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outside of the peak shows the differences between the different metric functions clearly. The fusion

algorithm has the sharpest peak, which makes sense, as the σART and TART algorithms are highly

concentrated near the solution region and reinforce each other.

Figure 5.2 shows a simulation in the same configuration as the previous example. Here, we

have inserted an ideal reflector, shown by a green triangle. This is essentially another locator that

transmits with a time offset proportional to the distance between itself and the true locator. This

reflector has no amplitude degradation, and is also assumed to be isotropic. The σART algorithm

(a) σART [5] (b) TART [5]

(c) Fusion

Figure 5.2: σART vs. TART vs. Fusion - Single Ideal Reflector



55

cannot distinguish between this reflector and the real transmitter. The signal from the reflector has

an absolute delay compared to the signal from the locator, and the σART algorithm cannot resolve

a time delay that is constant at all receive antennas. The resulting error is 8.68 meters. The TART

algorithm does a much better job, giving a position estimate that is only 0.1 meters away from

the truth location. The TART solution is perturbed by the presence of the reflector because the

antennas that have the reflector between them and the transmitter receive both the direct path, and

the reflected signal with a relatively small time offset. This creates multiple ridges of maxima in the

image, moving the peak slightly. Although the σART metric picked the completely wrong peak,

it still had a maximum, at the correct location. This is a situation in which the Fusion algorithm

provides an apparently more robust solution, estimating the correct location with an error of just

0.05 meters despite the disturbance introduced by the reflectors.

In Figure 5.3 we add in 6 reflectors in random locations. The σART algorithm completely fails

in this situation, with an error of 10.77 meters. There is still a sharp peak at the correct location, but

it is smaller in magnitude than the absolute maximum, which is located near a group of reflectors in

the lower right hand corner of the image. The TART algorithm returns a solution with 0.4 meters of

error, which is quite good, given the high degree of multipath. The peak of the TART metric is rather

blurry around the correct location. The Bayesian Fusion Algorithm is able to make use of the fact

that the σART input will amplify the true peak, while attenuating the area immediately surrounding

it. Furthermore, the TART algorithm is very confident that the locator is not in the region where

the σART metric is maximized, which nullifies this false peak, and the fusion result estimates the

correct position of the locator within 0.3 meters.

To investigate the effects of a Geometric Dilution of Precision (GDOP) on the different algo-

rithms, we remove the antennas on two sides of the scan grid. In this simulation we assumed an ideal

channel, with no reflectors and more than enough antennas to correctly perform location. Figure 5.4

shows the resulting metric functions. As was the case in the first simulation, all three algorithms

correctly identify the position of the locator. The σART metric function has a peak which is blurred

along a diagonal, while the TART metric function is blurred in a direction that is perpendicular to

this diagonal. The Fusion metric function has a circular peak where these two peaks overlap, and

the peak is significantly higher than the background metric.

Figure 5.5 shows the type of GDOP that would be experienced if we only had access to one
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(a) σART [5] (b) TART [5]

(c) Fusion

Figure 5.3: σART vs. TART vs. Fusion - Randomly Distributed Ideal Reflectors
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(a) σART [5] (b) TART [5]

(c) Fusion

Figure 5.4: σART vs. TART vs. Fusion - Geometric Dilution of Precision
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side of a building. The metric functions look very different among the three algorithms. The

(a) σART [5] (b) TART [5]

(c) Fusion

Figure 5.5: σART vs. TART vs. Fusion - Severe Geometric Dilution of Precision

σART metric function is blurred in the direction perpendicular to the line formed by the receiving

antennas. The TART metric function is blurred along a line parallel to the receiving antennas. Once

again, the orthogonal nature of the spreads of the σART and TART metric functions makes the

Fusion metric function very focused around the correct solution, which gives us a solution that is

more robust in the presence of noise, as seen in Figure 5.6, where the SNR has been decreased from

infinity to 18dB. The most likely place for noise to move the solution is along the ridge of maxima
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(a) σART [5] (b) TART [5]

(c) Fusion

Figure 5.6: σART vs. TART vs. Fusion - Severe Geometric Dilution of Precision with 18 dB SNR
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in the metric function. Therefore a tighter peak will result in better noise performance. With noisy

data it is also possible that one of the other algorithms may “get lucky” and perform better than

the fusion, but the fused result would be expected to stay within an acceptable error range in more

cases. An example of the “Lucky” phenomenon is shown in Figure 5.7 where the σART algorithm

now gives the best result, with an error of 0.05 meters. Here the noise has perturbed the solution

to the alternate peak. The TART solution remains the same at 0.10 meters, while the Fusion error

grew slightly to 0.10 meters.

