
Worcester Polytechnic Institute
Digital WPI

Computer Science Faculty Publications Department of Computer Science

6-2001

Evolving Legacy Systems by Locating System
Features using Regression Test Cases
Alok Mehta
American Financial Systems, Inc., amehta@afs-link.com

George T. Heineman
Worcester Polytechnic Institute, heineman@cs.wpi.edu

Follow this and additional works at: https://digitalcommons.wpi.edu/computerscience-pubs

Part of the Computer Sciences Commons

This Other is brought to you for free and open access by the Department of Computer Science at Digital WPI. It has been accepted for inclusion in
Computer Science Faculty Publications by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Suggested Citation
Mehta, Alok , Heineman, George T. (2001). Evolving Legacy Systems by Locating System Features using Regression Test Cases. .
Retrieved from: https://digitalcommons.wpi.edu/computerscience-pubs/106

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fcomputerscience-pubs%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/computerscience-pubs?utm_source=digitalcommons.wpi.edu%2Fcomputerscience-pubs%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/computerscience?utm_source=digitalcommons.wpi.edu%2Fcomputerscience-pubs%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/computerscience-pubs?utm_source=digitalcommons.wpi.edu%2Fcomputerscience-pubs%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wpi.edu%2Fcomputerscience-pubs%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/computerscience-pubs/106
mailto:digitalwpi@wpi.edu

Evolving Legacy Systems by Locating System Features using
Regression Test Cases

 Alok Mehta George T. Heineman
 Chief Technology Officer Assistant Professor
 American Financial Systems, Inc. Computer Science
 9 Riverside Office Park Worcester Polytechnic Institute
 Weston, MA 02493 Worcester, MA
 1 781 893 3393 1 508 831 5502
 amehta@afs-link.com heineman@cs.wpi.edu

ABSTRACT
There is a constant need for practical, efficient and cost-
effective software evolution techniques. We propose a
novel evolution methodology that integrates the concepts of
features and component-based software engineering
(CBSE). We collect information about a legacy system’s
features through interviews with key developers, users of
the system and analyzing the exis ting regression test cases.
We found that regression test cases are untapped resources,
as far as information about system features is concerned.
By exercising each feature with their associated test cases
using code profilers, we are able to locate code that we can
refactor to create components. These components are then
inserted back into the legacy system, ensuring a working
system structure. Our methodology is divided into two
parts. Part one deals with identification of source code
associated with features which need evolution and part two
deals with creating components. In this paper, we present
preliminary results of the first part of our methodology.

KEYWORDS
Software Evolution, Legacy Systems, Program Slicing
Feature Engineering, Component Based Software
Engineering (CBSE), Testing, Refactoring, Source Code
Renovation.

1. INTRODUCTION
Increasingly, organizations are viewing their software
assets as an investment that grows in value rather than a
liability whose value depreciates over time [1]. At the same
time, organizations are under tremendous pressure to
evolve their existing systems to better respond to
marketplace needs and rapidly changing technologies. This

constant pressure to evolve is driven by escalating customer
expectations and the need to respond to new enterprise
standards, incorporate new products and system features,
improve performance, cope with endless new software
releases, and hardware and software obsolescence.

To effectively evolve legacy systems in this fast-paced
environment, managers require answers to the following
types of question [2]: How do we plan the evolution of a
large and complex system, including the reengineering of
the system? What are the critical success factors of system
evolution? How do we evolve the system without adversely
affecting operations?

1.1. EVOLUTION MODEL
The repeated modification of legacy system has a
cumulative effect that increases system complexity.
Eventually, existing information systems become too
fragile to modify and too important to discard;
organizations must consider modernizing these legacy
systems to remain viable.

Legacy systems are now written in modern programming
languages; reengineering offers an approach to
transforming a legacy system into one that can evolve in a
disciplined manner. To be successful, reengineering
requires insights from different perspectives including the
software, managerial, and economic perspective [6]. Many
software maintenance initiatives do not sufficiently
incorporate the user’s point of reference [7].

Researchers [3,4,5,8] have identified the two domains
around which the entire field of software engineering
revolves: the problem domain and the solution domain.
Users interact with the system by inputting their
requirements in input files (or database) that the system
uses. These users are directly concerned with systems
functionality; their perspective is always in the problem
domain. These input files are often part of regression test
cases that are used to check the stability between one
version to another. Developers are concerned with the
creation and maintenance of software development life
cycle artifacts such as components; their perspective is

 2

rooted in the solution domain. A major source of difficulty
in developing, delivering, and evolving successful software
is the complexity gap that exists between the two
perspectives (as termed by Raccoon [4]). The risk to
viewing evolution just within a single domain is missing
the connection between the two domains.

