iε, j

+
∑

iε,k∈Jε

vk X ε
iε,k

⎞

⎠ (x0),
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and we let for each k = 1, . . . , n

xk =
{

εd(k)−1uik + v jk if ik ≤ n

uik + εd(k)−1v jk if ik > n
.

From the latter we obtain that for all k = 1, . . . , n

|xk | ≤ C
(
εd(k)−1r + rd(k)

)
.

If x ∈ Bε(x0, r) then |uik |, |v jk | ≤ Crd(k). Consequently,

min(ε−(d(k)−1)|xk |, |xk |1/d(k))

≤ C min

(
ε−(d(k)−1)|εd(k)−1r + rd(k)|,

[
εd(k)−1r + rd(k)

]1/d(k)
)

≤ C min

(
r

[
1 +
(

r

ε

)d(k−1)]
, r

[(
ε

r

)d(k)−1

+ 1

]1/d(k)
)

≤ 2Cr.

This shows that for r > 0 sufficiently small, and for some choice ofC > 0 independent
of ε ≥ 0, we have Bε(x0, r) ⊂ BG,ε(x0, Cr).

To prove the reverse inclusion we consider a point x = exp(
∑n

i=1 xi Yi )(x0) ∈
BG,ε(x0, Cr). Select Iε as in (3.1) and set v = 0 to represent x in the basis Xi1 , . . . , Xin

as

x = exp

⎛

⎝
∑

iε, j ∈Iε

u j X ε
iε, j

⎞

⎠ (x0).

In view of Theorem 3.1, and (3.11), to prove the proposition it suffices to show that
there exists a constant C > 0 independent of ε > 0 such that for each j = 1, . . . , n
one has |u j | ≤ Crdε (iε j ).

Wedistinguish two cases: In the range ε ≥ 2r one can argue as in (3.4) to deduce that
for each j = 1, . . . , n we may assume without loss of generality that the contribution
due to u j X ε

iε, j
follows from the choice of a weighted vector, and hence is of the form

u jε
d(k)−1Yk for some k > m. Consequently one has dε(iε, j ) = 1 and xk = u jε

d(k)−1.
On the other hand, since ε ≥ 2r then one must also have that

min
(
ε−(d(k)−1)|xk |, |xk |1/d(k)

)
= ε−(d(k)−1)|xk | < r.

Consequently one has

|u j | = |xk |ε1−d(k) ≤ r = rdε (i j ).
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In the range ε < 2r we observe that one must have |xk | ≤ Crd(k). Arguing as in
(3.4) we see that without loss of generality, or each j = 1, . . . , n, the contribution
due to u j X ε

iε, j
follows from the choice of a un-weighted vector, and hence is of the

form u j Yk for some k > m. Consequently one has dε(i j ) = d(k) > 1 and xk = u j ,
concluding the proof. ��

4 Stability of the Poincaré inequality

In this section we will focus on the Poincaré inequality and prove that it holds with
a choice of a constant which is stable as ε → 0. Our argument rests on results of
Lanconelli and Morbidelli [59] whose proof, in some respects, simplifies the method
used by Jerison in [52]. Using some Jacobian estimates from [44] or [40] we will
establish that the assumptions required in the key result [59, Theorem 2.1] are satisfied
independently from ε ≥ 0. We start by recalling

Theorem 4.1 [59, Theorem 2.1] Assume that the doubling condition (D) is satisfied
and there exist a sphere Bε(x0, r), a cube Qε ⊂ R

n and a map E : Bε(x0, r)× Qε →
R

n satisfying the following conditions:

(i) Bε(x0, 2r) ⊂ E(x, Qε) for every x ∈ Bε(x0, r)

(ii) the function u �→ E(x, u) is one to one on the box Qε as a function of the variable
u and there exists a constant α1 > 0 such that

1

α1
|J E(x, 0)| ≤ |J E(x, u)| ≤ α1|J E(x, 0)| for every u ∈ Qε

Also assume that there exists a positive constant α2, and a function γ : Bε(x0, r)×
Qε × [0, α2r ] → R

n satisfying the following conditions
(iii) For every (x, u) ∈ Bε(x0, r) × Qε the function t �→ γ (x, u, t) is a subunit path

connecting x and E(x, u)

(iv) For every (h, t) ∈ Bε(x0, r) × Qε the function x �→ γ (x, u, t) is a one-to-one
map and there exists a constant α3 > 0 such that

inf
Bε (x0,r)×Qε

∣∣∣det
∂γ

∂x

∣∣∣ ≥ α3

Then there exists a constant CP depending only on the constants α1, α2, α3 and the
doubling constant CD such that (P) is satisfied.

We are now ready to prove Theorem 1.2

Proof All one needs to establish is that the assumptions of Theorem 4.1 are satisfied
unformly in ε on a metric ball. Apply Proposition 3.3 and Theorem 3.1 with K =
Bε(x0, r) and choose the constants Ci produced by these results. Set Qε = Qε(

3C1
C2

r)

and let

E(x, u) = �ε,0,x (u), defined on K × Qε → R
n .
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To establish assumption (i) of Theorem 4.1 it suffices to note that by virtue of
condition (iii) in Theorem 3.1 one has that for x ∈ Bε(x0, r),

Bε(x0, 2r) ⊂ Bε(x, 3r) ⊂ E(x, Qε).

Assumption (ii) in Theorem 4.1 is a direct consequence of condition (ii) in Theo-
rem 3.1, with α1 = 16. Chow’s connectivity theorem implies that E(x, u) satisfies
assumption (iii), with a function γ , piecewise expressed as exponential mappings of
vector fields of ε−degree one. Let us denote (X ε

i )i∈Iε the required vector fields. With
this choice of path, it is known (see for example [44, Lemma 2.2] or [40, pp 99–101])
that x → γ (x, u, t) is a C1 path, with Jacobian determinant

∣∣∣∣det
∂γ

∂x
(x, u, t)

∣∣∣∣ = 1 + ψ(x, u, t),

for a suitable function ψ(x, u, t) satisfying

|ψ(x, u, t)| ≤ cr, on K × Qε × [0, cr ].

Since the constant c depends solely on the Lipschitz constant of the vector fields
(X ε

i )i∈Iε then it can be chosen independently of ε. As a consequence condition (iv) is
satisfied and the proof is concluded. ��

5 Stability of heat Kernel estimates

5.1 Hörmander type parabolic operators in non divergence form

The results in this section concern uniform Gaussian estimates for the heat kernel of
certain degenerate parabolic differential equations, and their parabolic regularizations.
We will consider a collection of smooth vector fields X = (X1, . . . , Xm) satisfying
Hörmander’s finite rank condition (1.1) in an open set� ⊂ R

n .Wewill use throughout
the section the definition of degree d(i) relative to the stratification (2.2).

A second order, non-divergence form, ultra-parabolic operator with constant coef-
ficients ai j can be expressed as:

L A = ∂t −
m∑

i, j=1

ai j Xi X j , (5.1)

where A = (ai j )i j=1,...,m is a symmetric, real-valued, positive definite m × m matrix
satisfying

�−1
∑

d(i)=1

ξ2i ≤
m∑

i, j=1

ai jξiξ j ≤ �
∑

d(i)=1

ξ2i (5.2)
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for a suitable constant �. We will also call

Mm,� the set of symmetric m × m real valued matrix, satisfying (5.2) (5.3)

If A is the identity matrix then the existence of a heat kernel for the operator L A is a
by now classical result due to Folland [37] and Rothschild and Stein [76]. Gaussian
estimates have been provided by Jerison and Sanchez-Calle [53], and by Kusuoka and
Strook [58]. There is a broad,more recent literature dealingwithGaussian estimates for
non divergence form operators withHölder continuous coefficients ai j . Such estimates
have been systematically studied in [7–9,11] where a self-contained proof is provided.

A natural technique for studying the properties of the operator L A is to consider
a parabolic regularization induced by the vector fields X ε

i defined in (2.4). More
precisely, we will define the operator

Lε,A = ∂t −
p∑

i, j=1

aε
i j X ε

i X ε
j (5.4)

where aε
i, j is any p × p positive definite matrix belonging to Mp,2� and such that

aε
i, j = ai, j for i, j = 1, . . . , m.

We will denote
Mε

p,2� (5.5)

the set of suchmatrices. Formally, the operator L A can be recovered as a limit as ε → 0
of operator Lε,A. Here we are interested in understanding which are the properties of
solutions of Lε,A which are preserved in the limit.

