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Abstract

Most existing modular model checking techniques betray their hardware roots: they assume that modules compose
in parallel. In contrast, feature-oriented software designs, which have proven very successful in several domains, are
sequential in the simplest case. Most interesting feature-oriented designs are really quasi-sequential compositions of
parallel compositions. These designs demand and inspire new verification techniques. This paper presents algorithms
that exploit the software’s modular decomposition to verify feature-oriented designs. Our technique can verify most
properties locally in the features; we also characterize when a global state space construction is unavoidable. We have
validated our proposal by testing it on several designs.

Categories and Subject Descriptors: D.2.2 [Design Tools and Techniques]: Modules and interfaces;
D.2.4 [Software/Program Verification]: Model checking; D.2.11 [Software Architectures]: Languages;
F.3.1 [Specifying and Verifying and Reasoning about Programs]: Specification Techniques;

Keywords: Model checking, compositional reasoning, computer-aided verification, software architec-
ture, feature-oriented design, aspect-oriented programming

1 Introduction

Programs can be decomposed into actors, roles and features: actors play roles to collaboratively implement features.

For example, the actors might be databases, Web interfaces and control logic; features include on-line shopping and

inventory management. Software designs must provide a coherent organization for the code implementing actors and

features. Traditional software organizations arrange programs around actors: each module reflects an actor, and the

collection of actor modules forms the complete design.

Recent research suggests that, in many domains, organizing designs around features rather than actors produces

more reusable designs and implementations. In such a design, each module reflects a feature, and contains fragments

�
An abbreviated version of this paper appeared at the joint ESEC/FSE Conference on Foundations of Software Engineering, Vienna, Austria,

September 2001. The work was partially supported by NSF grants ESI-0010064, ITR-0218973, and CCR-0132659.
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Figure 1: Actor-oriented versus feature-oriented decompositions.

of actors playing the roles relevant to implementing that feature. Figure 1 contrasts these two approaches. As with

aspects [27], feature-oriented designs often divide the implementation of each actor into several fragments that cross-

cut the modular structure of the design. Modules in such designs are sometimes called collaborations [31], hyper-

slices [35], refinements [5], or units [16]. We will use the term features, but our work should apply to other similar

notions of cross-cutting.

Feature modules have well-defined interfaces that permit their composition to build larger designs; they tend,

at least in principle, to obey the characteristics of components [19, 23, 42], such as separate compilation, multiple

instantiability and external linkage. By specifying each feature independently, designers can flexibly decide which

features to include and exclude in a particular composite design. These designs have been particularly successful in

software product lines [12], where different compositions of a collection of features can produce variations on a theme.

A brief sampling of successful designs in this vein includes a military command-and-control scenario simulator [4], a

programming environment [15], protocol layers and database modules [5, 6, 45], and verification tools [18, 41].

The success of feature-oriented designs at implementing software product lines suggests a tantalizing prospect:

perhaps they can also assist in validating such designs. Each feature module’s interface would indicate properties that

hold of that feature. At composition time, the designer would validate these interface properties against other fea-

tures, thus ensuring they hold over the entire design. This scenario represents a useful and important form of modular

verification. Furthermore, it is a potentially easier form of modular verification to use in practice than parallel com-

position. The latter requires complex decompositions of properties to align properties with modular boundaries [24];

with feature-oriented modules, properties and modules naturally align because both tend to originate from the same

source, namely the program’s requirements.

While verifying designs based on their modular structure is an old idea, feature-oriented designs do not appear to
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fit existing modular verification frameworks. Most modular verification literature concentrates on parallel composition

of modules, as befits its hardware origins. There is a small corpus on sequential composition, which represents a very

simple case of feature-oriented design. Realistic feature-oriented models of software, however, quasi-sequentially

compose features encapsulating parallel execution. This subtlety requires a new verification methodology.

In this paper, we propose a verification methodology for feature-oriented software designs. We use model checking

as the underlying verification technique. Our methodology checks properties of individual features before composi-

tion; it also generates constraints to verify against other features during composition. In most cases, especially the

ones we have encountered in practice, we can establish these properties without ever constructing a global state space.

This reuses the verification effort on individual features, and avoids the horrors of state explosion.

While these results are promising, the idea of widespread feature verification faces a difficult challenge. Modular

verification depends on the existence of useful descriptions of interfaces. Experience suggests that developers are gen-

erally loath to ascribe complex interfaces to their modules; indeed, they seem to rarely express more formal properties

than those captured by most programming language type systems. Verification of behavior, however, requires fairly

sophisticated properties at module interfaces. Ascribing these properties to modules is not only onerous an an activity,

it is also difficult to perform correctly. Performing this automatically is difficult due to the large variety of properties a

module may satisfy, and the inherent decidability problems of determining these properties. What hope, then, is there

for modular verification?

Fortunately, our technique automates the problem of property ascription at interfaces. Of the many properties that

may be true (and false) of a module, only a few are of interest for a particular verification task. The key, then, is to not

attempt to generate the “most general” interface, but rather to customize the interface to the verification task. In short,

we advocate a strategy of property-driven interface generation. A new set of properties will require a new round of

interface generation, but this is a small price to pay for automating a task developers are unlikely to perform. As a

result, this approach represents a kind of “sweet spot” between manual attribution of simple interface properties (such

as types) and the intractable peaks of inferring general interfaces.

We have successfully subjected property-driven interface generation to evaluation on a military mission simulator

called FSATS [4]. Our efforts to verify FSATS have inspired and driven our results. The FSATSimplementation is a real

and substantial software product, in which the feature-oriented architecture is fundamental to the design’s development
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and maintenance. As FSATSis too complex to serve as a running example in this paper, we illustrate our development

on two simple examples that distill the problems that we have encountered to date in our work on FSATS.

The rest of this paper is organized as follows. Section 2 discusses prior work on modular verification and its

relationship to our work. Section 3 presents our methodology. Section 4 presents conclusions and discusses avenues

for future work.

2 Background and Related Work

Model checking is a technique for proving logical properties of designs [10]. Its successful application to hardware

makes its use on software designs an attractive proposition. In a canonical model checker, a design is represented

as a (finite) state machine, while properties are usually expressed in variants of temporal logic. Model checkers

handle designs consisting of several machines running in parallel by automatically computing the cross-product of the

machines, then applying their algorithms to the resulting single machine; we exploit this feature in section 3. For an

extensive survey of model checking, we refer the reader to the book by Clarke, Grumberg and Peled [10]. In the rest

of this paper, we assume a basic familiarity with model checking.

Model checking algorithms vary with the logic of properties and the representation of state spaces. Our work views

features as cross-products of of state machines; we extract properties of a feature by capturing the properties that are

true at its boundary (interface) states. Capturing properties at states requires states to be labeled with individual

properties. This assumes the model checker uses state labeling, which is the technique employed for branching-

time temporal logics such as CTL. To simplify the development, we present our algorithms assuming an explicit

representation of the state space of a design. In practice, many model checkers represent state spaces symbolically

rather than explicitly [33]. Our algorithms are insensitive to this difference; indeed, we performed the verification

tasks in this paper on a model checker employing symbolic representations [43].

Several researchers have described techniques for modular verification of designs [17, 22, 28, 36]. These tech-

niques are based on a hardware-oriented notion of modularity, in which modules are composed in parallel. For

instance, one module might be a CPU, while another module represents a floating-point co-processor. The research

then shows how to ensure the preservation of individual properties about the CPU or floating-point processor; using
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these techniques to prove properties involving both devices requires substantial experience, and is not always possible.

These techniques do not apply to sequential compositions, which frequently arise in software.