Evolution focused solely on the problem domain may
suggest changes that degrade the structure of the original
code; similarly, evolution based solely on technical merits
could propose changes unacceptable to end-users.

Years ago, researchers identified features as a natural
organization of the problem domain [8,9]. Surprisingly, few
approaches in the research literature concentrate on feature-
based organization of a system's functionality. On the
contrary, the solution domain is full of research that
develops solutions revolving around software artifact
management activities like design, component construction
and testing. However, features are discussed in the problem
domain and not mentioned in the solution domain.

A successful software evolution methodology must be self-
sustaining; that is, over time, it should ensure that evolution
is possible. Towards this end, we have identified an
approach that integrates reengineering, features, and
components. The basic outline of our methodology is as
following:

• Test cases are selected by considering features.

• Slicing is guided by exercising system on the selected
test cases.

• Slicing results drives refactoring, to create
components.

 Our methodology has three basic assumptions. First, we

assume that the legacy system to be evolved is written in
one of the modern programming languages such as Visual
Basic, C++, Java, COBOL or FORTRAN. Our
methodology depends on a code profiling tool for tracing
the source that implements a particular feature. Second, we
assume that the legacy system have regression test suites.
Third, we assume that some domain knowledge and
expertise is available, although this is not a binding
constraint.

In Section 2 of this paper, we present our feature model that
provides the theoretical basis for the evolution. We present
a novel way to use the code profiling tools in the context of
evolution in Section 3, while sharing some results. Section
4 explores related work and describes the expected benefits
of our methodology.

2. FEATURE MODEL
Users often think of systems in terms of the features
provided by the system. They exercise the system features
by some sort of user input (files or databases) that often is
also used by system maintainers as a part of regression
testing. Intuitively, a feature is an identifiable bundle of
system functionality that helps characterize the system
from the user's perspective. Software developers are
expected to translate such feature-oriented requests and
reports into a system design. Feature Engineering is the
area that addresses the understanding of features in
software systems and then defines a set of mechanisms for
carrying a feature from the problem domain into the
solution domain [3]. We define the term feature by partly
borrowing from Turner’s definition [3]. We developed our
definition by integrating and extending the definitions from
[3,4]:

 A feature is a group of individual requirements
that describes a unit of functionality with respect
to a specific point of view relative to a software
development life cycle.

This definition considers the root of feature(s) in the
problem domain. It gives hints regarding the way a feature
is implemented, traced [10] and how it can be used for
software evolution because we consider the point of view
relative to software development cycle.

2.1 FEATURES AND FUNCTIONALITY
Features and functionality are often used interchangeably,
which is a regrettable mistake. While a function is
inherently an encapsulated entity in programming
languages, a unit of functionality may not be so easily
contained. For example, for the unit user spell checks a
text document, many functions might execute.

Users comprehend a system through its features and are
unaware of the specific way in which these features are
implemented. Software developers view the same system
in terms of data types, local and global control, reusable
functions, and units of testing and maintenance; again, we

Problem
Domain

Solution
Domain

Internal Evolutionary
Pressures

External Evolutionary
Pressures

Complexity Gap

Figure 1: A unified evolution strategy is demanded.

 3

see a clear gap between the problem and solution domain,
as shown in Figure 2.

Feature Functionality Domain

1 Many Solution

Many 1 Problem

1 1 Trivial Case

Many Many Solution and Problem

Figure 2: Relationships between features and functionality

When a single Feature implementation is contained within
many software functions then the point of reference is the
solution domain. Such code is often highly coupled and
embedded within the legacy system. When many related
features are implemented by a single function then the
point of reference is the problem domain. It is trivial when
a feature is implemented by a single function and the
domain distinction is not important.

2.2 FEATURES AND REGRESSION TESTS
Researchers from a theoretical point of view [25-29] have
extensively studied regression testing. Over its lifetime, a
legacy system accumulates test cases that exist to ensure its
integrity as it evolves. Often companies develop
proprietary regression testing tools to automate these tests
or to reduce the total number of tests to execute. However,
there has been little discussion on specifically applying
regression testing for evolutionary reasons. We propose a
novel use of dynamic slicing [11] during regression testing
to identify the code artifacts that interact with a particular
feature and to incrementally refactor the code base to
enable future evolution of fey features.