For ε > 0 consider a Riemannian metric gε defined as in Remark 2.9, such that
the vector fields X ε

i are orthonormal. The induced distance function dε is biLipschitz
equivalent to the Euclidean norm ||E . Consequently, the operator Lε,A has a funda-
mental solution �ε,A, which can be estimated as

�ε,A(x) ≤ Cε

e− |x |2E
Cε t

t n/2 (5.6)

for some positive constant Cε depending on A, ε and X1, . . . , Xm .
Unfortunately the constant Cε blows up as ε approaches 0, so the Riemannian

estimate (5.7) alone does not provide Gaussian bounds of the fundamental solution
�A of the limit operator (5.1) as ε goes to 0. In [57] the elliptic regularization technique
has been used to obtain L p and Cα regularity of the solutions, which however are far
from being optimal. In [27], new estimates uniform in ε have been provided, in the time
independent setting which are optimal with respect to the decay of the limit operator.
In [17] the result has been extended to the parabolic operators, in the special case of
Carnot groups.
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In order to further extend these estimates, we need to formulate the following
definition:

Definition 5.1 (Definition of theE(2, dε, Mε
2�) spaces)WedefineE(2+h, dε, Mε

p,2�)

to be the set of all kernels (Pε,A)ε>0,A∈Mε
p,2�

, defined on R
2n×]0,∞[ that have an

exponential decay of order 2+h, uniformly with respect to a family of distances (dε)ε
and of matrices A ∈ Mε

p,2� (see definition 5.5),on any compact sets of an open set
�. More precisely, we will say that Pε,A ∈ E(2+ h, dε, Mε

p,2�) if the following three
conditions hold:

• For every K ⊂⊂ � there exists a constantC� > 0dependingon�but independent
of ε > 0, and of the matrix A ∈ Mε

p,2� such that for each ε > 0, x, y ∈ K and
t > 0 one has

C−1
�

t
h
2 e−C�

dε (x,y)2

t

|Bε(x,
√

t)| ≤ Pε,A(x, y, t) ≤ C�

t
h
2 e

− dε (x,y)2

C�t

|Bε(x,
√

t)| . (5.7)

• For s ∈ N and k-tuple (i1, . . . , ik) ∈ {1, . . . , m}k there exists a constant Cs,k > 0
depending only on k, s, X1, . . . , Xm,� such that

∣∣(∂s
t Xi1 · · · Xik Pε,A)(x, y, t)

∣∣ ≤ Cs,k
t

h−2s−k
2 e

− dε (x,y)2

C�t

|Bε(x,
√

t)| (5.8)

for all x, y ∈ K and t > 0.
• For any A1, A2 ∈ M�, s ∈ N and k-tuple (i1, . . . , ik) ∈ {1, . . . , m}k there exists

Cs,k > 0 depending only on k, s, X1, . . . , Xm,� such that

|(∂s
t Xi1 · · · Xik Pε,A1)(x, y, t) − ∂s

t Xi1 · · · Xik Pε,A2)(x, y, t)|

≤ ||A1 − A2||Cs,k
t

h−2s−k
2 e

− dε (x,y)2

C�t

|Bε(x,
√

t)| , (5.9)

where ||A||2 :=∑n
i, j=1 a2

i j .

With these notations we will now extend all these previous results to vector fields
which only satisfy the Hörmander condition, establishing estimates which are uniform
in the variable ε as ε → 0, and in the choice of thematrix A ∈ Mε

2� for the fundamental
solutions �ε,A of the operators Lε,A. To be more specific, we will prove:

Proposition 5.2 The fundamental solution �ε,A of the operator Lε,A, is a kernel with
exponential decay of order 2, uniform with respect to ε > 0 and to A ∈ Mε

m,�,
according to definition (5.1). Hence it belongs to the set E(2, dε, Mε

2�). Moreover, if
�A is the fundamental solution of the operator LA defined in (5.1) one has

X ε
i1 · · · X ε

ik
∂s

t �ε,A → Xi1 · · · Xik ∂
s
t �A (5.10)

as ε → 0 uniformly on compact sets and in a dominated way on subcompacts of �.
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Our main contribution is that all the constants are independent of ε. The proof of
this assertion is based on a lifting procedure, which allows to express the fundamental
solution of the operator L A,ε in terms of the fundamental solution of a new operator
L̄ A independent of ε. The lifting procedure is composed by a first step in which we
apply the delicate Rothschild and Stein lifting technique [76]. After that, when the
vector fields are free up to a specific step, we apply a second lifting which has been
introduced in [27], where the time independent case was studied, and from [17] where
the Carnot group setting is considered.

The simplest example of such an equation is the Heat equation associated to the
Kohn Laplacian in the Heisenberg group, ∂t − X2

1 − X2
2, where the vector fields X1

and X2 have been expressed on coordinates in Example 2.1. In order to present our
approach we will give an outline of the proof in this special setting.

Example 5.3 Denote by (x1, x2, x3) points of R3, let X1, X2, X3 be the vector fields
defined in Example 2.1, and let I denote the identity matrix: Consider the parabolic
operator

Lε,I = −∂t + X2
1 + X2

2 + ε2X2
3,

and note that it becomes degenerate parabolic as ε → 0. Let dε denote the Carnot–
Caratheodory distance associated to the distribution X1, X2, εX3.

In order to handle such degeneracy we introduce new variables (z1, z2, z3) and a
new set of vector fields replicating the same structure of the initial ones, i.e.,

Ẑ1 = ∂z1 + z2∂z3, Ẑ2 = ∂z2 − z1∂z3 , Ẑ3 = ∂z3

with (x1, x2, x3, z1, z2, z3) ∈ H
1 × H

1. The next step consists in lifting Lε,I to an
operator

L̄ε = ∂t + X2
1 + X2

2 + Z2
1 + Z2

2 + (Z3 + εX3)
2 ,

defined on H
1 × H

1, and denote by �̄ε its fundamental solution. Let d̄ε denote the
Carnot–Caratheodory distance generated by X1, X2, Z1, Z2, (Z3 + εX3) and argu-
ing as in (5.22) note that d̄ε((x, z), (y, z)) ≥ dε(x, y) − C0, for some constant C0
independent of ε. Consider the change of variables on the Lie algebra of H1 × H

1,

Xi → Xi , Zi → Zi , for i = 1, 2, Z3 + εX3 → Z3.

Note that the Jacobian of such change of variables does not depend on ε and that it
reduces the operator L̄ε to

L̄ = ∂t + X2
1 + X2

2 + Z2
1 + Z2

2 + Z2
3

whose fundamental solution we denote by �̄. Note that this operator is parabolic with
respect to the vector fields Zi and degenerate parabolic with respect to the vector fields
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Xi . Is is clear that the operator L̄ is independent of ε, and consequently its fundamental
solution �̄ satisfies standard Gaussian estimates with constants independent of ε

�̄(x, t) ≤ C�

e
− d̄(x,0)2

C� t

|B̄(0,
√

t)| ,

where d̄ denotes the Carnot–Caratheodory distance in H
1 × H

1 generated by the
distribution of vector fields X1, X2, Z1, Z2, Z3. Changing back to the original variable
we see that also �̄ε satisfies analogous estimates with the same constants, with the
distance d̄ replaced by the distance d̄ε naturally associated to the operator L̄ε . Finally,
integrating with respect to the added variable (z1, z2, z3), we obtain an uniform bound
for the fundamental solution of the operator Lε,I in terms of the distance dε .

5.2 The Rothschild–Stein freezing and lifting theorems

Let us first recall a local lifting procedure introduced by Rothschild and Stein in [76]
which, starting from a family (Xi )i=1,...,m of Hörmander type vector fields of step s in
a neighborhood ofRn , leads to the construction of a new family of vector fields which
are free, and of Hörmander type with the same step s, in a neighborhood of a larger
space. The projection of the new free vector fields on R

n yields the original vector
fields, and that is why they are called liftings.

Let us start with some definitions:

Definition 5.4 Denote by nm,s the dimension (as a vector space) of the free nilpotent
Lie algebra with m generators and step s. Let X1, . . . , Xm be a set of smooth vector
fields defined in an open neighborhood of a point x0 ∈ R

n , and let

V (s) = span
{

X (1), . . . , X (r)
}

,

where the sets X j are as defined in (2.2). We shall say that X1, . . . , Xm are free up to
step s if for any 1 ≤ r ≤ s we have nm,s = dim(V (s)).

If a point x0 ∈ Rn is fixed, the lifting procedure of Rothschild-Stein locally intro-
duces newvariables z̃ andnewvector fields (Z̃i ) expressed in termsof the newvariables
such that in a neighborhood U of x0 the vector fields X̃i = (Xi + Z̃i )i=1,...,m are free
at step s. More precisely, one has [76, Theorem 4]

Theorem 5.5 Let X1, . . . , Xm be a system of smooth vector fields, satisfying (1.1) in
an open set U ⊂ R

n. For any x ∈ U there exists a connected open neighborhood
of the origin V ⊂ R

ν−n, and smooth functions λi j (x, z̃), with x ∈ Rn and z̃ =
(zn+1, . . . , zν) ∈ V , defined in a neighborhood Ũ of x̃ = (x, 0) ∈ U × V ⊂ R

ν , such
that the vector fields X̃1, . . . , X̃m given by

X̃i = Xi + Z̃i , Z̃i =
ν∑

j=n+1

λi j (x, z̃)∂z j
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are free up to step r at every point in Ũ .

Remark 5.6 In the literature the lifting procedure described above is often coupled
with another key result introduced in [76], a nilpotent approximation which is akin
to the classical freezing technique for elliptic operators. Let us explicitly note that
in Sect. 5.3 we need only to apply the lifting theorem mentioned above, and not the
freezing procedure. In particular, in the example of the so called Grushin vector fields

X3 = ∂x1 and X4 = x1∂x2

they would need to be lifted through this procedure to the Heisenberg group structure

X3 = ∂x1 and X4 = ∂x3 + x1∂x2 .

On the other hand the vector fields

X1 = cos θ∂x1 + sin θ∂x2 and X2 = ∂θ

will be unchanged by the lifting process, since they are already free up to step 2.