Some preliminary research [2, 11, 30] has begun to consider modular model checking with sequential, rather

than parallel, control flow. The original work [30] handles designs with only one state machine; it also lacks a

design framework, such as feature-oriented design, that drives the decomposition of the design. Subsequent work uses

hierarchical state machines [2] and StateCharts [11] to provide this decomposition, but the resulting designs are still

monolithic. In contrast, we analyze designs with two key distinguishing features:

� We have to verify individual features without knowing about all the other features that may exist. In other words,

we need to verify open, rather than closed, systems.

� The designs include multiple state machines per feature, which greatly complicates the verification problem.

The work by these other authors does not even admit these design possibilities. Alur and Yannakakis cite the problem

of sequential verification over multiple state machines as open for future work [2]. Furthermore, they do not discuss

how to handle designs that involve quasi-sequential composition of parallel compositions, such as exist in FSATS. Alur

et al. discuss analysis techniques for sequential refinements within modules that are composed in parallel (their work

uses the term “behavioral hierarchy” for refinements within modules and “architectural hierarchy” for parallel compo-

sitions of modules) [1]. The critical difference between their work and ours is that theirs does not support coordination

between sequential refinements across modules. Our work, in contrast, considers verification for features that gather

related sequential refinements into modules. Encapsulating related refinements in features allows us to verify prop-

erties of entire features in isolation from other features, even when those features cross-cut several actors. Without a

feature-oriented architecture, isolating this information from across parallel modules is difficult if not impossible.

Lam and Shankar use projections as a way of decomposing protocols around different functions or operations in

the protocol [29]. The functions around which they decompose a protocol strongly resemble features. At a theoretical

level, their work more closely resembles abstraction rather than modular verification: they reduce portions of the

design that are not in the feature being verified to single nodes or small subgraphs, and argue correctness based on

refinements of abstractions. This approach is largely decompositional: it aims to make verification tractable on large

designs. Our work, in contrast, is compositional; we support building different systems from the same set of designer-
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provided modules. This distinction requires us to treat features as open systems, and requires some special techniques

in our methodology (as presented in this paper). Our compositions do not map inherently to abstraction refinements.1

Inverardi, Wolf, and Yankelevich extract graph-based representations of software components for purposes of

checking for deadlock-freedom [26]. Their work, like ours, also represents components by graph-based abstractions

and traverses those graphs to check properties. Our work differs from theirs in two key ways: first, we are establishing

an overall methodology for handling feature-oriented design, which adds some technical challenges to the verification

problem (described in the remainder of this paper), and second, we support a larger class of properties (namely those

representable in CTL).

A good deal of software architecture research has focused on support for product-lines and separation of concerns.

Some of this work uses layered architectures [38], whose high-level structure resembles feature-oriented architectures;

layered architectures, however, generally include an assumption that each layer refines a more abstract layer already

in the system. Our work does not require any abstraction relationship between features. Rajlich and Silva studied

software reuse and evolution of orthogonal architectures, which organize code fragments into layers of code at the

same level of abstraction and threads of code for common actors [37]. Their work did not consider formal analyses

of designs under orthogonal architectures. Griswold and Notkin explore performance issues arising from layered

architectures [21]. While their layers resemble features, their “actors” were data abstractions (or views) on shared data

in a design with loose coupling between the pieces of a layer. Our actors, in contrast, are control-intensive and are

tightly coupled within each feature. In general, the loose coupling in feature-oriented architectures occurs between,

rather than within, the “layers”.

Several recent efforts have applied model checking to reasoning about aspect-like constructs. Chechik and Easter-

brook reason about compositions of concerns using multi-valued model checking [8]. Their framework helps identify

which concern (feature) is responsible for property violations when checking composed systems; it does not address

how to prove properties through compositional reasoning on individual concerns. Ubayashi and Tamai propose a

method of applying model checking to programs written using AspectJ [44]. Their verification methodology, how-

ever, is simply to weave the program together and verify the result. They leave any notion of compositional verification

to future work. Nelson, Cowan and Alencar [34] present a case study on reasoning about cross-cutting concerns using

1Whether a more complicated mapping exists is an open question.
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Alloy and the LTS checker. They too, however, compose the concerns into a single global specification in lieu of

defining a compositional verification model. Lin and Lin also present a temporal logic-based approach to reasoning

about feature interactions, but their approach is not compositional [32].

3 Verifying Feature-Oriented Software Designs

3.1 A Model of Feature-Oriented Design

We view a design as a set of classes, roughly one per actor in the design. A feature consists of a set of class extensions

(i.e. mixins [7, 20, 39, 40, 46]) for the actor classes; the set of mixins in a feature relate to a common task in the overall

design. This definition permits actor classes and mixins of arbitrary complexity. To make the problem of verification

more tractable, we assume each actor class can be described as a state machine, and that each mixin extends an existing

(base) state machine by adding nodes, edges, and/or paths between states in the base machine. State machine models

of software arise from one of two sources: either the software is written in terms of state machines, as is true for many

embedded software applications, or abstraction techniques derive state machines from the source code [13, 14, 26].

As FSATSis of the former flavor, we assume that approach in this paper. Our work could adapt to the latter if the

abstractions produce machines for which we could define meaningful interfaces between features; accordingly, we

regard the work on state machine abstractions as orthogonal to this paper.

Each base or composed design specifies interfaces, in terms of states, at which clients may attach extensions. We

define interfaces formally below. In our experience, new features generally attach to existing designs at common

or predictable points; the set of interfaces is therefore small. This is important, as the interface states will indicate

information that we must gather about a design in order to perform compositional verification of features; a large

number of interfaces might require too much overhead in our methodology.

Figures 3 and 7 show examples of base designs, features, extensions, and interfaces; Sections 3.3 and 3.4 explain

the examples in detail. The following formal definition makes our model of feature-oriented designs precise. The

definitions match the intuition in the figures, so a casual reader may wish to skip the formal definition.

Definition 1 A state machine is a tuple
���������	�
������	���	���

, where
�

is a set of states,
�

is the input alphabet,
�

is the

output alphabet,
� ��� �

is the initial state,
��������������� �!�"�

is the transition relation (where
���#�$� �

denotes the
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inout

exitreentry exitreentry
(in)(out)

I = <exit, reentry>
B:

E:

Figure 2: Composition of a base system � with an extension � via an interface.

set of propositional logic expressions over � ), and �����	��
� indicates which output propositions are true in each

state.

Definition 2 A base system is a tuple ��������������������� of state machines and a set of interfaces. We denote the elements

of machine ��� as ��� �!�"�#�$�%�&��'(�!�&��)�*#+-,#��./�!�&�&�0�!�1� . An interface contains a sequence of pairs of states

�&�32547698 � �":;2�25<=8>:5? � ��������������2547698 � �":;2�25<=8>:�? � �"���

two sets of formulas called ExitLabels and ReentryLabels, and a predicate UntilCheck on CTL formulas.2 Each 254�6>8 �

and :;2�25<=8>:5?@� is a state in machine ��� . State 254�6>8A� is a state from which control can enter an extension machine, and

:;2�2�<=8>:�?�� is a state from which control returns to the base system. Algorithm 1 explains the contents of ExitLabels,

ReentryLabels, and UntilCheck.

Definition 3 An extension is a tuple ���B�C�����������EDF� of state machines. Each � � must be a connected graph, must have

a single initial state with in-degree zero, and must have a single state with out-degree zero. For each �G� , we refer to the

initial state as 6><=� and the state with out-degree zero as H�IJ8"� . States 6><=� and H�IJ89� serve as placeholders for the states

to which the feature will connect when composed with a base system. Neither of these states is in the domain of the

labeling function � � .