Testers and Engineers work together to develop test cases
to exercise the system. The selection of test cases is often a
manual, analytical, iterative and time-consuming process.
The goal in this step is to obtain right test cases instead of
minimizing the number of test cases. Many times the
testers ensure that the test cases are valid with respect to the
changes programmed into the system. Over an extended
period of time, these test cases reflect the system
functionality in an implicit way because these test cases are
viewed as a tool to test the stability of the system rather that
a database of user input that reflects system functionality.

2.1. FEATURES/FUNCTION INTERACTION
To complete our description of our feature model, we
identify feature/function interaction as depicted logically in
Figure 4. This analysis is important when two or more
features share common data or functions, and if developers
are trying to identify the functionality implemented by
these features. There are 5 cases where shared functionality
between two or more features either affects the data and/or
functionality in other features:

SSF - Shared Stateless Function: A stateless function [13]
can be shared between two features. To refactor this code,
simply place the common function into a component to be
invoked from both features’ code.

F2
F3

F4
F5

Figure 4: Test cases exercising system features

F1

Features implemented by functions and data within the legacy code

Test Cases

T1
T2

T3
T4 T5 Figure 3: Feature/Function Interaction

Common Data

Feature 2 Implementation

Feature 2 Implementation

Feature 2 Implementation

Feature 2 Implementation

Feature 2 Implementation

Feature 1 Implementation

Feature 1 Implementation

Feature 1 Implementation

Feature 1 Implementation

Feature 1 Implementation

Common Functions

Common Functions

Common Data

Common Functions

SF

DD

DF

SSFF

SSF

 4

SSFF - Shared State-Full Function: A state-full function
[13] is shared between two features in question.
Refactoring may be complex, involving global variables
and require control structures to make a full analysis [14].

DF – Dependent Function: A feature is dependent on a
function that is part of another feature.

DD – Dependent Data: A feature is dependent on the data
that is part of another feature.

SFD – Strong Function Dependency: A common function
is associated with more than one feature and there is strong
dependency on that common function.

As each feature is executed, the code profiling tools
identify the code slices associated with each feature. Once
the code is identified we can refactor that code to enable
evolution of key parts of the system.

3. METHODOLOGY
There are many reasons for evolving a legacy system [1,6].
When evolving the system, the planned work must be
prioritized first, and then mapped to their associated
features within the system. The system features are then
identified and associated with the test cases, and a
technique is developed to identify the code associated with
each feature using the test cases (see Figure 4.0). The code
is then extracted to create a component; finally, the
component is inserted back into the legacy system to
validate results. Our goal is not to re-write a legacy system,
but to incrementally evolve it. The methodology we
propose does not reduce the complexity of a legacy system,
but it helps to clarify that complexity by explicitly defining
component interfaces.

The legacy system that is used as a case study is American
Financial Systems; Incr.’s (AFS) product called Master
System (AMS). AFS is a small (60 employees) software
firm that develops software for the COLI (Corporate
Owned Life Insurance) market. AFS developed AMS to
integrate Life Insurance and Executive Benefits using
mathematical and financial modeling. AMS was developed
nearly 14 years ago using BASIC. During this time,
Microsoft® has evolved BASIC into the more modern

programming language, Visual Basic®. Although, AMS is
classified to be a legacy system, AFS has also evolved
AMS from its original DOS version to a more modern
Windows version. Currently, AMS uses Microsoft Visual
Basic 6.0 ® and runs on Microsoft’s Windows operating
system. We applied the following eight-step methodology
to AMS.

3.1 Prioritize evolution reasons: While it is theoretically
possible to determine an optimal evolutionary path, we
suggest instead that the engineers prioritize their reasons
for evolution, including technical as well as marketing. In
the same way that requirements are prioritized [16]], we
suggest that a clear and concise list be developed that can
dictate the evolution efforts. For example, we initially
evolve the parts of AMS that implement the benefit
modeling features of the system. Within the area of benefit
modeling we plan to evolve the accounting section.

3.2. Logically arrange features to be evolved:
Once the features are associated with their test cases, we
order the features to be evolved to minimize the
interference between them. This step in the methodology
provides heuristics on how to logically arrange features
(using test cases) that needs evolution. We have identified
the following three areas that can help detect interfering
features:

3.2.1 Domain Knowledge: There is no substitute for
domain knowledge when it comes to issues related to
legacy systems. Using domain knowledge it possible to
identify test cases that represents a part icular feature or a
group of features. It is also possible to construct test cases
from scratch that will exercise the feature implementation.
We found that in many cases the testers knew exactly
which test cases would execute what functionality in the
code. Using domain knowledge it is possible to obtain a set
of test cases that are known to exercise features that need
evolution.