Later on, In Sect. 5.4 we will apply Rothschild and Stein’s freezing theorem to a
family of vector fields X1, . . . , Xm free up to step r . This will allow to approximate
a given family of vector fields with homogeneous ones. Note that in this case the
function � in (5.14) is independent of v and its expression reduces to:

�x (u) = exp

(
∑

i

ui Xi

)
(x). (5.11)

The pertinent theorem from [76] is the following,

Theorem 5.7 Let X1, . . . , Xm be a family of vector fields are free up to rank r at
every point. Then for every x there exists a neighborhood V of x and a neighborhood
U of the identity in Gm,r , such that:

(a) the map �x : U → V is a diffeomorphism onto its image. We will call �x its
inverse map

(b) we have
d�x (Xi ) = Yi + Ri , i = 1, . . . , m (5.12)

where Ri is a vector field of local degree less or equal than zero, depending
smoothly on x.

Hence the operator Ri will represented in the form:

Ri =
∑

jh

σi (u)Xi ,

where σ is an homogeneous polynomial of degree d(Xi ) − 1.
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5.3 A lifting procedure uniform in ε

So far we have started with a set of Hörmander vector fields X1, . . . , Xm in � ⊂ R
n

and we have lifted them through Theorem 5.5 to a set X̃1, . . . , X̃m of Hörmander
vector fields that are free up to a step s in a neighborhood �̃ ⊂ R

ν . Next, we perform
a second lifting inspired by the work in [17]. We will consider the augmented space
R

ν × R
ν defined in terms of ν new coordinates ẑ = (ẑ1, . . . , ẑν). Set z = (z̃, ẑ) and

denote points of Rν × R
ν by x̄ = (x, z̃, ẑ) = (x, z). Denote by Ẑ1, . . . , Ẑm a family

of vector fields free up to step s. X̃1, . . . , X̃m , i.e. a family of vector fields free of step
s in the variables ẑ, and let

Ẑm+1, . . . Ẑν

denote the complete set of their commutators, as we did in (2.2). Note that the subRie-
mannian structure generated by Ẑ1, . . . , Ẑm coincides with the structure generated by
the family X̃i , but are defined in terms of new variables ẑ.

For every ε ∈ [0, 1) consider a sub-Riemannian structure determined by the choice
of horizontal vector fields given by

(
X̄ ε
1, . . . X̄ ε

m+ν

) =
(

X̃1, . . . , X̃m, Ẑ1, . . . , Ẑm, X̃ ε
m+1 + Ẑm+1, . . . , X̃ ε

ν + Ẑν

)
.

(5.13)
Since the space is free up to step r the function � in (5.14) is independent of v and

its expression reduces to:

�ε,x̄ (u) = exp

(
∑

i

uε
i X̄ ε

i

)
(x̄). (5.14)

In the sequel, when we will need to explicitly indicate the vector fields defining � we
will also use the notation:

�ε,x̄,X̄ε (u) = �ε,x̄ (u), and �ε,x̄,X̄ε i (u) its components, (5.15)

and analogous notations will be used for the inverse map �ε,x̄,X̄ε

For every ε > 0 and x̄, x̄0, in view of Theorem3.10 the associated ball box distances
reduce to:

d̄ε(x̄, x̄0) =
2m∑

i=1

|uε
i | +

ν+m∑

i=2m+1

min
(
|uε

i |, |uε
i |1/d(i)

)
+

2ν∑

i=ν+m+1

|uε
i |1/d(i)

For ε = 0 and x̄, x̄0 we have

d̄0(x̄, x̄0) =
n∑

i=1

|u0
i |1/d(i)
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5.4 Proof of the stability result

The sub-Laplacian/heat operator associated to this structure is

L̄ε,A = ∂t −
m+ν∑

i=1

āi j X̄ ε
i X̄ ε

j ,

where

Ā = A ⊕ λI

and I is the identity matrix of dimension ν × ν. We denote by �̄ε,A the heat kernels
of the corresponding heat operators, and prove a lemma analogous to Lemma 5.2 for
the lifted operator:

Lemma 5.8 The fundamental solution �̄ε,A of the operator L̄ε,A, is a kernel with
local uniform exponential decay of order 2 with respect to ε > 0 and A ∈ Mε

m+ν,�,

according to definition (5.1). Hence it belongs to the set E(2, d̄ε, Mε
m+ν,�). Moreover,

as ε → 0 one has
X ε

i1 · · · X ε
ik
∂s

t �̄ε,A → Xi1 · · · Xik ∂
s
t �̄A (5.16)

uniformly on compact sets, in a dominated way on all Ḡ.

Proof The result for the limit operator L̄0,A is well known and contained for example
in [11]. Hence we only have to estimate the fundamental solution of the operators L̄ε,A

in terms of the one of L̄0,A. In order to do so, we first define a change of variable on
the Lie algebra:

Tε(X̄ ε
i ) = X̄0

i for i = 1, . . . , ν + m (5.17)

Then from a fixed point z̄ we apply the exponential map to induce on the Lie group
a volume preserving change of variables. Using the notation introduced in (5.15), we
will denote

F̄ε,z̄ : Ḡ → Ḡ, F̄ε(x̄) = exp(�−1
ε,z̄,Tε (X̄0)i

(x̄)X̄0
i )(z̄)

Since the distances are defined in terms of the exponential maps, this change of vari-
ables induces a relation between the distances d̄0 and d̄ε :

d̄ε(x̄, x̄0) = d̄0(F̄ε(x̄), F̄ε(x̄0)). (5.18)

Analogously we also have

�̄ε,A(x̄, ȳ, t) = �̄0,A(F̄ε(x̄), F̄ε(ȳ), t), (5.19)
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Hence assertions (5.7) follow from the estimates of �̄0,A contained for instance in
[53]. Indeed the second inequality can be established as follows:

�̄ε,A(x̄, ȳ, t) = �̄0,A(F̄ε(x̄), F̄ε(ȳ), t) ≤ C�

e
− d̄0(F̄ε (x̄),F̄ε (ȳ))2

C�t

|B̄0(F̄ε(x̄),
√

t)| = C�

e
− d̄ε (x̄,ȳ)2

C�t

|B̄ε(x̄,
√

t)| .

The proof of the first inequality in (5.7) and (5.8) is analogous, while (5.9) follows
from the estimates of the fundamental solution contained in ([11]).

The pointwise convergence (5.16) is also an immediate consequence of (5.18)
and (5.19). In order to prove the dominated convergence result we need to relate the
distances d̄0 and d̄ε . On the other side, the change of variable (5.17) allows to express
exponential coordinates uε

i , in terms of u0
i as follows:

d̄ε(x̄, x̄0) =
2m∑

i=1

|u0
i | +

ν∑

i=2m+1

(
|u0

i − εw0
i+ν |1/d(i) + min(|u0

i |, |u0
i |1/d(i))

)

so that for all2 x̄, x̄0 ∈ Ḡ

d̄0(x̄, x̄0) − C0 ≤ d̄ε(x̄, x̄0) ≤ d̄0(x̄, x̄0) + C0 (5.20)

where C0 is independent of ε. The latter and (5.8) imply that there is a constant C̃s,k

independent of ε such that

∣∣∣(∂s
t X ε

i1 · · · X ε
ik
�̄ε,A)(x̄, ȳ, t)

∣∣∣ ≤ C̃s,k t−s−k/2 e
− d̄0(x̄,ȳ)2

C�t

|B̄0(x̄,
√

t)|
and this imply dominated convergence with respect to the ε variable. ��

In order to be able to conclude the proof of Proposition 5.2, we need to
study the relation between the fundamental solutions �A(x, y, t) and its lifting
�̄0,A((x, 0), (y, z), t), as well as the relation between �ε A(x, y, t)and
�̄ε,A((x, 0), (y, z), t),

Remark 5.9 We first note that for every f ∈ C∞
0 (Rn × R+) f can be identified with

a C∞ and bounded function defined on R
n+ν × R+ and constant in the z-variables.

Hence

L A f = L̄ A f, Lε,A f = L̄ε,A f,

Consequently:

f (x, t) =
ˆ ˆ (ˆ

�̄ε,A((x, 0, s), (y, z, t))dz

)
Lε,A f (y, s)dyds

2 This estimate indicates the well known fact that at large scale the Riemannian approximating distances
are equivalent to the sub-Riemannian distance.
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From the definition of fundamental solution we can deduce that

�A(x, y, t) =
ˆ

G
�̄0,A((x, 0), (y, z), t)dz, and

�ε A(x, y, t) =
ˆ

G
�̄ε,A((x, 0), (y, z), t)dz, (5.21)

for any x ∈ G and t > 0.

We conclude this section with the proof of the main result Proposition 5.2.

Proof In view of the previous remanrk and (global) dominated convergence of the
derivatives of �̄ε,A to the corresponding derivatives of �̄0,A as ε → 0, we deduce that

ˆ

G
�̄ε,A((x, 0), (y, z), t)dz →

ˆ

G
�̄0,A((x, 0), (y, z), t)dz

as ε → 0. The Gaussian estimates of �ε,A follow from the corresponding estimates
on �̄ε,A and the fact that in view of (5.20),

d̄ε((x, z), (x0, z0)) ≥ d̄0((x, z), (x0, z0)) − C0 ≥ d0(x, x0) + d0(z, z0) − C0

≥ dε(x, x0) + dε(z, z0) − 3C0 (5.22)

Indeed the latter shows that there exists a constant C > 0 depending only on G, σ0
such that for every x ∈ G,

ˆ

G
e− d2ε ((x,z),(x0,z0))

t dz ≤ Ce− d2ε (x,x0)

t

ˆ

G
e− d2ε (z,z0)

t dz ≤ Ce− d2ε (x,x0)

t .

The conclusion follows at once. ��

5.5 Differential of the integral operator associated to �ε

In this subsection we will show how to differentiate a functional F expressed as
follows:

F( f )(x, t) =
ˆ

�ε,A(x, y, t) f (y, s)dyds.