(a) σART [5] (b) TART [5]

(c) Fusion

Figure 5.7: σART vs. TART vs. Fusion - Single Ideal Reflector with 12 dB SNR
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While Figures 5.6 and 5.7 nicely highlight the ability of the Bayesian Fusion Algorithm to cope

with the non ideal effects of noise, they are just single cases. Figure 3.2 shows that the result of

Monte Carlo testing with 10,000 cases with -6dB SNR, and the results were consistent with those

observed in these single test cases. The Bayesian Fusion algorithm produced the correct result more

frequently than either σART or TART alone, and in the 10,000 trials it never produced significant

outliers; which is not an indicator that the fusion algorithm never produces outliers, it just produces

them with a much lower probability than theσART and TART algorithms. The simulations executed

here show that the Bayesian Fusion algorithm consistently performs as well or better than σART or

TART do individually.
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Chapter 6

Experimental Results

This chapter presents the results from two field tests conducted in both residential and commer-

cial settings. The goal of these tests was to demonstrate the rapid deployment of our system, as

well as collecting data to be fused in our Bayesian Fusion Algorithm. Unless otherwise stated, all

“Fusion” results are full fusions of σART , TART, and barometric data. Two barometric-only tests

were also conducted to characterize the performance of our sensor in real-world conditions, such as

in a building in which a fire is burning.

When reading this chapter several common types of figures and tables will be used. Test layouts

will show a floor plan with labeled squares, which correspond to truth locations for that test. The

blue circles in these figures represent the reference antennas. Similar diagrams show the errors at

each truth location as a vector which points from the correct location to the algorithm’s location

estimate. Table 6.6 summarizes the performance of the three algorithms in the two test locations.

The tests in this chapter used a PPL multicarrier waveform with 100 MHz. of bandwidth and 109

carriers transmitting at 10 dBm. The RF data was captured using 64 symbol fusion to boost SNR

(functionally equivalent to simple averaging). The bandwidth extrapolation technique referenced

in [5] was employed on the σART and TART processing for the Atwater Kent Laboratories testing,

and on the σART processing for the Campus Ministry testing.
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Figure 6.1: Religious Center Truth Locations from 7/31/2009

6.1 Post Processed Fusion from WPI Religious Center

The first test of the rapid deployment scheme was on July 31, 2009, at the WPI Religious Center.

Figure 4.1 is a photograph of four ladders with four antennas mounted on each, at this test. At this

test site, we used our second generation locator to collect σART data with the transceiver boxes on

a common clock so that we could see the effect of this antenna geometry without having to factor

in any problems that could have arisen from error in synchronization procedures. Later, that same

day, we captured TART data using our fifth transceiver box as a mobile locator, on a separate clock.

The locations of the truth points used in these tests is shown in Figure 6.1.

On January 20, 2010, we returned to the religious center to capture the pressure data that was

required to process the test data with our Bayesian Fusion algorithm. The original test was not in-

tended to be used for this purpose, so the σART, TART, and pressure data were captured at different

times, on different hardware. For the RF tests, it is a good assumption to make that the channel did

not change between the σART and TART captures, as no reflectors entered or left the site during

the testing on that day. The pressure in January was likely different from that in July, but since we

only use differential pressure measurements, which cancels any global effects from weather, these
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Location Truth Height [m] Measured Height [m] Error [m]
1 1.19 1.61 0.42
2 1.19 1.61 0.42
3 1.19 1.49 0.30
4 1.19 1.60 0.41
5 1.19 1.69 0.50
6 1.19 1.68 0.49
7 1.19 1.57 0.38
8 1.19 1.72 0.53
9 1.19 1.65 0.46
10 1.19 1.63 0.44
11 1.19 1.62 0.43

Table 6.1: Barometric Height Estimates for Religious Center

captures are likely a good reflection of what we would have seen on July 31, 2009. The heights

estimated from the differential pressure measurements are shown in Table 6.1, along with the true

heights at the given locations. The σART and TART error vectors from this test are shown in

Figure 6.2. The resulting fusion errors are shown in the error vector plot in Figure 6.3, with the cor-

responding error values listed in Table 6.2. As expected, the errors from the Fusion Algorithm are

the smallest in several cases; when they are not the smallest, they are much closer to the minimum

error acheived by either σART and TART than they are to the maximum of the σART and TART

errors.