3.3.2 Documentation: Legacy systems also have rich
regression test suites that consist of hundreds of test cases.
Many times these test suites are well documented and they
are already grouped by the functionality that needs to be
tested. In such cases, these documented test cases can be
very useful.

3.2.3 Clustering and textual pattern analysis: We present
a simple technique that can be used to group related test
cases. We believe that related test cases exercise a feature
or closely related features. We describe a simple technique
to cluster these related test cases in this section. There are
several clustering techniques described in the literature.
According to [32]:

Clustering analysis is the organization of a collection of
patterns (usually represented as a vector of measurements
or a point in multidimensional space) into clusters based
on similarity.

Figure 5: Test cases and Items relationship

 5

The purpose of our research is not to explore the clustering
techniques but to use them creatively. [32] Provides a
survey of existing clustering techniques that can be used to
group related test cases. We begin by describing the test
cases used in this case study and then provide a simple
model that can be used to cluster or logically arrange the
test cases that represent the features that need evolution.
Readers are encouraged to use more sophisticated
clustering algorithms.

The test cases used in this step can be viewed as the
representation of the AMS data model. The AMS data
model is a simple hierarchy of plan, employee and policy
level information where a plan can have many employees
and an employee can have many life insurance policies. A
group of employees are part of a plan. Information
regarding the plan is stored in the Master File Table. The
Master File Table contains the default input for the entire
plan. These input fields are called Items. The employee
information is stored in the Census File Table. This
information (or Items) can be varied for each employee in
the plan by indicating that the Master File Item belongs to
the Census File Table. This association allows a set of
Items be varied for a group of employees. For example, if a
given plan has 3 employees who have everything in the
plan the same except of their ages. Then the Master File
Items in this case will contain the same information for all
the Items except that the ages will be stored in the Census
File Table. There are about 400 Items in the AMS and
about 75% of them can be varied from employee to
employee. A test case is a combination of Master File and
Census File data. There are about 250 test cases in the
AMS with an average size of 10 employees per test case.

To illustrate the clustering heuristics we selected 10 test
cases and took 5 sets of items that are considered the most
important user inputs in AMS. We analyzed the user input
and gave an ordinal value to each of the valid user input for
a given Item. For example, if item number 1 had ten valid
user input then the user input was given a numeric value of
1 through 10 respectively. We created a matrix of test
cases and Items as shown in Figure 5.0. We then used
existing tools such as Microsoft Excel™ to calculate the
statistical measures that can provide some insight on a
group (or cluster) of related test cases. For example if we
consider two test cases T4 and T6 (assuming that rest all
the items are exactly the same and only items 4 and 5 vary)
we calculate the regression and standard deviation values to
find the best fit lines. It is easy to see that test cases T4,
T6, T8 and T2 can be grouped together. Similarly, test
cases T1, T3, T5, T7, T9 and T10 can be grouped together
because they vary by item 1 and item 5. We can use any of
the existing clustering algorithms in this step, but for
simplicity we use regression and standard deviation as our
measure to help us define the best fit for the lines. It is
possible to use just regression as a measure. However, we
suggest that both regression and standard deviation be used

because it is quite possible that in a large set of data two
unrelated test cases may end up getting the same value.
Using standard deviation as an additional check can help
identify such cases. Using such heuristics we can group
the test cases into two broad groups; group 1 that exercise
feature 1 consists of T4, T6, T8 and T2 and group 2 that
exercise feature 2 consists of T1, T3, T5, T7, T9 and T10 in

this example (Figure 5.0). In addition, textual pattern
analysis can also be used to group these related test cases.
It is quite common for test cases to have textual input.
Using some pattern searching and developing a simple
utility program one can group the related test cases based
upon pre-defined criteria. We found that grouping these
test cases into broad categories simplifies the evolution
process by reducing the feature interaction problem.

3.3 Locating System Features using Regression Test
Cases:

Besides validating marginal changes in regression testing,
the test cases for a legacy system can be viewed as one of
the primary source of information about the features that
are most important to the end users. This is particularly
true for AMS because end-users input their requirements in
these test cases. These test cases can act like a repository
of inputs that exercise the system features. In this step we
provide techniques to data-mine this repository and develop
heuristics for evolutionary purposes. As the regression test
suite increases in size, more and more test cases are used to
exercise the stability of system features from one version to
another. The goal of this step is to identify the test cases
that are correlated to the features we want to evolve. Figure
4.0 shows, for example, how test cases T1-T5 exercise
features F1-F5. A single test case may exercise many
features and vice versa.