Given a base system � , one of its interfaces K , and an extension � , we can form a new system by connecting the

machines in � to those in � through the states in K , as shown in Figure 2. For purposes of this paper, we assume that

� and � contain the same number of state machines. This restriction is easily relaxed; the relaxed form allows actors

to not participate in each new feature, or to allow new actors as required by new features. We also assume that the sets

2We will expand the definition of interfaces in Section 3.4.5.
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of states in the constituent machines of base systems and extensions are disjoint.

Definition 4 Composing base system ���������
	������	������ and extension feature ����������	����	������ via an inter-

face � = �������! #"$��	$%��
��&'"(%
)*���+	������	������, #"-�.	$%��
��&'"(%�)*����� yields a tuple ��/0��	�����	�/1��� of state machines. Each state machine

/324�5��68742-	:93742-	:;<742$	:=�>:?*@:	�A�7B2�	�CD7B2�� is defined from �E2B�5��64FG2�	:9HF<2�	�;IF<2�	�=�>+JK@:	�ALF<2$	�C3F<2(� and its correspond-

ing extension � 2 �5��6BM 2 	+9HM 2 	:;IM 2 	�= >+N @:	�AOM 2 	�C3M 2 � as follows: 6 742 �P6 F<2RQ 6BM 2TSVU  (& 2 	�W
XY" 2#Z ; = > ?*@[�P= > JT@ ;

A 7B2 is formed by replacing all references to  (& 2 and W
X\" 2 in AOM 2 with exit 2 and reentry 2 , respectively, and unioning

it with A F<2 . All other components are the union of the corresponding pieces from � 2 and � 2 . We will refer to the

cross-product of /H��	����	:/1� as the global composed state machine.

Definition 4 allows composed designs to serve as subsequent base systems by creating additional interfaces as

necessary. This supports the notion of compound components that is fundamental in most definitions of component-

based systems.

3.2 Verification Methodology

Our methodology is designed to support compositional verification of feature-oriented designs. Specifically, our

methodology supports the following activities:

1. Proving a CTL property of an individual feature or composition of features.3 This is easily done in the base sys-

tem with existing techniques, but becomes more complicated in extension features when a system has multiple

actors.

2. Deriving a set of constraints on the exit and reentry states of a feature that are sufficient to preserve a particular

property after composition (the preservation constraints).

3. Proving that a feature satisfies the preservation constraints of another feature (or existing system). This activity

is only meaningful if the preservation constraints were generated for the exit and reentry states to which the

new feature will attach. We establish preservation by analyzing only the extension, not the composition of the

extension and the existing system.

3Clarke, Grumberg, and Peled’s text [10] provides an overview of CTL and its use in verification. Our work uses negation normal form, which
requires the CTL release operator: A[ ] R ^ ] is true if on all paths, ^ is true on all states until ] is true, but ] is not required to eventually be true
(in other words, R is a weak operator, whereas U is usually a strong operator).
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Figure 3: A collaborative design for a sportswatch.

These activities correspond to a kind of modular verification, where the features are modules. As in standard ap-

proaches to modular verification, we are interested in proving properties of modules in isolation from the rest of the

system and in preserving those properties upon composition with other modules.

We illustrate our methodology using two examples: a simple sportswatch and a communication protocol. The

sportswatch design consists of a single actor; each feature therefore contains and extends only one state machine.

This example motivates our interfaces and high-level approach to sequential feature composition. The communication

protocol captures key characteristics of FSATSand shows how our methodology extends to designs with multiple state

machines in each feature. Formal presentations of our algorithms and their correctness proofs follow each motivating

example. Section 3.5 discusses some pragmatic issues that arise when performing these verification runs with an

existing model checker.

3.3 Single-Machine Designs

Figure 3 shows a feature-oriented design of a sportswatch with timer and alarm features. The base system contains

four display nodes: clock display, alarm time display, date display, and an alarm status display that supports toggling

the alarm status. The first extension adds a timer which the user can reset, resume, and stop. The timer feature
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also supports a split timer for capturing time instantaneously. The second extension supports setting the alarm time;

we omit features for setting the clock time due to space constraints. Although both extensions add core functions,

rather than optional features, we implement them as features to allow a designer to include any of several possible

implementations of these features in a final watch (as in a product-line architecture). The watch is controlled through

two buttons (B1 and B2) which can be either up or down and a mode switch that can be in the forward (ms-f) or back

(ms-b) positions.

The base system should satisfy the property that one can always get to the display-clock state (AG EF disp-

clock in CTL). This property is easy to verify using a model checker. The base feature publishes one interface:

���������
	����	������������
	����	����
, meaning that all extensions will start from and return to the dispclock state. Once we extend

the base system with the timer, we must prove that adding the timer will not cause the display-clock property—which

has already been proven of the base feature—to fail. We could compose the base system and timer features and re-

verify the property on the composed system. This approach, however, wastes the work that we have already done

proving the property of the base feature; worse still, on a larger example, the composed design could be too large to

model check effectively. We therefore want to verify that the timer feature will preserve the property already proven

of the base system without using the entire base system.

The classical CTL model checking algorithm [9] checks a property by marking each state with the subformulas of

the property that are true in that state. After marking is complete, the formula is true of the design if its initial state is

marked with the full property formula. If we can prove that an extension does not alter the markings of the base system

states for a given property, then that property will hold in the composition of the base system with the extension as

well. It suffices to show that the markings of the exit states in the base system interfaces are not altered, as all states

which reach feature states do so through the exit state.

Given the base system interface (
���������
	����	������������
	����	����

in this case) and a property to preserve (AG EF dispclock),

we use a model checker to extract the set of subformulas of the property that mark each state in the interface; these

markings can be stored with the interface, and need not be re-computed on each extension. The following three

formulas mark dispclock:

� dispclock

� EFdispclock

11



ms-b

ms-bms-b

reset resume
timer

stop
timer

resume
split

stop
split

B2dn

B2dn

B1dn

B2dn

B2dn

B1dnB1dn

B1dn

B2dn

ms-b

ms-f
out in

EF dispclock

AG (EF dispclock)
dispclock

Figure 4: The timer extension with marking assumptions on the out state.

� AG(EFdispclock).

We must prove that the extension will preserve the markings on the exit state from the base system. The CTL

model checking algorithm marks states based on the markings of its successor states. As some extension states have

transitions to the reentry state (in the base system), we need the reentry state’s markings to compute the markings on

the extension states. Our verification algorithm assumes that the out state of the extension has the same markings as the

reentry state, deriving the markings on the in state, and checking that those markings are the same as on the original exit

state. Figure 4 shows the sportswatch timer feature with the marking assumptions on out. Model checking confirms

that in retains the original markings of dispclock, so the property will be preserved upon composition. Markings of

existential properties are guaranteed to hold since composition only ever adds states; we therefore only need to check

preservation of non-existential properties.

In addition to the display-clock property, we can also verify that the timer feature (without the base feature at-

tached) satisfies the property “once started, the timer can always be stopped” (AG(resumetimer � EF stoptimer)). We

view the timer feature as the base system and the base as the extension to verify that the base feature would preserve

this property upon composition. In general, given two features, we can view each as an extension to the other, thus

allowing us to check whether they preserve each others’ properties upon composition.

We also construct a composed system from the base and timer features, with interface
�������
	�����������
�����������

. The

interface states change after composition because the watch requires switching between modes to be deterministic;

satisfying this constraint requires new features to be entered from the timer feature, rather than the original base system.