6.2 Results from Atwater Kent Laboratories

On May 27, 2010 a test of the PPL system was conducted in the west wing of The Atwater Kent

(AK) building on the WPI campus. This test was the first to simultaneously capture σART , TART,

and barometric data with the rapid deployment setup. Sixteen patch antennas were affixed to four

ladders which were leaned against a wall of the west wing of the building. This wing of the building

comprises three stories and a basement. The top half of the basement is above-grade on one side

of the building. The structure is brick with a modern steel and dry-wall interior. There are also

numerous large pieces of machinery, and no windows, on the western-most wall. A photograph of

the reference antennas is shown in Figure 6.6. We collected data on the basement, first, and second
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Figure 6.2: σART and TART Error Vectors from 7/31/2009

Location XY Error [m] Z Error [m] XYZ Error [m]
Method σART TART Fusion σART TART Fusion σART TART Fusion
1 2.57 0.42 0.28 0.16 0.39 0.33 2.58 0.58 0.43
2 3.14 0.11 0.76 0.37 0.77 0.33 3.16 0.78 0.83
3 2.41 1.22 1.03 0.13 0.34 0.33 2.41 1.27 1.08
4 1.34 1.28 1.15 0.33 0.77 0.33 1.38 1.50 1.20
5 6.35 0.31 0.45 1.49 0.09 0.33 6.52 0.33 0.56
6 4.09 0.47 0.56 1.17 0.11 0.33 4.26 0.49 0.65
7 2.57 0.12 0.25 0.39 0.04 0.33 2.60 0.13 0.41
8 1.83 0.55 0.67 0.16 0.51 0.33 1.83 0.75 0.75
9 1.55 0.16 0.13 0.23 0.74 0.33 1.56 0.76 0.35
10 1.51 0.70 0.38 0.17 0.29 0.33 1.51 0.75 0.50
11 0.51 0.47 0.28 0.32 0.45 0.33 0.60 0.65 0.43

Table 6.2: Religious Center Errors for σART , TART, and Fusion Solutions
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Figure 6.3: Error Vectors from the Post-Processed Religious Center Fusion (7/31/2009)

Figure 6.4: Atwater Kent Basement Truth Locations from 5/27/2010
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Figure 6.5: Atwater Kent First Floor Truth Locations from 5/27/2010

Figure 6.6: Exterior Photograph of Atwater Kent Laboratories showing the west wing
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floors.

The basement of Atwater Kent Laboratories is interesting because the layout is that of a typical

office building, but the environment itself is challenging. Challenging RF conditions include being

partially below-grade, only having windows on one side of the building, and being surrounded by

elevator and HVAC equipment. The layout of the truth points for the basement is shown in Figure 6.4

Figure 6.7: σART and TART Error Vectors for AK Basement

The first floor is the most interesting case, because it is a lecture hall with theater seating, which

allowed us to place truth locations at many different heights, rather than having uniform, discrete,

floor heights. This is the first test setup that truly tests our accuracy in full 3D. The layout of the

truth points on the first floor is shown in Figure 6.5.

Although the pressure errors are larger than the required ± 1.5 meters, there seems to be a

bias that could be removed based on measurements taken on the basement level. In the case of

this test the height estimates that were below the basement elevation rejected, and the scan height

was chosen to be near the correct height. In Table 6.5 it is clear that the incorporation of prior

information regarding the minimum height on the scan grid resulted in zero error for these cases.
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Figure 6.8: Fusion Error Vectors for AK Basement

Location Truth Height [m] Measured Height [m] Error [m]
1 1.19 1.18 -0.01
2 1.19 -0.78 -1.97
3 1.19 0.29 -0.90
4 1.19 -1.01 -2.20
5 1.19 -0.20 -1.39
6 1.19 0.29 -0.90
7 1.19 0.03 -1.22
8 1.19 0.93 -0.26
9 1.19 0.29 -0.90