In order to do so, we will need to differentiate both with respect to x and to y, so
that we will denote X ε,x

i �ε,A(x, y, t) the derivative with respect to the variable x and
X ε,y

i �ε,A(x, y, t) the derivative with respect to the variable y.
Analogously, we will denote the derivative with the first variable of the lifted fun-

damental solution

X̄ ε,x̄
i �̄,A((x, w), (y, z), t).
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For ε = 0, we will have by definition

X̄0,x̄
i �̄,A((x, w), (y, z), t) = (X0,x

i + Z̃w
i )�̄,A((x, w), (y, z), t).

The derivative with respect to the second variable will be denoted X̄0,ȳ
i . If � is the

Euclidean heat kernel, there is a simple relation between the derivative with respect
to the two variables, indeed in this case �ε,A(x, y, t) = �ε,A(x − y, 0, t), so that

X ε,x
i �ε,A(x, y, t) = −X ε,y

i �ε,A(x, y, t). (5.23)

Consequently for every function f ∈ C∞
0

∂xi F( f )(x, t) =
ˆ

�ε,A(x, y, t)∂yi f (y)dy.

This is no more the case in general Lie groups, or for Hörmander vector fields.
However we will see that there is a relation between the two derivatives, which allows
to prove the following:

Proposition 5.10 Assume that f ∈ C∞
0 (�×]0, T [) in an open set �×]0, T [. For

every x ∈ K ⊂⊂ �, for every i = 1, . . . m there exists the derivative X ε
i F( f )(x, t).

Precisely there exist kernels Pε,i,h(x, y, t), Rε,i (x, y, t) ∈ E(2, dε, Mε
m,�) such that

X ε
i F( f ) = −

ˆ m∑

h=1

X ε,y,∗
h Pε,i,h(x, y, t) f (y)dy −

ˆ
Rε,i (x, y, t) f (y)dy.

(Let us note explicitly that the term Rε,i,h(x, y, t) plays the role of an error term).

Proof We can apply the lifting procedure described in Sects. 5.2 and 5.3, and rep-
resenting the fundamental solution as in (5.19) and (5.21), we obtain the following
expression for Fε :

Fε( f ) =
ˆ ˆ

G
�̄ε,A((x, 0), (y, z), t)dz f (y)dy

=
ˆ ˆ

�̄0,A(F̄ε(x, 0), F̄ε(y, z), t)dz f (y)dy.

By differentiating with respect to X ε
i we get:

X ε
i Fε( f )(x) =

ˆ ˆ
(X̄0,x

i − Z̃w
i )�̄0,A(F̄ε(x, 0), F̄ε(y, z), t)dz f (y)dy. (5.24)

Note that the family of vectors X̄0
i is independent of ε and free of step r . Hence, in

view of [76, page 295, line 3 from below] one has that for every i, j = 1, · · · m, there
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exist families of indices Ii, j , and polynomials p̄ih homogeneous of degree ≥ h such
that:

X̄0,x̄
i �̄0,A(x̄, ȳ, t) =

m∑

j=1

(
X̄0,ȳ

j

)∗ ∑

h∈Ii, j

X̄0,ȳ
h

(
p̄ih(�x̄ (ȳ))�̄0,A(x̄, ȳ, t)

)

−
⎛

⎝
m∑

j=1

(
X̄0,ȳ

j

)∗ ∑

h∈Ii, j

X̄0,ȳ
h

⎞

⎠ ( p̄ih(�x̄ (ȳ))) �̄0,A(x̄, ȳ, t).

In particular using this expression in the variable z alone, and integrating by parts we
deduce

ˆ ˆ
Z̃w

i �̄0,A(F̄ε(x, 0), F̄ε(y, z), t)dz = 0

We now call

R̄0,i (x̄, ȳ, t) =
⎛

⎝
m∑

j=1

(
X̄0,y

j

)∗ ∑

h∈Ii, j

X̄0,ȳ
h

⎞

⎠ ( p̄ih(�x̄ (ȳ))) �̄0,A(x̄, ȳ, t)

This kernel, being obtained by multiplication of �0,A(x̄, ȳ, t) by a polynomial, has
locally the same decay as �0,A(x̄, ȳ, t). In particular it is clear that the conditions 5.7,
5.8, 5.9 are satisfied uniformly with respect to ε, since there is no dependence on ε.
As a consequence, if we set

Rε,i (x, y, t) =
ˆ

R̄0,i
(
F̄ε(x, 0), F̄ε(y, z), t

)
dz

then Rε,i (x, y, t) ∈ E(2, dε, Mε
m,�) Similarly we call

P̄ε,i,h(x̄, ȳ, t) =
∑

h∈Ii, j

X̄0,y
h

(
p̄ih(�x̄ (ȳ))�̄0,A(x̄, ȳ, t)

)

Now we use the fact that �̄0,A ∈ E(2, d̄, Mε
m+ν,�) together with the fact that p̄ih is a

polynomial of the degree equal of the order of X̄0,y
h to conclude that

P̄ε,i,h(x̄, ȳ, t) ∈ E(2, d̄, Mε
m+ν,�)

Setting

Pε,i,h(x, y, t) =
ˆ

P̄0,i,h(F̄ε(x, 0), F̄ε(y, z), t)dz

it follows that Pε,i,h(x, y, t) ∈ E(2, dε, Mε
m,�)
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Substituting this expression into equation (5.24) we get

X ε
i Fε( f )(x) = −

ˆ m∑

j=1

(
X̄0,y

j

)∗
Pε,i,h(x, y, t) f (y)dy −

ˆ
Rε,i (x, y, t) f (y)dy.

(5.25)
��

6 Stability of interior Schauder estimates

In this section we will prove uniform estimates in spaces of Hölder continuous func-
tions and in Sobolev spaces for solutions of second order sub-elliptic differential
equations in non divergence form

Lε,Au ≡ ∂t u −
n∑

i, j=1

aε
i j (x, t)X ε

i X ε
j u = 0,

in a cylinder Q = � × (0, T ) that are stable as ε → 0. The proof of both estimates
is largely based on the heat kernel estimates established above. Internal Schauder
estimates for these type of operators are well known. We recall the results of Xu [83],
Bramanti and Brandolini [10] for heat-type operators, and the results of Lunardi [62],
and Polidoro and Di Francesco [34], and Gutierrez and Lanconelli [47], which apply
to a large class of squares of vector fields plus a drift term. We also recall [64] where
uniform Schauder estimates for a particular elliptic approximation of subLaplacians
are proved.

Here the novelty is due to the uniform condition with respect to ε. This is accom-
plished by using the uniform Gaussian bounds established in in the previous section.
This result extends to Hörmander type operators the analogous assertion proved by
Manfredini and the authors in [14] in the setting of Carnot Groups.

6.1 Uniform Schauder estimates

Let us start with the definition of classes of Hölder continuous functions in this setting

Definition 6.1 Let 0 < α < 1, Q ⊂ R
n+1 and u be defined on Q. We say that u ∈

Cα
ε,X (Q) if there exists a positive constant M such that for every (x, t), (x0, t0) ∈ Q

|u(x, t) − u(x0, t0)| ≤ Md̃α
ε ((x, t), (x0, t0)). (6.1)

We put

||u||Cα
ε,X (Q) = sup

(x,t) �=(x0,t0)

|u(x, t) − u(x0, t0)|
d̃α
ε ((x, t), (x0, t0))

+ sup
Q

|u|.
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Iterating this definition, if k ≥ 1 we say that u ∈ Ck,α
ε,X (Q) if for all i = 1, . . . , m

Xi ∈ Ck−1,α
ε,X (Q). Where we have set C0,α

ε,X (Q) = Cα
ε,X (Q).

The main results of this section, which generalizes to the Hörmander vector fields
setting our previous result with Manfredini in [14] is

Proposition 6.2 Let w be a smooth solution of Lε,Aw = f on Q. Let K be a compact
sets such that K ⊂⊂ Q, set 2δ = d0(K , ∂p Q) and denote by Kδ the δ-tubular
neighborhood of K . Assume that there exists a constant C > 0 such that

||aε
i j ||Ck,α

ε,X (Kδ)
≤ C,

for any ε ∈ (0, 1). There exists a constant C1 > 0 depending on α, C, δ, and the
constants in Proposition 5.2, but independent of ε, such that

||w||Ck+2,α
ε,X (K )

≤ C1

(
|| f ||Ck,α

ε,X (Kδ)
+ ||w||Ck+1,α

ε,X (Kδ)

)
.

We will first consider to a constant coefficient operator, for which we will obtain a
representation formula, then we will show how to obtain from this the claimed result.

Precisely we will consider the constant coefficient frozen operator:

Lε,(x0,t0) ≡ ∂t −
n∑

i, j=1

aε
i j (x0, t0)X ε

i X ε
j ,

where (x0, t0) ∈ Q. We explicitly note that for ε > 0 fixed the operator Lε,(x0,t0) is
uniformly parabolic, so that its heat kernel can be studied through standard singular
integrals theory in the corresponding Riemannian balls.

As a direct consequence of the definition of fundamental solution one has the
following representation formula

Lemma 6.3 Let w be a smooth solution to Lεw = f in Q ⊂ R
n+1. For every

φ ∈ C∞
0 (Q),

(wφ)(x, t) =
ˆ

Q
�ε

(x0,t0)
((x, t), (y, τ ))

(
Lε,(x0,t0) − Lε

)
(w φ)(y, τ )dydτ

+
ˆ

Q
�ε

(x0,t0)
((x, t), (y, τ ))

⎛

⎝ f φ + wLεφ + 2
n∑

i, j=1

aε
i j (y, τ )X ε

i wX ε
j φ

⎞

⎠ (y, τ )dydτ, (6.2)

where we have denoted by �ε
(x0,t0)

the heat kernel for of Lε,(x0,t0).

