






model FCN-32s[33] ES-FCN

per pixel acc 61.75 68.47
per label acc 44.04 50.23
weighted iou acc 46.52 49.12
mean IoU 35.10 38.87

Table 5.1: Pixel-wise semantic segmentation comparison on PASCAL Context
dataset [39].

Figure 5.3: Some Semantic segmentation results using Early Supervision Full Con-
volutional Network (ES-FCN), where blue represents the grass, green represents
the sky, light blue represents the ground and other colors represent other specific
objects (referencing the object color corresponding to the list in PASCAL-Context
Dataset[39])
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5.4.3 Two Class Weather Classification

To validate our model for a new dataset, we evaluate our method using the most re-

cent and largest a public weather image dataset available [34]. This two-class dataset

consists of 10K sunny and cloudy images. For comparison, we adopt the same evalua-

tion metric in [34] which is the normalized accuracy as max {(a− 0.5) /(1− 0.5), 0},

where a is the general accuracy. We following the same experimental setting in [38]

which randomly selects 80% of the image from each class for training and the remain

20% of images are used for testing.

In order to distinguish three different semantic segmentation ensemble methods

mention in Section 5.3.5, we name the first method: raw RGB images concatenate

with 60 channel segmentation results (63 channel input for classification model)

as Directly Ensemble; the second one: employing a convolutional layer with 1 × 1

kernel size to a pre-defined number of output(setting 3 in our experiment), used for

feature selection and use element-wise product with raw image as Mixed Ensemble

(3 channel input for classification model), and the third mode: generating a full

segmentation map within one channel and concatenate with a 3 channel raw image

as Unify Ensemble (4 channel input for classification model). The comparison of

three different ensemble methods is shown in Table 5.3. The result shows that the

Unify Ensemble provides the most compact semantic information and is the most

accurate.

Table 5.2 shows the comparison with current state-of-the-art methods. We select

two well known low level hand-crafted features, HOG [9], GIST [41] (top 3 rows in

Table 5.2) and the delicate features which is specifically designed for the weather

recognition. Our method achieves 95.2%, a new state-of-the-art performance stan-

dard on a two-class weather classification dataset. Although the CNN is a powerful

neural network model especially in classification tasks [38], the additional semantic
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Methods NormAcc Acc

GIST +SVM [41] 11.3% 89.3%
HOG + SVM [9] 38.5% 93.7%
Combined Feature [34] + SVM 41.2% 70.6%
Yen et al. [54] 24.6% 62.3%
Roser et al. [43] 26.2% 63.2%
Lu et al. [34] 53.1% 76.6%
Weather CNN [38] 82.2% 91.1%

Ours 90.4% 95.2 %

Table 5.2: Weather recognition comparison with current state-of-the- art methods.

type ensemble method Acc

1 Directly Ensemble 89.3%
2 Mixed Ensemble 93.7%
3 Unify Ensemble 95.2%

Table 5.3: Weather recognition results using different semantic ensemble methods.

information cues can leverage the CNN to obtain even more precise results.

To make our model more scalable, we extend our model for two more class of

weather- rainy and snowy. We use Fliker crawler to grab 3000 images for each class.

We also finetune from our original 2 class model and change the output layer for 4

outputs, see the result in Table 5.4.

5.5 Conclusion

We believe this is the first paper to propose an end-to-end convolutional network

model which combines a segmentation model with a classification model, allowing

for high-level visual recognition tasks. Our segmentation algorithm learns the pixel

Class sunny cloudy rainy snowy

Ours 95.1% 94.2% 88.91% 90.6%

Table 5.4: Weather recognition results on our extended weather data set.
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level information for the representation of an image through the pretrain model,

and captures the semantic information for whole images. The semantic segmenta-

tion information provided by the segmentation model gives leverage to the image

classification in order to obtain better accuracy. This approach can then generally

be deployed in the recognition task. We achieve outstanding performance on both

public semantic segmentation datasets as well as weather classification datasets,

compared to current state-of-the-art weather classification algorithms in use today

(i.e., from the state-of-the-art 91.1% to 95.2%).
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