Table 6.3: Barometric Height Estimates for the Atwater Kent Basement
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Location Truth Height [m] Measured Height [m] Error [m]
1 1.19 1.18 -0.01
2 1.19 -0.78 -1.97
3 1.19 0.29 -0.90
4 1.19 -1.01 -2.20
5 1.19 -0.20 -1.39
6 1.19 0.29 -0.90
7 1.19 -0.03 -1.22
8 1.19 0.93 -0.26
9 1.19 0.29 -0.90
10 5.20 1.80 -3.40
11 5.20 2.20 -3.00
12 5.20 2.79 -2.41
13 5.00 2.27 -2.73
14 4.40 2.70 -1.70
15 3.59 3.83 0.24
16 2.96 2.23 -0.73
17 2.96 2.87 -0.09

Table 6.4: Barometric Height Estimates for Atwater Kent 116

Figure 6.9: σART and TART Error Vectors for AK 116
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Figure 6.10: Fusion Error Vectors for AK 116

The best example of a successful fusion from this test is at truth point #3, on the first floor of Atwater

Kent. The σART and TART metric functions are shown in Figure 6.2, along with the fused result.

6.3 Summary of Experimental Results

Table 6.6 shows the σART only, TART only, and Bayesian Fusion algorithm overall errors from

the Campus Religious Center and Atwater Kent Laboratories. In general, the Bayesian Fusion

Algorithm improved the performance of the PPL system in the Campus Religious Center, where

we expect to have very high SNR and only moderate multipath conditions. In Atwater Kent the

Bayesian Fusion Algorithm improved the 2D case, but because of unreliable pressure data, the 3D

accuracy was worse. Section 5.1 presented several scenarios in which the Fusion algorithm is not the

best solution, however in all cases reviewed, the errors from the Fusion are within the neighborhood

of the σART and TART errors. The starred tests (*) are the result of a purely σART and TART

fusion computed at the correct height of the locator. These results show that the 2D solution is

sensitive to the height estimate used in the selection of the σART and TART scan plane. Contrary to



72

Location XY Error [m] Z Error [m] XYZ Error [m]
Method σART TART Fusion σART TART Fusion σART TART Fusion
1 6.96 3.04 3.62 2.75 0.52 0.00 7.48 3.08 3.62
2 6.58 5.46 6.53 1.36 0.77 0.00 6.72 5.51 6.53
3 2.24 3.51 2.32 0.77 0.00 0.00 2.37 3.51 2.32
4 7.24 4.90 6.42 0.12 0.00 0.00 7.24 4.90 6.42
5 4.87 3.52 3.61 0.52 0.52 0.00 4.90 3.56 3.61
6 9.17 9.87 1.14 2.93 6.18 0.00 9.63 11.65 1.14
7 7.06 2.42 1.73 0.00 5.12 0.00 7.06 5.66 1.73
8 9.11 4.71 5.53 3.02 0.00 0.00 9.60 4.71 5.53
9 4.60 0.81 3.07 0.82 6.95 0.00 4.67 7.00 3.07
10 2.47 1.21 1.67 0.06 0.58 3.49 2.48 1.34 3.87
11 2.93 0.50 0.31 0.81 0.48 2.46 3.03 0.69 2.48
12 2.12 2.52 0.74 0.38 0.20 2.46 2.16 2.53 2.57
13 5.07 1.95 1.57 1.41 0.66 2.78 5.27 2.04 3.20
14 1.26 0.98 1.01 1.42 1.92 1.66 1.90 2.16 1.95
15 2.58 3.12 3.08 1.73 1.88 0.18 3.11 3.65 3.08
16 11.48 8.97 9.87 2.90 4.15 0.75 11.84 9.89 9.90
17 0.97 7.61 7.57 1.77 0.29 0.03 2.02 7.61 7.57

Table 6.5: Atwater Kent Errors for σART , TART, and Fusion Solutions
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(a) σART [5] (b) TART [5]

(c) Fusion

Figure 6.11: σART vs. TART vs. Fusion - AK Ladders Tx 3
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Test Method XY Mean Abs. Error [m] Z Mean Abs. Error [m] XYZ Mean Abs. Error [m]
Religious σART 2.53 0.51 2.58
Center TART 0.53 0.49 0.72

Fusion 0.54 0.36 0.65
Religious σART 1.75 0.00 1.75
Center* TART 0.49 0.00 0.49

Fusion 0.57 0.00 0.57
Atwater σART 3.61 1.67 3.98
Kent TART 3.36 1.64 3.74

Fusion 3.23 2.88 4.33
Atwater σART 7.91 0.00 7.91
Kent* TART 4.51 0.00 4.51

Fusion 4.72 0.00 4.72

Table 6.6: Summary of Errors from Methods Presented

naive expectations the lowest 2D errors were not always found when scanning at the correct height.