Iterating the previous lemma we get the following

Lemma 6.4 Let k ∈ N and consider a k-tuple (i1, . . . , ik) ∈ {1, . . . , m}k . There
exists a differential operator B of order k + 1, depending on horizontal derivatives of
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aε
i j of order at most k, such that

X ε
ik

· · · X ε
i1

(
Lε,(x0,t0) − Lε

) =
n∑

i, j=1

(
aε

i j − aε
i j (x0, t0)

)
X ε

ik
· · · X ε

i1 X ε
i X ε

j + B.

Proof The proof can be made by induction. Indeed it is true with B = 0 by definition
if k = 0:

Lε,(x0,t0) − Lε =
n∑

i, j=1

(
aε

i j − aε
i j (x0, t0)

)
X ε

i X ε
j .

if it true for a fixed value of k then we have

X ε
ik+1

X ε
i1 · · · X ε

ik

(
Lε,(x0,t0) − Lε

)

=
n∑

i, j=1

(
aε

i j − aε
i j (x0, t0)

)
X ε

ik+1
X ε

ik
· · · X ε

i1 X ε
i X ε

j + B̃

where

B̃ = Xik+1

(
aε

i j − aε
i j (x0, t0)

)
X ε

ik
· · · X ε

i1 X ε
i X ε

j + Xik+1 B.

By the properties of B it follows that B̃ is a differential operator of order k + 2,
depending on horizontal derivatives of aε

i j of order at most k + 1. This concludes the
proof. ��

We can go back to our operator L and establish the following regularity results,
differentiating twice the representation formula:

Proposition 6.5 Let 0 < α < 1 and w be a smooth solution of Lεw = f ∈ Cα
ε.X (Q)

in the cylinder Q. Let K be a compact sets such that K ⊂⊂ Q, set 2δ = d0(K , ∂p Q)

and denote by Kδ the δ-tubular neighborhood of K . Assume that there exists a constant
C > 0 such that for every ε ∈ (0, 1)

||aε
i j ||Cα

ε,X (Kδ) ≤ C.

There exists a constant C1 > 0 depending on δ, α, C and the constants in Proposition
5.2 such that

||w||C2,α
ε,X (K )

≤ C1

(
|| f ||Cα

ε,X (Kδ) + ||w||C1,α
ε,X (Kδ)

)
.

Proof The proof follows the outline of the standard case, as in [41], and rests crucially
on the Gaussian estimates proved in Proposition 5.2. Choose a parabolic sphere3

3 That is a sphere in the group G̃ = G × R in the pseudo-metric d̃ε((x, t), (y, s)) =
max(dε(x, y),

√|t − s|).
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Bε,δ ⊂⊂ K where δ > 0 will be fixed later and a cut-off function φ ∈ C∞
0 (Rn+1)

identically 1 on Bε,δ/2 and compactly supported in Bε,δ . This implies that for some
constant C > 0 depending only on G and σ0,

|∇εφ| ≤ Cδ−1, |Lεφ| ≤ Cδ−2,

in Q. Now we represent the function wφ through the formula 6.3 and take two deriv-
atives in the direction of the vector fields. We remark once more that the operator
is uniformly elliptic due to the ε−regularization, hence the differentiation under
the integral can ben considered standard. As a consequence for every multi-index
I = (i1, i2) ∈ {1, . . . , m}2 and for every (x0, t0) ∈ Bε,δ one has:

X ε
i1 X ε

i2(wφ)(x0, t0) (6.3)

=
ˆ

Q
X ε

i1 X ε
i2�

ε
(x0,t0)

(·, (y, τ ))|(x0,t0)
(
Lε,(x0,t0) − Lε

)
(w φ)(y, τ )dydτ

+
ˆ

Q
X ε

i1 X ε
i2�

ε
(x0,t0)

(·, (y, τ ))(x0,t0)

⎛

⎝ f φ + wLεφ

+2
n∑

i, j=1

aε
i j X ε

i wX ε
jφ

⎞

⎠ (y, τ )dydτ. (6.4)

In order to study the Hölder continuouity of the second derivatives, we note that the
uniform Hölder continuity of aε

i j , and Proposition 5.2 ensure that the kernal satisfy
the classical singular integral properties (see [37]):

|X ε
i1 X ε

i2�
ε
(x,t)((x, t), (y, τ )) − X ε

i1 X ε
i2�

ε
(x0,t0)

((x0, t0), (y, τ ))|

≤ C d̃α
ε ((x, t), (x0, t0))

(τ − t0)−1e
− dε (x0,y)2

C�(τ−t0)

|Bε(0,
√

τ − t0)| ,

withC > 0 independent of ε. From here, proceeding as in [41, Theorem 2, Chapter 4],
the first term in the right hand side of formula (6.3) can be estimated as follows:

∣∣∣
∣∣∣
ˆ

X ε
i1 X ε

i2�
ε
(x0,t0)

(·, (y, τ ))(Lε − Lε,(x0,t0))(w φ)(y, τ )dydτ

∣∣∣
∣∣∣
Cα

ε,X (Bε,δ)

≤ C1

∣∣∣
∣∣∣(Lε − Lε,(x0,t0))(w φ)

∣∣∣
∣∣∣
Cα

ε,X (Bε,δ)

= C1

∑

i, j

∣∣∣
∣∣∣(aε

i j (x0, t0) − aε
i j (·)
)
X ε

j X ε
j (w φ)

∣∣∣
∣∣∣
Cα

ε,X (Bε,δ)

≤ C̃1δ
α||aε

i j ||Cα
ε,X (Bε,δ)||wφ||C2,α

ε,X (Bε,δ)
, (6.5)
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where C1, and C̃1 are stable as ε → 0. Similarly, if φ is fixed, the Hölder norm of the
second term in the representation formula (6.3) is bounded by

∣∣∣
∣∣∣
ˆ

X ε
i1 X ε

i2�
ε
(x0,t0)

((x0, t0), (y, τ ))
(

f φ(y, τ ) + wLφ(y, τ )

+ 2aε
i j X ε

i wX ε
jφ
)
dydτ

∣∣∣
∣∣∣
Cα

ε,X (Bε,δ)

≤ C2

(
|| f ||Cα

ε,X (Kδ) + C

δ2
||w||C1,α

ε,X (Kδ)

)
. (6.6)

From (6.3), (6.5) and (6.6) we deduce that

||wφ||C2,α
ε,X (Bδ)

≤ C̃2 δα||wφ||C2,α
ε,X (Bδ)

+ C2

(
|| f ||Cα

ε,X (Kδ) + C

δ2
||w||C1,α

ε,X (Kδ)

)
.

Choosing δ sufficiently small we prove the assertion on the fixed sphere Bε,δ The
conclusion follows from a standard covering argument. ��

We can now conclude the proof of Proposition 6.2:

Proof The proof is similar to the previous one for k = 1. We start by differentiating
the representation formula (6.2) along an arbitrary direction Xi1

X ε
i1(wφ)(x, t) (6.7)

=
ˆ

Q
X ε

i1�
ε
(x0,t0)

(·, (y, τ ))
(
Lε,(x0,t0) − Lε

)
(w φ)(y, τ )dydτ

+
ˆ

Q
X ε

i1�
ε
(x0,t0)

(·, (y, τ ))

⎛

⎝ f φ + wLεφ + 2
n∑

i, j=1

aε
i j X ε

i wX ε
jφ

⎞

⎠ (y, τ )dydτ.

(6.8)

Now we apply Theorem 5.10 and deduce that there exist kernels

Pe,i1,h,(x0,t0)((x, t), (y, τ )), Re,i1,(x0,t0)((x, t), (y, τ )),

with the same decay of the fundamental solution such that

X ε
i1(wφ)(x, t)

= −
ˆ m∑

h=1

Pε,i1,h,(x0,t0)((x, t), (y, τ ))X ε,y
h

(
Lε,(x0,t0) − Lε

)
(w φ)(y, τ )dydτ

−
ˆ

Rε,i1,(x0,t0)((x, t), (y, τ ))
(
Lε,(x0,t0) − Lε

)
(w φ)(y, τ )dydτdy

−
m∑

h=1

ˆ
Pε,i1,h,(x0,t0)((x, t), (y, τ ))X ε,y

h ( f φ + wLεφ
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+2
n∑

i, j=1

aε
i j X ε

i wX ε
jφ

⎞

⎠ (y, τ )dydτ −
ˆ

Rε,i1,(x0,t0)((x, t), (y, τ ))

×
⎛

⎝ f φ + wLεφ + 2
n∑

i, j=1

aε
i j X ε

i wX ε
jφ

⎞

⎠ (y, τ )dydτ. (6.9)

Using Lemma 6.4, this yields the existence of new kernels Pi1,··· ,ik
ε,h1,··· ,hk ,(x0,t0)

((x, t),
(y, τ )) with the behavior of a fundamental solution (and the same dependence on ε)
such that

X ε
i1 · · · X ε

ik
(wφ)(x, t) =

ˆ i1,...,ik

ε,h1,...,hk ,(x0,t0)
((x, t), (y, τ ))

(
aε

i j − aε
i j (x0, t0)