3.3.2 Locating System Features using Regression Test
Cases:

In this step, we describe the test cases used in this case
study. We instrument the source code with code-coverage
software. We run the regression test. We then analyze the
path covered. Finally, we develop heuristics to group
related test cases together that exercise a particular feature
for evolutionary purposes.

Figure 6: Test cases, Functions and Feature relationship

Feature 1 Feature 2

 6

The code coverage tool that we used is called
TrueCoverage™ from NuMega®. TrueCoverage™ works
with many programming languages such as Microsoft
Visual Basic, Java, C++ and some scripting languages such
as Jscript and VBScript. To instrument the source code we
compiled the source code image with TrueCoverage™.
Since the regression testing is already being done using
batch mode it was easy to get the instrumented output
against the entire 246 regression test cases. However, these
instrumented images were in a TrueCoverage™ specific
file format. TrueCoverage™ does provide an automated
way to export the specific file format. We had to manually
export each file into a more standard file formats (comma-
separated values) so that we can then import them in a
spreadsheet tool for further analysis. The TrueCoverage™
tool has an interesting merge utility that aggregated all the
246 test cases that were instrumented. This merge utility
revealed that 95% of the code was covered using the 246
test cases. We are in the process of identifying whether the
rest of the code is either unused or there are hidden features
within the system that are not currently being exercised.
The TrueCoverage™ tool provided the following
information on each of the regression test cases:

§ Function name – Name of the function that got
executed.

§ % lines covered – Percentage of lines in the function
that were executed

§ Called – Number of times the function was called

§ # of lines not executed – Number of lines that were not
executed

§ Total # of lines – Number of lines in the function

§ Image – Name of executable, DLL or OCX that
contains the function

§ Source – Name of source file that contains the function

§ Address – Relative virtual address of the function

For the purpose of our analysis, we selected two columns:
Function name and % lines covered for each of the test
cases that represent features to be evolved. We sorted the
data based upon the function name column for each of the
246 test cases by developing a simple utility that combined
all 246 test cases. We then calculated standard deviation
on the entire matrix. Figure 6.0 shows partial results due to
space reasons. The matrix is sorted based on the standard
deviation column. The function column is the function that
got executed and it is preceded by the module name. Each
of columns after the function column represents the %
covered for that particular test case. As the readers can
imagine, it is very easy to get lost in the data. Instead, we
use these numbers for developing heuristics. For example,
if we were to consider evolution of two features; Feature 1
and Feature 2, each represented by test cases {T1, T3, T5,

T7, T9 and T10} and {T2, T4, T6 and T8} respectively, we
deduce the owing results from the data in Figure 6.0:

§ For example, standard deviation (not shown due to
space reason) of 0 means that all the functions in all
test cases were executed. Obviously, if none of the
functions were exercised by all the test cases then that
will also result in a standard deviation of 0. This
analysis has helped us to identify unused code within
the system and has also helped us identify any possible
hidden features.

§ Function 1 totally belongs to Feature 1 and likewise
function 3 belongs to Feature 2.

§ Function 4, 5 and 6 appear to be 100% common to the
two features that we consider for evolution. These are
potentially part of the system core. The concept of
core is defined in the next section.

§ Function 2 and 7 are a potential for the feature
interaction problem (see section 2.4) because parts of
function 2 are exercised by feature 1 (test cases, 7 and
9). Likewise, all of feature 1 test cases and some of
feature 2’s test cases exercise function 7.

§ Function 8 is not used by any of the test cases while
function 3 is used by feature 2.

3.4 Refactor code: Once we have identified the functions
that implement the features that need evolution we begin
refactoring the code. Typically, refactoring will result in
low coupling and high cohesion. Refactoring will result in
the removal of global variables and explicit communication
rather than implicit communication across system
functions. The refactoring may require extensive analysis,
especially if two or more features interact or interfere
within a given source function.

3.4.1 Identify Core: It seems natural to ask the question:
“What else is a system comprised of besides features?”
Software systems include underlying infrastructure to
support and implement their features. Turner identifies this
infrastructure as “the core” [3]. This infrastructure exists
solely within the solution domain. Users are generally not
concerned with the core, and therefore it is not directly
reflected in the requirements. The core is often composed
of control structures, protocols and communication
mechanisms that cannot be traced back to any feature at the
requirements level. Chen, Rosenblum, and Vo [17] make
an observation about the existence of feature components
and core components; core components are exercised by all
test cases, whereas feature components are those exercised
by only a subset of the test cases. We will use this
definition of core.