For both states in the interface, we record the markings necessary to satisfy the two properties already proven of the

design. These markings arise from both verifying the properties of each feature and from verifying the preservation of
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the other feature’s properties. For dispclock, the new set of interface markings is:

� dispclock;

� EFdispclock;

� AG(EF dispclock);

� EFstoptimer

� resumetimer � EFstoptimer

� AG(resumetimer � EF stoptimer)

Using these markings, we verify that adding the alarm feature preserves the existing properties (displaying the clock

and stopping the timer).

The Algorithms on Single State Machines

The discussion of the stopwatch example motivated two algorithms, one for model checking formulas of features to

populate their interfaces and one for checking whether one feature preserves the properties of another. We present both

algorithms here, followed by a theorem about the compositionality of our approach. The preservation algorithm con-

firms only that properties that label the interface state before composition are still valid after composition; additional

properties may become true on the interface state after composition (but none would logically contradict an existing

property label).

Algorithm 1 (Populating Interfaces During Verification) Given a property � to check of a base system � :

1. Use standard CTL model checking to check � in the start state of � .

2. Store the labels on the interface states of � in the interface.

3. For each subformula of � the form A[ � U � ], check whether � is true somewhere along every path from reentry

to exit in � . This can be done by model checking formula AG(reentry � A[!exit U � ]) on � . If the formula

fails, set UntilCheck(A[ � U � ]) to true in the interface.
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Algorithm 2 (Preserving Properties Upon Extension) Given an extension � with placeholder states in and out and

an interface � for the machine with which � will compose:

1. Initialize the labels on in to the set of all positive and negative propositions labeling exit in � .

2. For each formula � that labels the state reentry in � , add � as a label to state out in � unless the following two

conditions are all satisfied:

� � is of the form A[ � U � ],

� UntilCheck(F) is true in � (meaning that � is false at every state on some path from re-enter to exit in the

original system).

3. For each non-propositional formula � labeling the state exit in � :

� If � is of the form A[ � R � ], � does not label reentry in � , and � does label reentry in � , then model check

A[ � U � ] at state in in � . If the check succeeds, then add � as a label to in.

� If � ’s topmost operator is an existential temporal operator, then add � as a label to in without model

checking.

� Otherwise, model check � at state in using the standard CTL model checking algorithm.

We must iterate over the labels in order of increasing length; the ensures that formulas are checked after their

subformulas are checked. The correct operation of the original CTL model checking algorithm depends on this

ordering restriction.

4. If all labels on exit are labels of in then report that composition preserves all properties of the base system. If

some label on exit is not a label on in, then report that composition may violate some properties of the base

system.

Laster and Grumberg independently derived a similar algorithm for reasoning about sequential decomposition of

finite state machines [30]. Their algorithm is specified on program constructs (such as if statements and while loops);

the details are sufficiently different that it does not carry over to our context. As a result, we provide our own proof of
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correctness in this paper. The correctness depends in part on all reachable states in the composed design lying in either

the base system or the extension (an obvious point in the single-machine case, but one which becomes interesting in

the multiple-machine case). We present the correctness argument for the single-machine case here, and build the result

for the multiple-machine case upon this proof in Section 3.4.4. The argument consists of two theorems that we prove

correct through a single inductive proof with the following structure. (The vertical ellipses denote induction. The solid

arrows chart a path through the proof. At each stage, we first prove (or assume by induction) the proposition at the tail

of a solid arrow. Using its veracity, we prove the proposition at the head of the arrow.)

Theorem 1 Theorem 2

ϕ

ϕ

ϕ<= k <= k

<= k+1

ϕ = 1 ϕ = 1... ...

Theorem 1 Let � be a base machine, � be an interface containing states exit and reentry, and � be an extension

with placeholder states in and out. Let � be the system composed from � and � via � . If Algorithm 2 claims that all

properties of � are preserved under composition of � and � via � , then all labels on exit in � are true at exit in � .

Theorem 2 Let � be a base machine, � be an interface containing states exit and reentry, � be a property in negation

normal form that labels a state � in � , and � be an extension with placeholder states in and out. Let � be the system

composed from � and � via � . If Algorithm 2 claims that all properties of � are preserved under composition of �

and � via � , then � is true at � in � .

Proof: The proofs are by induction on the structure of CTL formulas. In the base case, the formula is a positive or

negative atomic proposition. By construction (Defn 4), � copies the values of atomic propositions from � and � to all

states. � and � share only the interface states, and they also have the same sets of atomic propositions by construction

(Algorithm 2, steps 1 and 2). Both theorems are therefore true in the base case.

Assume that Theorem 1 is true of all formulas of length no more than � and that Theorem 2 is true of all formulas

of less strictly less than � . We first prove that Theorem 2 is also true of all formulas of length � . By definition, a CTL

model checker determines the labels at a state from the labels of its successor states [10]. Let � be a state in � . All
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labels on � in
�

will be true at � in � whenever
�

and � agree on both the successor states of � (transitively closed)

and the labels on those states.

By construction (Defn 4),
�

and � can only disagree on the successors of � if � reaches exit in
�

. If � is exit, then

all labels of length � in
�

also hold at � in � by the inductive assumption on Theorem 1. Assume � is not exit. For

all states ��� on the path from � to exit, all labels on ��� in
�

of length less than � must hold of ��� in � by the inductive

assumption on Theorem 2. Since labels of length up to and including � on exit carry over from
�

to � and all shorter

labels hold at each � � , a simple inductive argument establishes that all labels on � in
�

are also true on � in � .

We now use both the inductive assumption on Theorem 1 and the result that Theorem 2 holds for all formulas of

length no more than � to prove that Theorem 1 holds for formulas of length �	��
 . This will be sufficient to establish

the truth of both theorems.

Assume Algorithm 2 claims that all properties of
�

are preserved upon composition with � . By definition, all

labels on exit in
�

are therefore also labels on in in � . Let  be a formula of length ����
 that labels both exit in
�

and in in � . We must prove that  would also label exit in � . The argument depends on  ’s structure:

� If  is of the form ����� , then both � and � must label both exit in
�

and in in � . By the inductive hypothesis,

both � and � label exit in � , so  must label exit in � .

� If  is of the form ����� , then one of � or � must label both exit in
�

and in in � (if � labeled only one and

� only the other, Algorithm 2 would not claim that all labels are preserved on composition). By the inductive

hypothesis, the same subformula must label exit in � , so  must label exit in � .

� If  ’s top-level operator is an existential temporal operator (EX, EU, ER, or EG), then  labels exit in
�

because

there exists a path from exit in
�

that satisfies  ’s semantics. Since all paths in
�

are also in � by construction,

and since
�

and � must agree on states satisfying subformulas of  by the inductive assumption on Theorem 2,

 must also label exit in � .

� If  is of the form AX � , then  would be true at exit in � if every successor of exit in � satisfies � . By

assumption,  labels both exit in
�

and in in � ; this means that � is true at every successor of these states in

their respective machines. By construction, every successor of exit in � is a sucessor of either exit in
�

or in in

� . By the inductive assumption on Theorem 2, � must be true of each successor from exit in � .
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The inductive assumption for Theorem 2 states that all labels on reentry in � must label reentry/out in � . Since

reentry must lie on any path from � back to � , it follows that all labels of length no more than � on states in �

must be true at the corresponding states in � . Since � is such a label, � must be true of each successor of in in

� . Since all successors of � satisfy � , � must label exit in � according to the definition of AX.