)
X ε

i1 . . . X ε
ik

X ε
i X ε

j (w φ)(y, τ )dydτ

+
ˆ i1,...,ik

ε,h1,...,hk ,(x0,t0)
((x, t), (y, τ ))B(w φ)(y, τ )dydτ

+
ˆ i1,...,ik

ε,h1,...,hk ,(x0,t0)
((x, t), (y, τ ))X ε

i1 · · · X ε
ik

(
f φ(y, τ ) + wLεφ(y, τ )

+ 2
n∑

i, j=1

aε
i j X ε

i wX ε
jφ
)

dydτ

+ lower order terms

where φ is as in the proof of Proposition 6.5 and B is a differential operator of
order k + 1. The conclusion follows by further differentiating the previous represen-
tation formula along two horizontal directions X ε

j1
X ε

j2
and arguing as in the proof of

Proposition 6.5. ��

7 Application I: Harnack inequalities for degenerate parabolic
quasilinear equations hold uniformly in ε

The results we have presented so far show that for any ε0 > 0, the 1-parameter
family of metric spaces (M, dε) associated to the Riemannian approximations of a
subRiemannian metric space (M, d0), satisfy uniformly in ε ∈ [0, ε0] the hypothesis
in the definition of p-admissible structure in the sense of [48, Theorem 13.1]. This
class of metric measure spaces has a very rich analytic structure (Sobolev-Poincaré
inequalities, John–Nirenberg lemma, ...) that allows for the development of a basic
regularity theory for weak solutions of classes of nonlinear degenerate parabolic and
elliptic PDE. In the following we will remind the reader of the definition and basic
properties of p-admissible structures and sketch some of the main regularity results
from the recent papers [1] and [18]. We will conclude the section with a sample
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application of these techniques to the global (in time) existence of solutions for a class
of evolution equations that include the subRiemannian total variation flow [14].

7.1 Admissible ambient space geometry

Consider a smooth real manifold M and let μ be a locally finite Borel measure on M
which is absolutely continuous with respect the Lebesgue measure when represented
in local charts. Let d(·, ·) : M × M → R

+ denote the control distance generated by a
system of bounded, μ-measurable, Lipschitz vector fields � = (X1, . . . , Xm) on M .
As in [3] and [44] one needs to assume as basic hypothesis

the inclusion i : (M, chart) → (M, d) is continuous, (7.1)

where we have denoted by (M, chart) the topology on M induced by the Euclidean
topology in R

n via coordinate charts. For x ∈ M and r > 0, set B(x, r) = {y ∈ M :
d(x, y) < r} and let |B(x, r)| denote the μ measure of B(x, r). In general, given a
function u and a ball B = B(x, r) then u B denotes the μ-average of u on the ball
B = B(x, r). In view of (7.1) the closed metric ball B̄ is a compact set.

Definition 7.1 Assume hypothesis (7.1) holds. Given 1 ≤ p < ∞, the triplet
(M, μ, d) is said to define a p-admissible structure (in the sense of [48, Theorem13.1])
if for every compact subset K of M there exist constants CD = CD(�, K ), CP =
CP (�, K ) > 0, and R = R(�, K ) > 0, such that the following hold.

(1) Doubling property:

|B(x, 2r)| ≤ CD|B(x, r)| whenever x ∈ K and 0 < r < R. (D)

(2) Weak (1, p)-Poincaré inequality:

 

B(x,r)

|u − u B |dμ ≤ CP r

( 

B(x,2r)

|�u|pdμ

)1/p

, (P)

whenever x ∈ K , 0 < r < R, u ∈ W 1,p
� (B(x, 2r)).

Theorems 1.1 and 1.2 yield the following

Theorem 7.2 Let X1, . . . , Xm be a family of Hörmander vector fields in � ⊂ R
n and

denote by μ Lebesgue measure. For each ε0 > 0 and ε ∈ [0, ε0] denote by dε the
distance functions defined in Definition 2.6. For all ε ∈ [0, ε0] and p ≥ 1, the space
(�,μ, dε) is p-admissible, with constants CD and CP independent of ε.

Other examples of p-admissible spaces are:

• The classical setting:M = R
n, dμ equals the n-dimensional Lebesgue measure,

and � = (X1, . . . , Xm) = (∂x1, . . . , ∂xn ).
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• Our setting is also sufficiently broad to include some non-smooth vector fields
such as the Baouendi-Grushin frames, e.g., consider, for γ ≥ 1 and (x, y) ∈ R

2,
the vector fields X1 = ∂x and X2 = |x |γ ∂y . Unless γ is a positive even integer
these vector fields fail to satisfy Hörmander’s finite rank hypothesis. However, the
doubling inequality as well as the Poincaré inequality hold and have been used
in the work of Franchi and Lanconelli [38] to establish Harnack inequalities for
linear equations.

• Consider a smooth manifold M endowed with a complete Riemannian metric g.
Let μ denote the Riemann volume measure, and by � denote a g-orthonormal
frame. If the Ricci curvature is bounded from below (Ricci ≥ −K g) then one has
a 2-admissible structure. In fact, in this setting the Poincaré inequality follows from
Buser’s inequality while the doubling condition is a consequence of the Bishop–
Gromov comparison principle. If K = 0, i.e. the Ricci tensor is non-negative, then
these assumptions holds globally and so does the Harnack inequality.

Spaces with a p-admissible structure support a homogenous structure in the sense of
Coifman and Weiss [28].

Lemma 7.3 Let (M, μ, d) be a p-admissible structure for some p ≥ 1, � a bounded
open set in M and set K = �̄. If x ∈ K and 0 < s < r < R, then the following
holds.

(1) There exists a constant N = N (CD) > 0, called homogeneous dimension of
K with respect to (�, d, μ), such that |B(x, r)| ≤ CDτ−N |B(x, τr)|, for all
0 < τ ≤ 1.

(2) There exists a continuous function φ ∈ C0(B(x, r)) ∩ W 1,∞
� (B(x, r)) and a

constant C = C(�, K ) > 0, such that φ = 1 in B(x, s) and |�φ| ≤ C/(r −
s), 0 ≤ φ ≤ 1.

(3) Metric balls have the so called δ̂-annular decay property, i.e., there exists δ̂ =
δ̂(CD) ∈ (0, 1], such that

|B(x, r) \ B(x, (1 − ε)r)| ≤ Cεδ̂|B(x, r)|,

whenever 0 < ε < 1.

Proof Statement (1) follows from (D) by a standard iteration argument. Statement (2)
is proved in [44, Theorem 1.5]. Statement (3) follows from [12, Corollary 2.2], since
we have a Carnot–Carathéodory space. Furthermore, δ̂ depends only on CD . ��

Given � ⊂ M , open, and 1 ≤ p ≤ ∞, we let W 1,p
� (�) = {u ∈ L p(�,μ) : Xi u ∈

L p(�,μ), i = 1, . . . , m} denote the horizontal Sobolev space, and we let W 1,p
�,0 ⊂

W 1,p
� be the closure4 of the space of W 1,p

� functions with compact (distributional)
support in the norm ‖u‖p

1,p = ‖u‖p + ‖�u‖p with respect to μ. In the following
we will omit μ in the notation for Lebesgue and Sobolev spaces. Given t1 < t2, and
1 ≤ p ≤ ∞, we let �t1,t2 ≡ � × (t1, t2) and we let L p(t1, t2; W 1,p

� (�)), t1 < t2,

4 Here we avoid the issue “H = W”. This is studied in detail in [39,40,42,44,54] and [79].
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denote the parabolic Sobolev space of real-valued functions defined on�t1,t2 such that
for almost every t, t1 < t < t2, the function x → u(x, t) belongs to W 1,p

� (�) and

‖u‖
L p(t1,t2;W 1,p

� (�))
=
(ˆ t2

t1

ˆ

�

(|u(x, t)|p + |�u(x, t)|p)dμdt

)1/p

< ∞.

The spaces L p(t1, t2; W 1,p
�,0(�)) is defined analogously. We let W 1,p(t1, t2; L p(�))

consist of real-valued functions η ∈ L p(t1, t2; L p(�)) such that the weak derivative
∂tη(x, t) exists and belongs to L p(t1, t2; L p(�)). Consider the set of functions φ, φ ∈
W 1,p(t1, t2; L p(�)), such that the functions

t →
ˆ

�

|φ(x, t)|pdμ(x) and t →
ˆ

�

|∂tφ(x, t)|pdμ(x),

have compact support in (t1, t2). We let W 1,p
0 (t1, t2; L p(�)) denote the closure of this

space under the norm in W 1,p(t1, t2; L p(�)).
From [48,Corollary 9.5] one can see that themetric balls B(x0, r) are John domains.

Consequently, (D), (P), and [48, Theorem 9.7] yield Sobolev-Poincaré inequality,

Lemma 7.4 Let B(x0, r) ⊂ �, 0 < r < R, 1 ≤ p < ∞. There exists a constant
C = C(CD, CP , p) ≥ 1 such that for every u ∈ W 1,p

� (B(x0, r)),

( 

B(x0,r)

|u − u B |κpdμ

)1/κ
≤ Cr p

 

B(x0,r)

|�u|pdμ,

where u B denotes the μ average of u over B(x0, r), and where 1 ≤ κ ≤ N/(N − p),
if 1 ≤ p < N, and 1 ≤ κ < ∞, if p ≥ N. Moreover,

( 

B(x0,r)

|u|κpdμ

)1/κ
≤ Cr p

 

B(x0,r)

|�u|pdμ,

whenever u ∈ W 1,p
�,0(B(x0, r)).

