Research Using ASSISTments Test Bed

Hannah L. Kraus
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/iqp-all

Repository Citation

This Unrestricted is brought to you for free and open access by the Interactive Qualifying Projects at Digital WPI. It has been accepted for inclusion in Interactive Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.
Research Using ASSISTments Test Bed

An Interactive Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science

by Hannah Kraus

Date: May 15, 2017

Cristina Heffernan, Advisor
Table of Contents

Abstract 3

Acknowledgment 4

Introduction 5

Log Video Study 7

Common Wrong Answer Feedback 9

Kind Study 15

Data Analysis 20

Conclusion 27

Appendices

Appendix 1.1- View Problems Text Hints 28

Appendix 2.1- Think Aloud 85

Appendix 2.2- View Problems Control PSAKKY 86

Appendix 2.3- View Problems Treatment PSAKKY 149

Appendix 3.1- Think Aloud 303

Appendix 3.2- Comments on Problems 304

Appendix 3.3- Making Problems Kind Presentation 305

Appendix 3.4- View Problems Unkind 318

Appendix 3.5- View Problems Kind 379

Appendix 3.6- Post Test 1 440

Appendix 3.7- Post Test 2 441

Appendix 4.1- Data Output SPSS 442
Abstract

ASSISTments is an online education system dedicated to helping students learn better across the US. Work is being done everyday to improve the experience both for teachers and students. To best understand how to be an effective program, research is done on many areas of ASSISTments. The ASSISTments Test Bed allows researchers to set up studies using ASSISTments. This project focuses on the processes used to design a study using ASSISTments Test Bed.
Acknowledgement

This project would not have been possible without the endless help and guidance of Cristina Heffernan. I would like to thank her for her gracious support, patience, and creative ideas, both which made this project very enjoyable. I'd also like to thank Cristina's husband, ASSISTments founder, Neil Heffernan for teaching me about the program and helping me give my project direction. Finally, I'd like to think Korinn Ostow for teaching me some of the technical skills involved with the analysis of ASSISTments Test Bed data.
Introduction

ASSISTments was created by WPI’s Neil Heffernan in collaboration with Carnegie Mellon University. It seeks to help students as individuals, classes as a whole, and teachers across the board. Currently, students in 48 states across the United States use ASSISTments. This provides an incredible pool of resources for researchers to look at students from a mix of backgrounds, demographics, and abilities across the countries.

Researchers use ASSISTments Test Bed to look at data gathered through ASSISTments. This provides an organized way for both internal and external researchers to utilize data gathered through Assessments. By applying to do research using ASSISTments, a researcher must meet a few qualifications. ASSISTments has a blanket IRB so anyone allowed in the system has the ability to do studies on any and all groups of students if the below qualifications are met.
The first step for a researcher would be to finalize a research idea. Next, a researcher may need to create a problem set. The ASSISTments Test Bed website can help someone new to ASSISTments learn how to make a skill builder and problem set for the first time. Some time may need to be taken on this step to ensure the problem set created can potentially answer research questions. After this, the study gets delivered to Teachers and Students. It might take some waiting to have enough students for a sample size. To Analyze data, researchers can get data through ALI (Assessments Learning Infrastructure). Anyone subscribed to a certain study will get weekly notifications about how many students have done the problem set. After analysis, the researcher can make conclusions and write them up.
Log Video Study (PSA4E49)

When students have difficulties on the problems in Assistments, they have a couple of ways to get help through the website. Depending on the problem, they may be able to receive some type of feedback message or hint. Other educational systems like Assistments, such as Khan Academy, have a video learning option. Video learning teaches students through both audio and visual techniques. Video instructions are often more similar to the type of instruction a student would receive in a typical classroom. Professor Jacob Whitehill, a WPI Computer Science professor partnering with Assistments, wondered if video learning could accomplish the same goals as hints/feedback messages and potentially help more students reach mastery level.

Video hints are more difficult to standardize than text hints. A text hint can be made from a formula and apply to problems with different numbers. This way, students can still get specific help, allowing them to learn. Videos can’t be standardized in the same way though. A separate video would have to be made for each specific problem which could become time consuming.

In this study, it was hypothesized that students who were in the “Video” condition would be as successful as the students in the “no video” condition. The study was performed on “Simplifying Logarithms” (PSA4D9T). This problem set has students simplify logarithmic expressions by identifying patterns between the variables.

To set up the study, a couple of videos were found that go through the steps of a Simplifying Logarithms problem in the same way a hint in ASSISTments would. These videos were inserted as hints for the experiment group. Then the control group was created from the existing problem set. Specific problems were taken out that matched the specific
problems reviewed in the video hints so the problems in the experiments group matched those in the control group. The hints were kept the same. [Appendix 1.1]

For this study, students who wouldn’t be able to access a video were put into a “No Video” category. In this way, the study was not biased towards students who had the ability to access videos while doing homework.
Common Wrong Answer Feedback (PSAKKY)

The Perseverance Study Group is a team composed of researchers across the US who use Assistments Test Bed. One researcher observed students completing the “Finding Slope from a Linear Equation” problem set (PSAKKY). She found that many students had a difficult time understanding what they were doing wrong. In some cases, students had a hard time interpreting the hints. In other cases, students repeated the same mistakes. [Appendix 2.1]

The hint given to students who are completing PSAKKY is general and goes through all of the steps required for finding the slope of a linear equation. These hints often include many steps and may be difficult for students to interpret. Since students often made mistakes on a couple of key steps of the problems, researchers wondered if it might be helpful for students to receive advice specific to the mistakes they made. Further, specific feedback may allow students to self correct easier and make them less likely to repeat the same mistake.
Determine the slope from the following equation: $7y - 1x = 5$

In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

$$y = mx + b$$

First, you must subtract $1x$ from both sides, giving you:

$$7y = 5 + 1x$$

Then, divide each side by 7.

$$\frac{7y}{7} = \frac{5 + 1x}{7}$$

$$y = \frac{5}{7} + \frac{1}{7}x$$

The slope is the coefficient of x, or $\frac{1}{7}$. Type $\frac{1}{7}$.