� If � is of the form A[ � U � ], then two conditions must hold for � to be true at exit/in in � : first, every path from

exit in � must eventually satisfy � , and second, every state along each path must satisfy � until a state satisfying

� is reached. Since � labels exit in � and in in � (by definition), these two conditions hold of every path that

stays entirely within one of � or � . We therefore only need to consider paths that involve states of both � and

� other than exit and in.

Since the only transition in � from a state in � to a state in � is the one leaving exit/in, we only need to consider

paths that start at exit/in in � , pass through states in � , then continue with states in � .4 By construction, all

such paths must include the state reentry/out at the interface from � back into � . Assume � is such a path that

does not satisfy � in � . One of the two conditions must fail to hold; we consider each case in turn.

1. Assume � contains no state that satisfies � . By assumption, � labeled in in � . Since the prefix of �

that passes through � cannot contain a state that satisfies � , A[ � U � ] must label out in � (by the CTL

semantics). By step 2 of Algorithm 2, A[ � U � ] therefore labels reentry in � . This label implies that � is

eventually true on every path within � that starts at reentry and includes no states from � . Therefore, �

must include the exit state from � . � thus has a prefix with the following structure (modulo cycles within

� and � ), where none of the states in � is labeled with � :

B

Eφ
φ

φ

φ
φ

φ
φ

exit/in reentry/out

Since A[ � U � ] labels out in � , UntilCheck( � ) must have been false in 	 (by Algorithm 2, step 2).

4Since CTL model checking uses backward propagation, labels on exit/in will change based on labels that propagate through 
 .
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According to the definition of UntilCheck, � therefore contained no path from reentry to exit on which �

was false in all states. � contradicts this requirement, so no such � can exist.

2. Assume � contains a state at which � is false before � is true. Let ��� be the first such state in � . Since

A[ � U � ] labels in in � , � � cannot lie in � . Therefore, � � must lie in � , all states in � that lie within �

must satisfy � , and A[ � U � ] must label out in � (and hence reentry in � by step 2 of Algorithm 2). �

therefore contains a path from reentry to � � that violates the label A[ � U � ] on reentry. As this contradicts

the CTL semantics, the path � cannot exist.

These arguments shows that all paths involving states of both � and � must satisfy � in 	 .


 If � is of the form A[ � R � ], then � will be true at exit in 	 if every path starting from exit in 	 has � true at

every state until some state satisfies � ; unlike with AU, � is not required to be true at some state. Since � labels

exit in � and in in � , � must be true on all paths that lie entirely within � or � . We therefore only need to

consider paths that start at exit/in in 	 , pass through states in � , then continue with states in � .

Assume there exists such a path � that does not satisfy � in 	 . Let � � be the first state in � at which � is false

before � is true. Since � labels in in � , � � cannot lie in � and either � or � must label out in � (by the CTL

semantics). � would satisfy � if � labels reentry/out in 	 (by the CTL semantics), so reentry/out must have

label � and not label � .

Since � labels reentry in � while � does not, then the suffix of � from reentry must contain a state on which �

is false before � is true. Thus, � must have the following structure (modulo cycles):

E

exit/in reentry/out

ψ ψ ψ

ψψ

Bφ
ψ

Notice that the prefix of � that lies in � does not satisfy the formula A[ � U � ]. According to step 3 of

Algorithm 2, however, the labels on reentry in � required that A[ � U � ] be true at in in � in order for � to label

in. This contradicts the premise that � labels in in � , so � cannot exist.
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Figure 5: Two cases in which a label that was on exit in � is not a label on in in � . The portion above the dashed lines
lies in � and the portion under lies in � . In both examples, the crossed-out formulas hold in � but fail to hold in � ;
the labels in boxes are the ones that fail to hold on in in � . In the example on the left, the change in label causes the
AG EF� to be violated in the start state; in the example on the right, the AG EF� continues to hold in the start state
despite the change in labels.

� If � is of the form AG � , then � would be true at exit/in in � if � were true at every state reachable from exit/in

in � . Since � labels both exit in � and in in � , � must be true at every state reachable from exit in � and in

in � . By the inductive assumption on Theorem 2, � must be true at every state in � from � . Further, it must

be true at every state in � from � since the preservation step determined that � is true at in in � . � is therefore

true at exit/in in � .

�

The proof justifies the decision in step 3 of Algorithm 2 to not check preservation of existential formulas in � . Our

implementation utilizes this optimization.

Theorem 2 proves that Algorithm 2 is sound; it is not, however, complete. The algorithm reports a potential

violation whenever a label on the exit state in � fails to hold on the in state of � . There is no guarantee, however,

that the failed label is actually critical to the truth of a property on the base or composed system. Figure 5 shows two

examples for which Algorithm 2 reports a potential violation; in one case the desired property fails while in the other

it continues to hold. In theory, we could reduce the number of violation warnings in two ways: we could attempt to

compute some additional information in the base system about which overall properties depend on which labels of exit

and reentry, or we could require all previously checked labels that were false at exit in � to remain false in in in � .

The former would require more interface information, while the latter could be overly restrictive and require too much

computational overhead for insufficient gain. Additional experience with our original algorithm will guide the degree
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Figure 6: Actor-oriented versus feature-oriented decompositions: a state-machine based view.

to which we need to reduce the numbers of reported false negatives.

Implementation: For our experiments, we simulated Algorithm 2 using the VIS model checker. VIS does not

support this algorithm directly, as there is no way to seed out with the assumed marking. Instead, we were forced to

include a transition from out to the entire base system model; we did not include transitions from the base system to

in. We verified that the markings on the actual reentry state (dispclock) did not change under this operation. As in was

not attached to the base system, this approach is sufficient to argue that the verification would have gone through with

the seeded markings (and no base system) had VIS supported that operation. Section 3.5 discusses our experiences

using a conventional model checker for our sort of modular verification in more detail.

3.4 Multiple-Machine Designs

The algorithm in Section 3.3, as well as prior research into verification under sequential composition, does not apply

to FSATSbecause FSATShas multiple state machines in each feature. In practice, almost all interesting feature-oriented

designs, by their very nature, will employ multiple state machines (one for each actor). When each feature contains a

single state machine, extending a design with a feature corresponds to sequential composition of state machines. When

features contain multiple state machines, extending a design with a feature corresponds to a hybrid of sequential and

parallel composition: the machines within a feature are composed in parallel (because they run together to implement a

particular feature), but the features themselves are composed in a quasi-sequential manner (quasi because the machines

do not synchronize exactly when entering an extension). The actual composition is not strictly sequential: this detail

is at the crux of the verification problem for designs like FSATS, and is the focus of this section.

Constructing a design by sequential composition is appealing because, as Section 3.3 shows, it supports indepen-
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Figure 7: A feature-oriented design for a track-operator communication protocol.

dent verification of features. Figure 6 (right) shows a design constructed in this fashion. The construction provided

in the formal model (the global composed state machine, Definition 4), however, is different. As Figure 6 (left) il-

lustrates, the construction first extends each base machine with its corresponding mixin, then composes the resulting

machines in parallel. Clearly, we would prefer to compose designs according to the first construction because it sup-

ports feature-oriented verification. In order to do this, however, the first construction must produce the same global

composed state machine (upto reachability of states) as the second! This relationship captures the crucial challenge in

feature-oriented verification of designs with multiple state machines per feature. We must construct the parallel com-

positions representing each feature in such a way that composing them sequentially yields the global state machine

arising from Definition 4.