In the Atwater Kent case the TART error alone increased (by about a meter) when scanning at the

correct height rather than the barometric estimate of height. This is likely due to the dispersion of

the likelihood function that we observe in the TART metric function when some of the multicarrier

signals are delayed by significant obstructions, such as brick walls. Since this delay is not nearly as

pronounced in the Religious Center, scanning at the correct height should increase the accuracy of

TART. The increase in accuracy here would only be modest because the barometric height estimates

were relatively close to the correct value, and was not apparent in the results in which a slight

increase in total error was actually seen.
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Chapter 7

Conclusion

The Bayesian Fusion Algorithm was developed to recover accuracy that was lost when we began

deploying the PPL system with realistic restrictions imposed on the placement of reference antennas.

The distinct error characteristics of TDOA-like and TOA-like algorithms initially led us to consider

Bayesian fusion [13] for overall accuracy improvement. To perform the same type of fusion seen

in [13] and [10] we had to show that the probability distributions of σART and TART solutions

were statistically independent. The accuracy of the Bayesian Fusion algorithm was then tested

with both simulations and with field experiments. In addition to improving accuracy, the Bayesian

Fusion Algorithm was expected to increase the robustness of positioning solutions when perturbed

by noise, which was verified in simulation, and was supported by experimental data.

A shortcoming of the Bayesian Fusion Algorithm is that there is no known way to assign a

confidence metric to the underlying data sources. All of the barometric sensors that we have tested

have been fraught with errors and calibration issues of every kind, and neither the σART nor the

TART algorithms provide us with a measure of confidence in their solutions. The addition of this

type of confidence information would likely increase the accuracy and robustness of the Bayesian

Fusion Algorithm. A major strength of the Bayesian Fusion Algorithm is that it does provide us with

a measure of it’s own confidence based on the correlation between the underlying data sources. This

means that the incorporation of additional data sources with the current algorithm could benefit from

this type of information. The system being developed within the inertial navigation research being

done in parallel with this thesis [22] is an example of another data source that could be included
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in such a fusion. There is also a great deal of promise in using this algorithm for tracking moving

locators, as opposed to single position estimates alone to improve overall accuracy in conjunction

with a Kalman filter, as information from the past can benefit the solution in the present time step.

7.1 Contributions of this Thesis

7.1.1 Utility of the σART Algorithm

The TART algorithm was initially seen as a direct replacement for the σART algorithm, a next

step in improving the accuracy of the PPL system. Simulations and field tests in this and other

works [5] have consistently shown the TART algorithm to perform well in situations where the

performance of the σART algorithm is compromised. The question remains whether the inverse

statement is true: does the σART algorithm perform well in situations where the performance of the

TART algorithm is compromised? Furthermore, in situations where both algorithms are compro-

mised, can they each provide useful information for a fused result?

There is reason to believe that the σART algorithm should outperform the TART algorithm in

certain situations. Consider a situation in which we have reference antennas on the outside of a

concrete structure, and a locator within the walls of this structure. The fundamentally TOA-like

TART algorithm cannot compensate for the delay caused by the lower speed of light within the

concrete. The σART algorithm, however, is not affected by this delay, as it is constant for all of

the reference antennas, and therefore produces no difference in the time of arrival. The simulations

presented in Chapter 5 also show several instances where σART outperforms TART. Experimental

results show that in cases where both algorithms perform poorly, the data provided by σART and

TART are distinct and provide us with useful information. This observation led to the idea that

TART complements σART, rather than superseding it.

7.1.2 Statistical Independence of σART and TART Errors

Once it was established that σART and TART could both provide us with useful information

which could lead to a better, federated solution we focused on Bayesian fusion methods. We be-

lieved that this type of fusion would make the best use of the available data, but in order to use

Bayesian fusion methods from past work [13, 10] these data had to be shown not fully dependent.
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Since the error characteristics were known to be Gaussian [5], it was sufficient to show that the

errors were not fully correlated, which seemed likely, based on observations of σART and TART

solutions from the same RF data, which showed the error distributions of σART and TART (which

are proportional to the metric functions) to be orthogonally skewed. While such skewness is neither

sufficient nor necessary, it can be an informal indicator for estimators of the same quantity.