The concept of core is also mentioned in feature-oriented
domain models, although in this context it relates more to
the properties of some features [18]. The FODA model
defines the core to be what remains of the system in the

 7

absence of features. We identified earlier this to be the
underlying infrastructure. Our methodology is not about re-
architecting the legacy system to impose a radically new
vision of the software. Our primary goal in this step is to
identify features that are not part of core by factoring out
code that is common to all test cases.

For example, Figure 7 shows three features to be evolved.
Each of the features is implemented in the code represented
as a circle. The intersection shown in the figure is the core.
Running the code profiler tool with the test cases that
implement these features can identify this intersection.
Features tend to be cross cutting in implementation.
Refactoring will bring together code related by features into
well defined, cohesive units with clear interfaces.

3.4.2 Identify relationships between features to be
evolved: If there are more than one features to be evolved,
then it is important to evaluate the relationship between
them. The possible relationships were discussed earlier in
Section 2. Indirect relationships are typically found in the
problem domain. Direct relationships are found in the
solution domain.

These relationships can arise at various points in the
software development cycle. The generalization,
specialization and composition are part of the problem
domain and they are also more abstract in nature. The other
relationships can arise in either the problem domain or in
the solution domain, but for refactoring purposes they are
part of the solution domain.

3.5 Create components & Disable old code: Once the
code is factored, the next step is to create components from
that code. We expect that features encapsulated in
components will be easy to maintain and evolve. We will
initially use Microsoft’s Component Object Model (COM).
Once extracted, the old code is disabled, for example, using
compiler directives.

3.6 Plug the component back in and verify behavior:
Once the old code is disabled, we plug the component back
into the legacy system. In essence we are evolving the
legacy system into a component-based system. With our
approach, the same test cases used in 3.2 can be run to
compare the results before and after the evolution.

3.7 Verify evolutionary reasons: This is a longer-term

data gathering and validating step. Once the legacy system
has evolved using this methodology, we propose that the
evolutionary result be measured against the expectations.
This step usually will result in formal and informal data
gathering regarding performance of the evolved system.
This step also validates the reasons of why the evolution
process was started in the first place.

As we can see that our proposed methodology is
programming language and platform independent. It makes
some very basic assumptions about availability of code
profiling tools, requirement management tools and domain
expertise needed. Since the results of the evolution process
can be verified very easily, we believe that this
methodology has a very good chance of being successful
within the practitioners.

4. SOFTWARE EVOLUTION – CURRENT
TECHNIQUES

Software evolution is a broad term that covers a continuum
from adding a field in a database to completely re-
implementing a system. These evolution activities can be
divided into three categories: maintenance, evolution, and
replacement [21,22]. Repeated system maintenance
supports the business needs sufficiently for a time, but as
the system becomes increasingly outdated, maintenance
falls behind the business needs. The evolution effort
required represents a greater effort, both in time and
functionality, than the maintenance activity. Finally, when
the old system can no longer be evolved, it must be
replaced.

Determining the category of evolutionary activity that is
most appropriate at different points in the life cycle is a
daunting challenge. Should maintenance continue or should
the system be modernized? Should the system be replaced?
To make the correct decision, the legacy system should be
assessed and analyzed to consider the implications of each
action. Ransom describes an assessment technique for
determining if a legacy system should be replaced,
modernized or maintained [23]. Organizations can simply
use Ransom’s technique to determine whether they need to
replace, modernize or maintain their legacy systems. For
the purpose of this research we will assume that the legacy
system in question (AMS) needs evolutionary efforts.

This research focuses on one aspect in the life of a system:
software evolution. The primary focus will be on the white-
box evolution technique because this technique makes it
possible to trace features to particular function(s) in the
code and then carve the source code to create components.

5. CONTRIBUTION AND RELATED WORK
Although CBSE provides viable techniques to develop
modularized software systems, these solutions focus
primarily on the solution domain and therefore do not help
to bridge the complexity gap because CBSE techniques
often focus on constructing components from scratch rather

Feature 1 Feature 2

Feature 3
Core

Figure 7: Example of System Core

Relationship

 8

than reengineering them from within the legacy code.
Recent approaches to evolution within CBSE, such as
ArchStudio [24], focus on evolving systems that are
already designed and constructed from well-defined
components and connectors. The emerging discipline of
Software Architecture as defined by Garlan and Shaw is
concerned with a level of design that addresses structural
issues of a software system, such as global control
structure, synchronization and protocols of communication
between component [19]. Software Architecture is thus
able to address many issues in the development of large-
scale distributed applications by using off-the-shelf
components. In particular, it is a useful vehicle for
managing coarse-grained software evolution, as observed
by Medvidovic and Taylor [20]. However, Software
Architecture does not provide an efficient solution for
legacy system evolution.