This section motivates our algorithm for constructing parallel compositions within features. Our algorithm is

designed to create parallel compositions that can in turn be composed sequentially with other features. We describe the

algorithm by illustrating its behavior on a small example. We also evaluate this algorithm’s ability to verify properties

of features in isolation. While many features (including the FSATSfeatures) can be verified in isolation under this

construction, our motivating example illustrates a case where independent verification may fail. A property for which

verification may fail must be verified in the composed design, rather than compositionally through the features. We

provide a characterization of these cases and a model-checking-based algorithm to determine whether properties can

be verified compositionally. Section 3.4.1 presents our new example, which captures the salient characteristics of

FSATSwithout necessitating as much explanation of the domain.

21



3.4.1 The Clayton Tunnel Protocol

We consider a feature-oriented design of a communications protocol between operators at either end of a train tunnel

(see Figure 7) [25]. Our design is derived from an actual communication protocol that was in use (and contributed

to an accident!) in England in 1861. The two state machines model the human operators on either end of long train

tunnel covering a one-way track. Unable to see one another, the operators communicate messages about the status

of the tunnel. In the base feature, the operators communicate when trains are entering and exiting the tunnel. The

inbound operator sends a train-in message to the outbound operator when a train enters the tunnel. The outbound

operator sends a tunnel-clear message to the inbound operator when a train exits the tunnel. The base feature consists

of the protocol for exchanging these two messages.

The full protocol was designed to prevent two trains from ever being in the tunnel simultaneously (we omit the

specific details from the model is this paper because they are irrelevant for our purposes). The accident that occurred

arose because a second train entered the tunnel before the first one had left; although the inbound operator suspected

the problem, the communication protocol was too weak to convey the situation to the outbound operator. One solution

is to add messages to the protocol that convey this information accurately. The extension adds a two-in message from

the inbound to the outbound operator; it also adds states to both operator machines so that the outbound operator does

not send the train-clear message until both trains have left the tunnel.

Verifying this protocol requires a model of the trains that can enter and exit the tunnel. A model of the events

that drive a protocol, but are not part of its definition, is called an environment model. The environment model for

the tunnel protocol must generate reasonable train data; for example, no train should ever leave the tunnel before it

enters the tunnel. For simplicity, we use an environment model containing two trains. Their only constraints are that

the first train enters the tunnel before the second, and that both trains enter the tunnel before they exit the tunnel. This

model is reasonable because the original protocol was such that at most two trains could be in the tunnel at once if

the train drivers obeyed the rules of using the tunnel. We implement environment models as state machines. For the

tunnel protocol, the environment model generates signals intrain and outtrain to indicate trains entering and leaving

the tunnel.

Depending upon when trains enter and leave the tunnel, the operators may be inconsistent on their views as to

whether there is a train in the tunnel. Given the base feature, we would like to prove that the inbound operator never
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Figure 8: The cross-product state machine (reachable subset) for the tunnel base feature. The exit subgraph for an
interface containing both train states as exit states is enclosed in the solid box. Both states in the exit subgraph have
the potential to transition to an extension.

livelocks thinking that there is a train in the tunnel (AG(EF(inbb.state=notrain))); this property requires all trains in

the tunnel to eventually exit the tunnel, which we handle with a fairness constraint [10]. We can easily discharge this

property of the base system; the challenge is to verify that the extension preserves it. For the extension, we wish to

prove that once the inbound operator warns that there are two trains in the tunnel, it does not exit the extension until it

receives a tunnel-clear message (AG ((inbmsg=two-in) � A(!(instate=out) U (outbmsg=tunnel-clear)))).

3.4.2 Creating the Extension Cross-Product

The extension consists of the two state machines in the lower dashed box in Figure 7 (though with in and out states,

as in Figure 4). In order to model check the extension, we need to compose the extension machines in parallel.

We could form a naı̈ve parallel composition of these two machines using a standard cross-product procedure [10].

This construction would assume that both machines start in their initial states (the in states) simultaneously. This

assumption, however, is not necessarily valid. In the tunnel protocol, for example, the inbound operator may notice

the second train before the outbound operator has registered that there is a train in the tunnel (this synchronization

problem arises in FSATS). Our parallel composition therefore needs additional information about the synchronization

of the in states in the extension in order to construct a valid composition; without this information, we may use the

wrong initial states during the parallel composition within the extension.

This synchronization observation reflects a general technical challenge with feature-oriented verification: the

reachable global state space of an extended design may contain global states comprised of states from both the base

system and the extension. Our techniques must guarantee that we visit all such states during model checking. As

most feature-oriented designs roughly synchronize actors around each feature, these hybrid states can arise in two
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Figure 9: Decomposing an exit subgraph to drive extension cross-product construction.

controlled places: as the actors enter the extension and as the actors leave the extension to return to the base system.

Our techniques must identify these hybrid states and use them both to properly generate the parallel composition

of an extension and to check whether the synchronization is sufficient to avoid model checking the entire system.

Section 3.4.4 discusses the latter issue.

We derive synchronization information on the exit states from the base system. Given a set of exit states that form

an interface in the base system, we can compute the subgraph of the base system that involves only the exit states; we

then use this subgraph (the exit subgraph, described formally in Definition 5) to drive transitions from the in states in

the parallel composition. Figure 8 shows the exit subgraph for the tunnel protocol. While in practice the exit subgraph

could be large, these graphs are small in FSATS(and presumably in similar designs as well) because the actors decide

to enter a particular extension at roughly the same time based on a tight sequence of message-passing.

Definition 5 Given the cross-product
�

of the base system and an interface

���������
	�����������
�
�������������������������	 ��"!���������������#!$���

to the base system, the exit subgraph is the subgraph of
�

over all cross-product states containing at least one
�
	 ���%

state.

The exit subgraph indicates which states from the base system could be involved in transitions to the extension.

Intuitively, each state in the exit subgraph is a potential initial state for the cross-product of the extension feature. We

must therefore drive the construction of the extension cross-product from all states in the base system that appear in

some state of the exit subgraph. Not all states in the exit subgraph will, however, necessarily have a transition into

the extension feature; in fact, the composed machine may well contain paths through the exit subgraph that eventually
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lead to the feature extension. Constructing the extension cross-product correctly therefore requires that we account for

these potential paths. Our methodology therefore prepends each individual machine in the extension with states from

the exit subgraph prior to cross-product construction.

Figure 9 illustrates the needed construction. The diagram on the left shows an exit subgraph and a potential state

( ���������
	��� ) in the extension (note that state ����������������� is not reachable). In order to construct the potential extension

state from its correct predecessor ( ��������������� ), we need to capture states ��� and ��� in the extension machines before

forming the cross-product. The diagram on the right shows the extension machines ��� and ��� expanded with in-

formation obtained by decomposing the exit subgraph. The expanded machines are then used to build the extension

cross-product.

The following steps formally describe how to construct the cross-product of the extension using the exit subgraph:

1. Construct the exit subgraph ��� (by Definition 5).

2. For each extension machine � � :

(a) Determine all states of base machine !"� that appear in ��� .

(b) Add these states to � � (with the exception of 	�#$��% � , which is already in � � as state ��� � —we refer to 	�#&�'% �

and ��� � interchangeably throughout this description).

(c) For each pair of states (�� and %'� added to ��� (including 	�#&�'%'� ), add a transition from (�� to %'� iff such a

transition exists in the base machine !"� . The guards on the transition should be identical to those on the

transition from (�� to %'� in the base system machine.

(d) Add a state 	�(*)�+*,-	�� to ��� . For each state (�� from !.� added to �/� (including 	*#$�'%'� ), add a transition from

(�� to 	�(�)+�,-	�� enabled on all other transitions from !.� that leave (�� .