7.2 Quasilinear degenerate parabolic PDE

In this section we list some recent results concerning regularity of weak solutions of
certain nonlinear, degenerate parabolic PDE in spaces (M, μ, d) that are p-admissible
for some p ∈ [2,∞). If p = 2 we can allow lower order terms, but at present this is
not yet established for p > 2. Given a domain (i.e., an open, connected set) � ⊂ M ,
and T > 0 we set �T = � × (0, T ). For a function u : �T → R, and 1 ≤ p, q we
define the norms

||u||qp,q =
( ˆ T

0

( ˆ

�

|u|pdx
) q

p
dt
) 1

q
, (7.2)

123



220 L. Capogna, G. Citti

and the corresponding Lebesgue spaces L p,q(�T ) = Lq([0, T ], L p(�)). We will say
that A,B are admissible symbols (in �T ) if the following holds:

(i) (x, t) → A(x, t, u, ξ),B(x, t, u, ξ) are measurable for every (u, ξ) ∈ R×R
m ,

(ii) (u, ξ) → A(x, t, u, ξ),B(x, t, u, ξ) are continuous for almost every (x, t) ∈
�T ,

(iii) • For p = 2: There exist constants a, ā > 0 and functions b, c, e, f, h ∈
L p̃,q(Q) with p̃ > 2, and q given by N

2 p̃ + 1
q < 1

2 and functions d, g ∈
Lα,β(Q)with 1 < α andβ given by N

2α + 1
β

< 1 such that for a.e. (x, t) ∈ �T

and ξ ∈ R
m one has

m∑

i=1

Ai (x, t, u, ξ)ξi ≥ a|ξ |2 − b2u2 − f 2,

|A(x, t, u, ξ)| ≤ ā|ξ | + e|u| + h,

|B(x, t, u, ξ)| ≤ c|ξ | + d|u| + g. (7.3)

In view of the conditions on p̃, q, α, β there exists θ > 0 such that

p̃ ≥ 2

1 − θ
and

N

2 p̃
+ 1

q
≤ 1 − θ

2

α ≥ 1

1 − θ
and

N

2α
+ 1

β
≤ 1 − θ. (7.4)

We say that a constant depends on the structure conditions (7.3), if it depends
only on 5

a, ā, ||b||, ||c||, ||d||, ||e||, || f ||, ||g||, ||h||, N , θ,

and is uniformly bounded if these quantities are so.
• For p > 2 we will only consider B = 0 and ask that the following bounds

A(x, t, u, ξ) · ξ ≥ A0|ξ |p, |A(x, t, u, ξ)| ≤ A1|ξ |p−1, (7.5)

hold for every (u, ξ) ∈ R × R
m and almost every (x, t) ∈ �T .

A0 and A1 are called the structural constants of A. If A and Ã are both admissible
symbols, with the same structural constantsA0 andA1, then we say that the symbols
are structurally similar.

Let E be a domain in M × R. We say that the function u : E → R is a weak
solution to

∂t u(x, t) = L A,pu ≡ −
m∑

i=1

X∗
i Ai (x, t, u, �u) + B(x, t, u, �u), (7.6)

5 The || · || norms are in the appropriate L p̃,q or Lα,β classes.
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in E , where X∗
i is the formal adjoint w.r.t. dμ, if whenever �t1,t2 � E for some

domain � ⊂ M, u ∈ L p(t1, t2; W 1,p
� (�)) and

ˆ t2

t1

ˆ

�

u
∂η

∂t
dμdt −

ˆ t2

t1

ˆ

�

A(x, t, u, �u) · �η dμdt

+
ˆ t2

t1

ˆ

�

B(x, t, u, �u)η dμdt = 0, (7.7)

for every test function

η ∈ W 1,2
0 (t1, t2; L2(�)) ∩ L p(t1, t2; W 1,p

�,0(�)).

A function u is a weak super-solution (sub-solution) to (7.6) in E if whenever
�t1,t2 � E for some domain � ⊂ M, we have u ∈ L p(t1, t2; W 1,p(�)), and the
left hand side of (7.7) is non-negative (non-positive) for all non-negative test func-
tions W 1,2

0 (t1, t2; L2(�)) ∩ L p(t1, t2; W 1,p
�,0(�)).

The main results in [1] and [18] can be summarized in the following theorem.

Theorem 7.5 Let (M, μ, d) be a p-admissible structure for some fixed p ∈ [2,∞).
For a bounded open subset � ⊂ M, let u be a non-negative, weak solution to (7.6)
in an open set containing the cylinder � × [0, T0] and assume that the structure
conditions (7.5) are satisfied.

• For p = 2 and for any subcylinder Q3ρ = B(x̄, 3ρ) × (t̄ − 9ρ2, t̄) ⊂ Q there
exists a constant C > 0 depending on CD, CL , CP , the structure conditions (7.3)
and on ρ such that

sup
Q−

u ≤ C inf
Q+(u + ρθ k), (7.8)

where

Q+ = B(x, ρ) × (t̄ − ρ2, t̄) and Q− = B(x, ρ) × (t̄ − 8ρ2, t̄ − 7ρ2) (7.9)

θ > 0 is defined as in (7.4), and we have let k = || f || + ||g|| + ||h||.
• For p > 2: Assuming B = 0, there exist constants C1, C2, C3 ≥ 1, depending

only on �, CD, CP ,A0,A1, p, such that for almost all (x0, t0) ∈ �×[0, T0], the
following holds: If u(x0, t0) > 0, and if 0 < r ≤ R(�, �̄) (from Definition 7.1) is
sufficiently small so that

B(x0, 8r) ⊂ � and (t0−C1u(x0, t0)
2−pr p, t0+C1u(x0, t0)

2−pr p) ⊂ (0, T0),

then
u(x0, t0) ≤ C2 inf

Q
u,

where

Q = B(x0, r) ×
(

t0 + 1

2
C3u(x0, t0)

2−pr p, t0 + C3u(x0, t0)
2−pr p

)
.
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Furthermore, the constants C1, C2, C3 can be chosen independently of p as p →
2.

We conclude this section with a corollary of the proof in [18] [Lemma 3.6], a weak
Harnack inequality that plays an important role in the proof of the regularity of the
mean curvature flow for graphs over certain Lie groups established in [14]. Consider
a weak supersolution w ∈ L p(t1, t2; W 1,p

� (�)) of the linear equation

− ∂tw −
m∑

i=1

X∗
i (ai j (x, t)X jw) = g(x, t), (7.10)

with t1, t2,� as defined above. Assume the coercivity hypothesis

�−1
∑

d(i)=1

ξ2i ≤
m∑

i, j=1

ai j (x, t)ξiξ j ≤ �
∑

d(i)=1

ξ2i (7.11)

for a.e. (x, t) and all ξ ∈ R
m , for a suitable constant �.

Proposition 7.6 Let (M, μ, d) be a 2-admissible structure. For a bounded open sub-
set � ⊂ M, let w be a non-negative, weak supersolution to (7.10) in an open set
containing the cylinder � × [0, T0] and assume that conditions (7.11) are satisfied.
For any subcylinder Q3ρ = B(x̄, 3ρ) × (t̄ − 9ρ2, t̄) ⊂ Q there exists a constant
C > 0 depending on CD, CL , CP , the structure conditions (7.3) and on ρ such that

1

|Q−|
ˆ

Q−
w dxdt ≤ C

(
inf
Q+ w + sup

Q+
|g|ρ2

)
, (7.12)

with Q+, Q− as defined in (7.9).

8 Application II: regularity for quasilinear subelliptic PDE through
Riemannian approximation

Let G be a Carnot group of step two. We denote by g its Lie algebra and by g =
V 1 ⊕ V 2 its stratification. If g0 is a subRiemannian metric on V 1 we let d0 denote
its corresponding CC metric, and X1, . . . , Xm a left-invariant orthonormal basis of
V 1. Consider a smooth surface M ⊂ G. A point p ∈ M is characteristic if the
horizontal distribution given by left translation of V 1 is entirely contained in the
tangent plane Tp M . Equivalently, if M is represented as a 0-level set of a function
f , the points where the horizontal gradient of the defining function does vanish are
called characteristic. At non-characteristic points several equivalent definitions for
the notion of horizontal mean curvature h0 have been proposed. To quote a few: h0
can be defined in terms of the legendrian foliation [22], first variation of the area
functional [19,22,30,49,75], as horizontal divergence of the horizontal unit normal
or as limit of the mean curvatures hε of suitable Riemannian approximating metrics
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σε [19]. If the surface is not regular, the notion of curvature can be expressed in the
viscosity sense (we refer to [2,4,5,13,61,63,81,82] for viscosity solutions of PDE in
the sub-Riemannian setting). The formulation we use here is the following, at every
non-characteristic point p in the level set of f we set

h0(p) =
m∑

i=1

Xi (Xi f/|∇0 f |0) .

The mean curvature flow is the motion of a surface where each points is moving
in the direction of the normal with speed equal to the mean curvature. In the total
variation flow the speed is the mean curvature, scaled by the modulus of the gradient.
Both flows play key roles in digital image processing as well as provide prototypes
for modeling motion of interfaces in a variety of physical settings.