In addition, we are encouraged by results from our prior
work [3,4] where we converted a standalone executable
into a component to evolve overall system architecture that
resulted in a better maintenance platform for AMS [7], the
feature rich legacy system that we are considering for our
case study

While there are some techniques [33,34,35,36,37] to locate
program’s features using execution slices exist, they all
assume that valid sets of input data (or test cases) are
available at hand. An opposing argument is often times the
regression test cases are undocumented but are still part of
the regression testing because testers are afraid they might
miss testing a feature. Not to mention it is not always
possible to know what group of test cases will exercise a
given feature(s). It is also unclear as to how the existing
techniques define the features and what feature model is
used. We have developed a rich feature model that
considers the issue of feature/function interaction (see
section 2.0). In addition, the existing techniques certainly
do not consider evolution in mind as the primary goal.

Similarly, object oriented methodologies attempt to bridge
the complexity gap by use cases. Since use cases are not
represented in the requirements in a cohesive manner, they
do not represent the end user’s perspective clearly. In the
end, the use cases are simply used as a tool for the
developer, which remains in the solution domain thereby
making no change to the complexity gap.

We believe that there are several benefits of our
methodology. First, it addresses the important issue of
legacy system evolution in an incremental manner.
Second, it bridges the gap between the problem and the
solution domain by mapping the features that the end user
sees using regression test cases, to the functions in the
source code that a developer sees. Third, it recommends
using existing tools to carve out the code related to
feature(s). Fourth, it recommends using the existing CBSE
techniques to construct the components thereby saving

resources. Fifth, it has provisions for validating and
verifying the changes made so one can measure success.

5.1 FUTURE WORK
We are in the process of applying the second part of our
methodology on to AMS, a legacy system with rich sets of
test cases, historical data and features. The second part of
the methodology consists of creating components and
developing a cost model to measure results. We expect to
share our results in AST 2002.

REFERENCES
1. N Weiderman, J Bergey, D. Smith, B. Dennis and S

Tilley. Approaches to Legacy System Evolution
(CMU/SEI-97-TR-014). Pittsburgh, PA, Software
Engineering Institute, 1997.

2. D. Smith, H. Muller, and S. Tilley. the Year 2000
Problem: Issues and Implications (CMU/SEI-97-TR-
002, ADA325361). Pittsburgh, PA, Software
Engineering Institute, 1997.

3. C. Turner, A. Fuggetta, and A. Wolf. Toward Feature
Engineering of Software Systems. Technical Report
CU-CS-830-97, Department of Computer Science,
University of Colorado, Boulder, Feb. 1997.

4. L. Raccoon. The Complexity Gap. SIGSOFT
Software Engineering Notes, 20(3): 37-44. July 1995.

5. H. Kaindl, S. Kramer, and R. Kacsich. A Case Study
of Decomposing Functional Requirements Using
Scenarios. In Third International Conference on
Requirements Engineering, pages 82 89. IEEE
Computer Society, Apr. 1998.

6. S. Tilley, and D Smith, Legacy System Reengineering,
Software Engineering Institute, Carnegie Mellon
University, Presented at the International Conference
on Software Maintenance, November 4-8, 1996.

7. S Comella-Dorda. K Wallnau, R. Seacord, and J
Robert. "A Survey of Legacy System Modernization
Approaches". SEI Technical Note CMU/SEI-00-TN-
003. Software Engineering Institute, Carnegie Mellon
University, Apr. 2000.

8. A. Davis and R. Rauscher. Formal Techniques and
Automatic Processing to Ensure Correctness in
Requirements Specifications. In Proceedings of the
1979 Conference on Specifications of Reliable
Software, pp. 15-35. IEEE Computer Society, 1979.

9. A. Davis. The Design of a Family of Application-
Oriented Requirements Languages. IEEE Computer,
15(5): 21-28, May 1982.

10. IEEE Standard Glossary of Software Engineering
Terminology, IEEE Standards Collection, Software
Engineering, IEEE, New York, NY. 1994.

11. M. Weiser. Program Slicing. In Proceedings of the 5th

 9

International Conference on Software Engineering,
pages 439{449. IEEE Computer Society, Mar. 1981.

12. D. Parnas. On the criteria to be used in decomposition
systems into modules. Communications of the ACM,
15(12): 1053-1058, Dec. 1972.

13. J. Field, G. Ramalingam and F. Tip, Parametric
program slicing, Papers of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages, Pages 379 – 392, 1995.