3. Treating each state in ��� as a potential initial state, construct the cross-product of the expanded �0� machines

using the standard cross-product construction. We will use this expanded cross-product for all model checking

activities for the extension.

This construction yields a set of cross-product states and transitions involving states from the original extension

machine ��� ; some of these states lie entirely within the extension, while others are hybrid states. The composed
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Figure 10: Using escape states to detect insufficient synchronization of interface states.

cross-product machine arising from Definition 4 (parallel composition of complete actors) also yields a set of cross-

product states and transitions involving states from the original extension machine ��� . Our extension cross-product

construction is correct if these two sets of states and transitions are identical. The correctness proof (presented formally

at the end of this section) argues (a) that the states leading into the extension are the same under both constructions, and

(b) that since these states (the initial states of the extension) are the same under both constructions and the transition

labels on the individual machines are identical, the generated sets of states and transitions must also be identical. The

proof requires an assumption that no cross-product state involving an �����	��
�� � state is reachable under our construction.

We restrict our methodology to cases where this condition holds in Section 3.4.4.

Ideally, this construction should yield all cross-product states in the composed design that arise from entering the

extension. This situation might not hold in the general case, however, as illustrated in Figure 10. In the diagram, the

second machine enters the extension before the first machine reaches its interface state. This creates a global state

������ ���	� which spans the base system and the extension, but without involving an interface ( ������� ) state. This example

motivates the use of the �����	��
�� state in the extension cross-product construction. The construction would yield a

transition from
������ ��� � � to

� �����	��
�� � � � � � (where ��������
�� � captures state
 �

). Reachable ��������
�� states capture cases

such as this in which our methodology could not correctly apply.

3.4.3 Environment Models for Verifying Extensions

Given the parallel composition of the extension machines constructed using the exit subgraph, we can attempt to verify

the feature property using the original environment model to generate the trains. This effort fails. The inbound operator

sends the two-in message as soon as the environment model sends the first train into the tunnel; this is wrong, however,
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because the inbound operator should only enter the multiple train state when the second train enters the tunnel before

the first train exits. Aligning the initial states of the extension cross-product with the initial states of the environment

model loses some history about the state of the environment model at the interface states to the extension. In the tunnel

example, the environment model must have the first train in the tunnel and the second train approaching the tunnel at

the in states of the extension; the normal environment model starts with both trains approaching the tunnel.

We can synchronize environment models with extensions by composing the environment model with the base sys-

tem before computing the exit subgraph. The initial states of the exit subgraph now contain states of the environment

model; those states should be used as the initial states of the environment when verifying properties of the feature.

This construction indicates that the tunnel environment should start with the first train already in the tunnel.

Although generating restricted initial states of the environment model appears to be an overhead of formal verifi-

cation, the problem of generating these models is similar to the problem of generating a testing harness for a feature-

oriented design. feature-oriented designs offer the hope of testing features in isolation. That testing, however, requires

knowledge about the environment that will drive the feature. Our approach merely formalizes the problem of obtaining

a restricted testing harness for feature-oriented designs. In FSATS, the environment model problem arises because each

extension corresponds to a new type of mission which is initiated only if the environment has generated a target of a

particular type.

3.4.4 Verifying Properties Compositionally

We have identified two key issues in supporting verification of multiple-machine features independently from their

base systems: capturing global states that bridge features and restricting environment models. Exit subgraphs and

restricted environment models allow us to verify that an extension satisfies a given property relative to an interface to a

base system. The methodology as presented is still incomplete, however, as we must characterize when the properties

of the composition of this feature with a base system can be verified via sequential composition, rather than on the

global composed state machine. Verifying multiple-machine features under sequential composition is correct only if

we are able to identify and capture all global states that contain sub-states from both the base and extension features.

Thus, we require sufficient conditions for capturing these states.

Section 3.4.2 described a construction for the exit subgraph, which coordinates actors as they enter an extension.
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Just as the actors do not enter an extension simultaneously, we cannot expect them to exit an extension feature simul-

taneously. The asynchronous exits could create reachable states in the composed system that are not contained in the

extension. Worse still, these states could lead to global states that become reachable in the base system only after

composition. Either case would break our proposed feature-oriented verification methodology.

Fortunately, the feature-oriented designs that we have studied, including FSATS, tend to have a characteristic that

addresses this problem: the reentry states eventually synchronize after executing an extension. With this synchro-

nization, the sequential composition of the base system and the extension could capture the full global state space, as

required for feature-oriented verification. If this synchronization does not occur, then our methodology is insufficient;

in such cases, we will have to check the properties in the full composed system.5

The following constraints indicate when we can prove that a feature preserves a property under sequential com-

position. The first two address issues related to entering an extension, while the latter two address issues related to

reentering the base system.

1. Every reachable state in the extension cross-product contains some substate ( ��� qualifies) from the original

extension machine.

2. No reachable state in the extension cross-product contains an �����	��
��� substate.

3. The reentry states eventually synchronize. That is, the state ����������������������������� is reachable and terminal in the

extension cross-product.

4. State ��������� �!��"#�����������$������� �!��"%�&� is reachable in the base system cross-product.

These constraints restrict reentry to the base system more than the exit to the extension. Intuitively, this means

that actors must synchronize more tightly when leaving a feature than when entering it. This seems necessary to avoid

generating additional reachable states in the global base feature. It also enables us to reuse our existing verification

methodology in which we use properties of states in the base system to check properties in the extension; requiring

5When we need to verify in the full composed system, we can apply existing techniques for parallel composition. As these techniques can be
very difficult to use in practice, applying them effectively remains an open problem. Our methodology does support parallel decomposition, though.
One can build the state machine for an entire individual actor by linking all of the state machine fragments for that actor vertically, as shown in
Figure 6 (left). Our methodology enables this construction because each extension is a tuple of independent state machine fragments.
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Figure 11: How the two state space constructions correspond. The graph depicts a global state space constructed over
multiple actors. White states lie fully in the base system, black states lie fully in the extension, and gray states are
hybrids. The annotated version in the middle shows which part of the construction covers each state. The restrictions
on the state space would reject a system containing the states marked invalid. A valid system appears on the right.

state ���������	�
����������������������	�
������� to be reachable provides a concrete reentry state from which to seed the verification

of the extension.

The given constraints are sufficient to establish a correspondence between the two constructions of the global

composed state space. Figure 11 illustrates the intuition underlying the proof. The proof establishes that all reachable

states under the standard parallel construction lie in either the base system (the white states in the figure) or the

extension cross-product (the gray and black states in the figure). The interesting cases involve the hybrid states; the

restrictions limit these to lying at feature entry.

Theorem 3 Let ������� � ����������� � � be a base system and let � = ������ "!#� � �$�������	�
��� � ���������������� "!#� � ���������	�
��� � ��� be an

interface of � . Let %&�&��% � ����������% � � be an extension feature. Let ' � be the global composed state machine over � ,

� , and % (Defn 4). Let ')( be the state machine consisting of the base cross-product and the extension cross-product

for � , � , and % (in which states common to both cross-products are unified). If the methodology restrictions apply,

then '*� is isomorphic to ' ( .

Proof: We will establish isomorphism by mapping each state in ' � to the state in ')( with the same individual

state components from the base and extension machines.

Consider the subgraph of '+� lying completely in the base system and the base system cross-product (a subgraph

of ' ( ). Every state in the base system cross-product must lie in ',� because the base cross-product arises from the

same construction algorithm and initial states as the construction of '-� . By similar reasoning, every base system state

in '*� that becomes reachable before reaching a state involving the extension must lie in ' ( . The subgraphs of '+� and
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���
over the base states are therefore isomorphic unless passing through the extension in

���
makes some additional

base system states reachable.