As an illustration of the usefulness of the uniform estimates established above,
in this section we want to briefly sketch the strategy used in [14] and [17], where
the Riemannian approximation scheme is used to establish regularity for the graph
solutions of the Total Variation flow

∂u

∂t
=

m∑

i=1

Xi

(
Xi u√

1 + |∇0u|2
)

, (8.1)

and for the graphical solutions of the mean curvature flow

∂u

∂t
=
√
1 + |∇0u|2

m∑

i=1

Xi

(
Xi u√

1 + |∇0u|2
)

. (8.2)

In both cases � ⊂ G is a bounded open set, with G is a Lie group, free up to step
two, but not necessarily nilpotent. These equations describe the motions of the (non-
characteristic) hypersurfaces given by the graphs of the solutions in G × R.

Wewill consider solutions arising as limits of solutions of the analogue Riemannian
flows, i.e.

∂uε

∂t
= hε =

n∑

i=1

X ε
i

(
X ε

i uε

Wε

)
for x ∈ �, t > 0, (8.3)

and

∂uε

∂t
= Wεhε = Wε

n∑

i=1

X ε
i

(
X ε

i uε

Wε

)
=

n∑

i, j=1

aε
i j (∇εuε)X ε

i X ε
j uε for x ∈ �, t > 0,

(8.4)
where, hε is the mean curvature of the graph of uε(·, t) and

W 2
ε = 1 + |∇εuε |2 = 1 +

n∑

i=1

(
X ε

i uε

)2 and aε
i j (ξ) = δi j − ξiξ j

1 + |ξ |2 , (8.5)
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for all ξ ∈ R
n .

The main results in [14] and [17] concern long time existence of solutions of the
initial value problems

{
∂t uε = hεWε in Q = � × (0, T )

uε = ϕ on ∂p Q,
and

{
∂t uε = hε in Q = � × (0, T )

uε = ϕ on ∂p Q,

(8.6)
with ∂p Q = (� × {t = 0}) ∪ (∂� × (0, T )) denoting the parabolic boundary of Q.

Theorem 8.1 Let G be a Lie group of step two, � ⊂ G a bounded, open, convex
set (in a sense to be defined later) and ϕ ∈ C2(�̄). There exists unique solutions
uε ∈ C∞(� × (0,∞)) ∩ L∞((0,∞), C1(�̄)) of the two initial value problems in
(8.6), and for each k ∈ N and K ⊂⊂ Q, there exists Ck = Ck(G, ϕ, k, K ,�) > 0
not depending on ε such that

||uε ||Ck (K ) ≤ Ck . (8.7)

Corollary 8.2 Under the assumptions of Theorem 8.1, as ε → 0 the solutions uε of
either flow converge uniformly (with all theirs derivatives) on compact subsets of Q to
the unique, smooth solution of the corresponding sub-Riemannian flow in �× (0,∞)

with initial data ϕ.

The proof of this result rests crucially on the estimates established in this paper. In
the following we list the main steps. First of all we note that in view of the short time
existence result in the Riemannian setting we can assume that locally uε are smooth
both in time and space.

8.1 Interior gradient bounds

Denote by right Xr
i the left invariant frame corresponding to X ′

i s and observe that
these two frames commute. For both flows, consider solutions uε ∈ C3(Q) and denote
v0 = ∂t uε, vi = Xr

i uε for i = i, . . . , n. Then for every h = 0, . . . , n one has that vh

is a solution of

∂tvh = X ε
i (ai j X jvh) = aε

i j (∇εuε)X ε
i X ε

jvh + ai, j,h(∇εu)X ε
i X ε

j uε X ε
kvh, (8.8)

where

ai, j,h(p) = ∂aε
i j

∂ph
, aε

i j (p) = 1√
1 + |p|2

(
δi j − pi p j

1 + |p|2
)

,

for the total variation flow, while

ai, j,h(p) = ∂aε
i j

∂ph
− ∂aε

ih

∂p j
, aε

i j (p) = δi j − pi p j

1 + |p|2 ,
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for the mean curvature flow. The weak parabolic maximum principle yields that there
exists C = C(G, ||ϕ||C2(�)) > 0 such that for every compact subset K ⊂⊂ � one
has

sup
K×[0,T )

|∇1uε | ≤ sup
∂p Q

(|∇1uε | + |∂t uε |),

where ∇1 is the full g1−Riemannian gradient. This yields the desired unform interior
gradient bounds. This argument works in any Lie group, with no restrictions on the
step.

8.2 Global gradient bounds

The proof of the boundary gradient estimates is more delicate and depends crucially
on the geometry of the space. In particular the argument we outline here only holds in
step two groups G and for domains � ⊂ G that are locally Euclidean convex when
expressed in the Rothschild-Stein preferred coordinates. As usual we note that the
function vε = uε − ϕ solves the homogenous ’boundary’ value problem

{
P(vε) = 0 in Q = � × (0, T )

vε = 0 on ∂p Q,
(8.9)

with bε(x) = aε
i j (∇εvε(x) + ∇εϕ(x))X ε

i X ε
jϕ(x). and

P(v) = aε
i j (∇εvε + ∇εϕ)X ε

i X ε
jvε + bε − ∂tv. (8.10)

Then we construct for each point p0 = (x0, t0) ∈ ∂� × (0, T ) a barrier function:

Lemma 8.3 Let G be a Carnot group of step two and � ⊂ G convex in the Euclidean
sense. For each point p0 = (x0, t0) ∈ ∂� × (0, T ) one can construct a positive
function w ∈ C2(Q) such that

Q(w) ≤ 0 in V ∩ Q with V a parabolic neighborhood of p0,

w(p0) = 0 and w ≥ vε in ∂pV ∩ Q. (8.11)

Proof In the hypothesis that � is convex in the Euclidean sense we have that every
x0 ∈ ∂� supports a tangent hyperplane � defined by an equation of the form �(x) =∑n

i=1 ai xi = 0 with � > 0 in �, �(x0) = 0, and normalized as
∑

d(i)=1,2 a2
i = 1.

Following the standard argument (see for instance [60, Chapter 10])we prove that there
exists a function � such that the barrier at (x0, t0) ∈ ∂� × (0, T ) can be expressed in
the form w = �(�). ��

Now comparison with the barrier constructed above yields that

Proposition 8.4 Let G be a Carnot group of step two, � ⊂ G a bounded, open,
convex (in the Euclidean sense) set and ϕ ∈ C2(�̄). For ε > 0 denote by uε ∈
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C2(�× (0, T ))∩C1(�̄× (0, T )) the non-negative unique solution of the initial value
problem (8.6). There exists C = C(G, ||ϕ||C2(�̄)) > 0 such that

sup
∂�×(0,T )

|∇εuε | ≤ sup
∂�×(0,T )

|∇1uε | ≤ C. (8.12)

Proof

0 ≤ vε(x, t)

distσ1(x, x0)
≤ w(x, t)

distσ1(x, x0)
≤ C(k, ν), (8.13)

in V ∩ Q, with distσ1(x, x0) being the distance between x and x0 in the Riemannian
metric σ1, concluding the proof of the boundary gradient estimates. ��

8.3 Harnack inequalities and C1,α estimates

Let us first recall that (G, dε) is a 2-admissible geometry in the sense of Definition 7.1,
with Doubling and Poincare constants uniform in ε ≥ 0, as we proved in Theorems
1.1 and 1.2.

The total variation equation is expressed in divergence form, hence also the Eq.
(8.8) satisfied by the right derivatives vh = Xr

huε is in the same form. The mean
curvature flow is not in divergence form. However, arguing as in [60] it is possible
to show that there exists a regular, positive and strictly monotone function � such
that �(vh) satisfies a divergence form equation. As a consequence we can apply the
Harnack inequalities in Theorem 7.5 and Proposition 7.6 to the bounded solutions vh

(or �(vh)), thus yielding the C1,α uniform interior estimates.

Corollary 8.5 Letting K be a compact set K ⊂⊂ Q, there exist constants α ∈ (0, 1)
and C = C(K , α) > 0 such that for all i = 1, . . . , n one has that v = X ε

i u satisfies

||v||Cα
ε,X (K ) + ||∇εv||L2(K ) ≤ C,

uniformly in ε ∈ (0, 1).

8.4 Schauder estimates and higher order estimates

The uniform Gaussian estimates and Schauder estimates in Theorem 1.4 applied to
(8.8) yield the higher order estimates and conclude the proof.Once obtained the interior
C1,α estimate of the solution uniform in ε, we write the mean curvature flow equation
in non divergence form:

∂t uε −
n∑

i, j=1

aε
i j (x, t)X ε

i X ε
j uε = 0.

Applying Schauder estimates in Proposition 6.2 we immediately deduce the proof of
Theorem 8.1.
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Proof of Theorem 8.1 Since the solution is of class C1,α , and the norm is bounded
uniformly in ε then uε it is a solution of a divergence form equation

∂t uε −
n∑

i, j=1

aε
i j (x, t)X ε

i X ε
j uε = 0,

with aε
i j of class Cα such that for every K be a compact sets such that K ⊂⊂ Q and

2δ = d0(K , ∂p Q) there exists a positive constant C0 such that

||aε
i j ||Cα

ε,X (Kδ) ≤ C0,

for every ε ∈ (0, 1). Consequently, by Proposition 6.2 there exists a constant C2 such
that

||uε ||C2(K ) ≤ C2.

We now prove by induction that for every k ∈ N and for every compact set K ⊂⊂ Q
there exists a positive constant C such that

||uε ||Ck,α
ε,X (K )

≤ C, (8.14)

for every ε > 0. The assertion is true if k = 2, by Proposition 6.5. If (8.14) is true
for k + 1, then the coefficients aε

i j belong to Ck,α
ε,X uniformly as ε ∈ (0, 1) and (8.14)

holds at the level k + 2 by virtue of Proposition 6.2. ��
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