Monte Carlo simulations were conducted in order to calculate the correlation between theσART and

TART errors, and it was found that they were not highly correlated. The highest correlation values

were found when the SNR was lowest, and the errors were smallest. These cases are where our

assumptions of independence are boldest, however, since the individual errors are very small the

negative impact of being incorrect in our assumption is minimal. In cases where the correlation is

small, our assumptions clearly hold, the errors are larger and hence gains are possible. When the

correlation drops to near zero, our assumptions are most valid, but we are likely operating in a re-

gion where the errors may be so large as to possibly invalidate other aspects of our statistical model

(Gaussianity for example) hence let the performance gain again be available. Thus the advantages

to be had from fusion would ultimately depend on upon the behavior of real data from physical

environments.

7.1.3 Gains in Accuracy from the Bayesian Fusion Algorithm

Ultimately, the goal of the Bayesian Fusion Algorithm is to improve the accuracy of the PPL

system. The gains in accuracy that were observed in simulation were consistent with our expectation

that positioning accuracy would increase. The performance in the presence of noise, reflectors, and

poor antenna coverage were generally better than the solutions from the σART or TART algorithms

on their own. In no cases did the fused result look significantly worse than σART or TART, and it

was never the worst of the three.

In the Atwater Kent field tests the Bayesian Fusion Algorithm performed better (in the sense of

mean absolute error) than either the σART or TART algorithms. It is also noteworthy that none of

the algorithms did particularly well in this very challenging scenario. The fused result did, however,

narrow the search to a single office and its nearest neighbors. The barometric data from this test was

extremely bad, but additional analysis in which we provided perfect height information showed that

the 2D error was actually increased, which speaks to the sensitivity of positioning solutions to scan
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height, but in a non intuitive manner.

In the Religious Center, the performance of the Bayesian Fusion Algorithm (using the measure

of mean absolute error) was approximately equal to that of the TART algorithm. Unlike Atwa-

ter Kent, the religious center does not have thick masonry walls which adversely affect the TOA

calculations needed for TART synchronization. This is an example of a situation where σART is

totally compromised, but TART is able to perform very well. It is important to note that although

the σART solutions were extremely bad, they did not cause the fused result to be bad, which lends

support to the claimed robustness of the overall fused solution.

7.1.4 Gains in Robustness from the Bayesian Fusion Algorithm

As seen in the field, large errors from a single data source are not sufficient to corrupt the overall

fused solution. The Bayesian Fusion Algorithm is fundamentally robust to error from a single data

source because it is evaluating the agreement between not fully dependent measurements on the

location of our locator. Monte Carlo simulations also show the Bayesian Fusion Algorithm to be

much more robust than σART and TART, with only four position estimates in 10,000 trials that had

errors larger than the scan resolution (5 cm), where σART and TART had thousands of incorrect

position estimates1.

7.2 Future Work

In order to further increase the accuracy of the Bayesian Fusion Algorithm, we should shift

our focus from evaluating absolute accuracy at static locations to precisely tracking the path along

which a locator is moving. Given a reasonable estimate of an initial position, and knowledge of how

far the user can travel in a time step, it is possible to use a much more informative prior probability

distribution to restrict the search space to small area of high likelihood. As time progresses, this

prior distribution will grow with the uncertainty of the location, but the growth will be bounded by

the current uninformative prior. We can further restrict the growth of this uncertainty by developing

a confidence metric for the Bayesian Fusion Algorithm based on the amount of agreement between

1These estimates were incorrect, but the degree by which they were wrong was generally small in this ideal simulation
with noise.
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the σART and TART algorithms.

This type of tracking is also very well suited to integration with inertial navigation data, which

has very well known uncertainty characteristics [22]. The addition of inertial navigation data to

the Bayesian Fusion Algorithm would further increase the accuracy and robustness of the overall

solution, and given a good measure of confidence for the RF results the drift of the inertial system

could be kept in check. Since the Bayesian Fusion algorithm (with or without inertial data) can

provide confidence information about itself, a Kalman [19] filter could be used to further improve

real time path tracking through a building.
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