14. R. Pressman. Software Engineering: A Practitioner's
Approach, 4th Ed. New York, NY: McGraw-Hill, 1997

15. Martin Griss, Implementing Product-Line Features
with Component Reuse, Proceedings of 6th
International Conference on Software Reuse, Springer-
Verlag, Vienna, Austria, June 2000.

16. D. D'Souza and A. Wills, Objects, Components, and
Frameworks with UML: The Catalysis Approach,
Addison-Wesley, 1999.

17. Y Chen, D. Rosenblum, and K. Vo. Test Tube: A
System for Selective Regression Testing. In
Proceedings of the 16th International Conference on
Software Engineering, pages 211-220. IEEE Computer
Society, May 1994.

18. C. Kop and H. Mayr. Conceptual Predesign Bridging
the Gap between Requirements and Conceptual
Design. In 3rd International Conference on
Requirements Engineering, pages 90-98. IEEE
Computer Society, Apr. 1998.

19. D. Garlan and M. Shaw, "An Introduction to Software
Architecture", Advances in Software Engineering and
Knowledge Engineering, Volume I. World Scientific
Publishing, 1993.

20. N. Medvidovic and R. Taylor, "Separating Fact from
Fiction in Software Architecture", 3rd International
Workshop on Software Architecture, Edited by Jeff N.
Magee and Dewayne E. Perry, Orlando, Florida,
November 1998, pp. 105-108.

21. N. Weiderman, D. Smith, S. Tilley, and K. Wallnau.
Implications of Distributed Object Technology for
Reengineering (CMU/SEI-97-TR-005 ADA326945).
Pittsburgh, PA, SEI, CMU.

22. N. Weiderman. J. Bergey, K. Smith, B. Dennis; and S.
Tilley. Approaches to Legacy System Evolution
(CMU/SEI-97-TR-014). Software Engineering
Institute, Carnegie Mellon University.

23. J. Ransom and I. Warren. "A Method for Assessing
Legacy Systems for Evolution," Proceedings of the
Second Euromicro Conference on Software
Maintenance and Reengineering (CSMR98), 1998.

24. P Oreizy, N Medvidovic, and R. Taylor, “Architecture-
based runtime software evolution”, Proceedings,
International Conference on Software Engineering,
Kyoto, Japan, 1998.

25. H. Agrawal, Horgan, J Krauser, E.W., and London,
S.A. Incre-mental regression testing. In Proceedings of
the IEEE Software Maintenance Conference (1993),
pp. 348–357.

26. Y. Chen, D. Rosenblum, and Vo, K.P. TestTube: A
system for selective regression testing. Proceedings,
the IEEE Software Engineering Conference, 1994.

27. H. Leung, and L. White. Insights into regression
testing. In Proceedings of the IEEE Software
Maintenance Conference (1989), pp. 60–69.

28. G. Rothermel and M. Harrold. A safe, efficient
algorithm for regression test selection. In Proceedings
of the IEEE Software Maintenance Conference (1993),
pp. 358–367.

29. G. Rothermel. And M. Harrold. A Comparison of
Regression Test Selection Techniques. Tech. Rep.,
Department of Computer Science, Clemson University,
Clemson, SC, Oct. 1994.

30. A. Onoma, W Tsai, M Poonawala, H Suganuma.
Regression Testing in an Industrial Environment.
Communications of the ACM. May 1998/Vol. 41

31. B. Beizer. Software Testing Techniques. R.
Norstrand , New York, 2d. ed., 1990.

32. Jain, Murty, and Flynn. Data Clustering – A Review.
ACM Computing Surveys, Vol. 31, No. 3 Sept. 1999.

33. T. Ball, “Software visualization in the large,” IEEE
Computer, pp 33-43, April 1996.

34. B. Korel and J. W. Laski, “Dynamic program slicing,”
Information Processing Letters, 29(3):155-163,1998.

35. B. Korel and J Rilling, “Dynamic program slicing in
understanding of program execution,” in Proceedings
of the 5th International Workshops on Program
Comprehension, pp 80-89, Dearborn, MI May, 1997.

36. A. D. Malony, D. H. Hammerslag, and D. J.
Jabalonski, “Traceview: A Trace visualization tool,”
IEEE Software, pp 19-28, September 1991.

37. M Weiser, “Program slicing”, IEEE Trans. On
Software Engineering, SE-10 (4): 352-357, July 1984.

	Worcester Polytechnic Institute
	Digital WPI
	6-2001

	Evolving Legacy Systems by Locating System Features using Regression Test Cases
	Alok Mehta
	George T. Heineman
	Suggested Citation

	