Under the restrictions on the designs to which our methodology applies, passing through the extension in
� �

cannot make any new states reachable. The restrictions require the tuple of reentry states to be reachable in the base

system alone; this base system state is therefore in both
���

and
���

. Any state reachable from the reentry-tuple state

must also be in
���

and
���

by the definition of reachability. The restrictions also require the reentry tuple (the tuple

of out states) to be reachable in the extension, and for all actors to stutter in their out states until all actors reach

their out states. These restrictions guarantee that no hybrid states are reachable while passing from the extension back

to the base system. Thus, no base system states are reachable from the extension unless they were reachable in the

base-system cross product.

The transitions between the base system states are isomorphic in
� �

and
� �

by construction, since both the states

and the transitions arise from the same construction algorithm.

Having shown that the states lying entirely within the base system are isomorphic between
���

and
���

, it remains

to show that the hybrid and extension states are isomorphic. We consider the hybrid states first. The exit subgraph

is, by definition (Defn 5), the subset of the base cross-product consisting of all states at the interface to the extension.

The reachable hybrid states in
� �

are those reachable from the exit subgraph states. Since all exit subgraph states are

in
� �

by definition, all hybrid states reachable in
� �

must therefore be reachable in
� �

.

We now show that all hybrid states reachable in
���

are reachable in
���

. Assume
���

contains a reachable state

	 � that is not reachable in the extension cross product of
���

; by assumption, 	 � is not in the exit subgraph. Assume

	 � has at least one predecessor 
 � that is reachable in both
���

and
���

(such an 	 � must exist). The extension cross

product is constructed from the extension machines and the expanded states in the exit subgraph construction. Since

all of the expanded states in this construction are also in
� �

, then 	 � must have arisen from states not in the extension

machines: in other words, 	 � must contain at least one base machine state as a component. Call this state � � . Let 


refer to the component of cross-product state 
 � from the same actor machine as � � . Then the transition from 
 to

� � would have yielded a transition to the escape state in the extension cross-product construction (since � � is not in

an extension machine). � ,  , and � therefore would violate the constraints of our methodology, which require no

escape states to be reachable in the extension cross product. By contradiction, then, the hybrid states in
���

must all be
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reachable in ��� .

This leaves only the extension states to compare between ��� and � � . Since these are reachable from the exit

subgraph and/or hybrid states, all of which are already common to ��� and � � , these states must be equivalent in the

two graphs. ��� and � � therefore have the same sets of reachable states under a well-defined mapping, and are hence

isomorphic.

�

Lemma 1 A CTL property is true of a global-composed state space iff it holds under our methodology.

Proof: Theorem 3 argues that the base system plus the extension cross-product is isomorphic to the global-

composed system of a given base system and extension. Our methodology therefore visits all of the states in the

global-composed system during verification (since it visits all states in both the base and in the extension cross-

product). The composition of the base system and extension cross-product is a sequential composition, so Theorem 2

is sufficient to prove that the verification is consistent with that on the global-composed system.

�

3.4.5 Revising the Interfaces

In the multiple machine case, we needed the exit subgraph to perform verification compositionally. In addition, we

needed to remember property labels on states of the cross-products of features, rather than on the interface states of

individual features. The following definition formally extends the original definition of feature interfaces (Defn 2) to

account for these changes.

Definition 6 (Interfaces, revised) Given a feature (base system or extension) �	�
�������������� , an interface for the fea-

ture contains

� a sequence of pairs of states ���������������� ��!��"#�$ !%&���'����������������(�)�� ��!�*"#�$ *%&����� (where each �*���$�(+ and  ��*�*"#�$ !%,+ is a

state in machine � + ),

� the exit subgraph for the feature (as defined in Defn 5),

� a set of formulas ExitLabels on the global state  ��!�*"#�$ !%-�/.0��1.2 ��!�*"#�$ !%3� ,
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� a set of formulas ReentryLabels for each state in the exit subgraph, and

� a predicate UntilCheck on CTL formulas (defined as before).

3.5 Implementation

We have conducted all the model checking tasks described in this paper using the VIS model checker [43]. We

modified VIS slightly to display all sub-formulas of properties generated during the marking phases; we used these

sub-formulas for verifying the preservation of properties in other features. For the paper’s examples, the time and

space usage are negligible, so we do not report them.

Section 3.3 describes how we simulated the modular verification scenario while in fact attaching extensions to,

potentially, the entire base system. This approach was necessary because existing model checkers do not appear to

be designed for extension to verifying open systems. For instance, they do not provide a way to query and assert

properties on specific states. Expressing the extension features in Verilog (VIS’s input language) required manual

insertion of additional design variables because we could not easily unify states in the underlying symbolic transition

system. Furthermore, the exit and reentry subgraphs were hard to connect to the extension feature in VIS’s symbolic

framework, so we constructed them manually. Computing the core subgraphs is straightforward (by adding routines

to the VIS source code); adding the escape state is difficult because it requires us to essentially reverse-engineer the

symbolic state encoding to find an unused boolean representation for the escape state. A front-end for supporting

feature-oriented design languages could work around the limitations of Verilog, but the limitations of the symbolic

framework are harder to surmount.

4 Conclusion and Future Work

This paper has described how intricacies of feature-oriented software designs inhibit straightforward attempts at mod-

ular verification. We demonstrate that the standard decompositions of designs into parallel or sequential modules

are insufficient for feature-oriented software design: verification under parallel composition is extremely difficult in

practice and verification under sequential composition is too simplistic. In practice, many software designs tend to be

quasi-sequential compositions of parallel compositions. We explain how certain constraints can make modular verifi-
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cation tractable by reducing such designs to purely sequential compositions of parallel compositions; these constraints

are reasonable because many existing software designs appear to satisfy them.

In the big picture, our verification model attempts to parallel the software development model by respecting in-

dependent development followed by externally-specified composition. By analogy to separate compilation, we try to

minimize the work expended in verifying compositions relative to the work done verifying the individual features. Our

technique can potentially apply to a variety of system designs including certain uses of components and aspects. It is

especially applicable to feature-oriented product line designs.

We have concentrated solely on model checking because we want to understand the strengths and limitations of

algorithmic verification on feature-oriented designs. Our experience suggests that extant model checkers have not

been designed to be extended for such tasks. We therefore intend to develop custom model checkers for this effort.

We believe this will be necessary to complete the verification of the entire FSATSsuite. A related question is how to

extend our approach to handle LTL formulas. Our approach relies heavily on the state-based semantics of CTL, and

hence does not automatically carry over to LTL’s path-based semantics.

Within the realm of algorithmic verification, model checking may be overkill for verifying certain feature prop-

erties. For instance, simple properties that ensure a design always reaches a consistent state may not need extensive

verification in an extension: simply showing reachability between the extension’s in and out states often suffices (this

relates to checking the requirement in our formal model that extensions yield connected graphs). These properties

arise both in the examples presented in this paper and in FSATS. Therefore, there is clearly potential for applying more

light-weight verification tools, such as reachability engines and type systems. We expect further work with a richer set

of designs to help us identify when the full power of our current methodology is required.

Feature-oriented designs can benefit from a broader scope of verification techniques. Early work on analyzing

dependencies between features [3] must be formalized and incorporated into any validation framework. Addressing

this problem may involve creating special architectural description languages for feature-oriented designs that capture

these dependencies and simplify construction of the exit and reentry subgraphs. Finally, we have encountered feature-

oriented designs involving complex data invariants that will likely be more amenable to theorem proving.
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