Type your answer below (mathematical expression):
Researchers predicted that if a student makes the error of assuming the coefficient of X is the slope (and ignores the fact that the coefficient of y needs to be taking into account by presumably putting it into slope intercept form) and does giving them an immediate message help it will allow them to do better on the next problem, not make that same error on the next problem, and reduce the time (in seconds) it take to get three correct in a row.

A member of the Perseverance Study Group added specific feedback to the template of the skill builders. She looked at the results of PSAKKY and identified what the most common mistakes were. She found mistakes were often made by students forgetting how to correctly divide by negative numbers, forgetting to isolate y before taking the coefficient of x, or thinking the y intercept was the slope. She wrote a message for each specific mistake. She made a new problem set, ensuring that the number of each problem type was consistent between the original problem set and new one.
For the following problem, the student likely just chose the coefficient of x before dividing it by the coefficient of y.

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order the read the slope from the equation, it must be in the form

\[y = mx + b \]

You must solve for y first

\[4y - 8x = 10 \]

Add 8x to both sides to get y by itself

\[4y = 8x + 10 \]

Divide everything by 4. Don't forget the negative in front of the x!

\[\frac{dy}{dx} = \frac{8x + 10}{4} \]

\[4 = 4 \]

\[y = \frac{8}{4}x + \frac{10}{4} \]

Now you can read the coefficient of x as the slope (m)
In the same problem, this student forgot that when moving “8x” to the other side, there is no longer a negative in front of the coefficient.

The control group of PSAKKY was the original problem set. [Appendix 2.2] Problems were changed on an individual level for the test group. [Appendix 2.3] The Perseverance Study group also agreed to add some messages to the feedback messages to notify students they had made a “Common Wrong Answer”. The hope in this initiative was that students would feel less behind their peers finding out the mistake they made was a common one and easy to fix.

Researchers agreed on a couple of measures to make conclusions for this study. They would look at correctness, a student's ability to answer correctly after a feedback message.
Additionally researchers would look at presence of the same error after it was corrected and
researchers would look at mastery speed. Researchers hypothesized that it would take students
fewer problems to master the same skills with feedback messages.
“Kind” Study (PSAV89B)

A researcher in the Perseverance Study Group spent time observing students going through selected problem sets. She noticed some difficulties among students completing a problems dealing with the “Dividing Mixed Numbers” problem set (PSAV89B) . She observed that students seemed to struggle most with arithmetic in these problems. Among other observations, she wrote, “This problem required extensive calculations that were not necessarily directly related to understanding the focal skill of dividing mixed numbers”. By this, she is suggesting that although students struggled with computation, this didn’t necessarily test their ability to divide mixed numbers. [Appendix 3.1] These observations are further enhanced with student feedback on these problems. [Appendix 3.2] The Perseverance Study Group formed some questions after these observations

<table>
<thead>
<tr>
<th>Comments on this Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>General comment: ?</td>
</tr>
<tr>
<td>General comment: Too big of numbers for a simple problem use some easier numbers to calculate</td>
</tr>
<tr>
<td>General comment: Mr. Grover, I am having some trouble on this so maybe I could stay after and you could help me out a little bit if that is ok?</td>
</tr>
<tr>
<td>General comment: I typed in the right answer and it said it’s wrong. Then I typed it again and it said it’s right</td>
</tr>
<tr>
<td>I am having difficulty with this problem: This one is really hard!</td>
</tr>
<tr>
<td>General comment: DANGIT! I completely forgot the stupid improper fraction to mixed number. GHAAAH</td>
</tr>
<tr>
<td>General comment: sorry.</td>
</tr>
</tbody>
</table>

The research questions asked were “What is the effect on students’ mastery progress (i.e., ability to finish skill builder, performance on post test) of having more versus less complicated arithmetic work to complete the division?” And “What is the effect on students’ mastery progress (i.e., ability to finish skill builder, performance on posttest) of ordering items
from less to more complicated in their arithmetic to work to the complete the division?” By asking these questions, the Perseverance Study Group hoped to identify the importance of complicated arithmetic in mastering the skill of dividing mixed numbers.

The team hypothesized that “kind” multiplication and division in problems would result in more students completing the problem set than complicated arithmetic. The team also predicted that students completing the “kind” problems would perform just as well on the post test. The team worked together to identify what a “kind” problem was and what differentiated it from the previously used “unkind” problems. Here is what the team came up with to differentiate these two types of problems. [Appendix 3.3]

<table>
<thead>
<tr>
<th>“Kind” problems</th>
<th>“Unkind” problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Numbers students can easily multiply and divide in their heads</td>
<td>● Numbers that may involve cross multiplication, long division, or calculator use</td>
</tr>
<tr>
<td>● Opportunities to simplify numerators and denominators are obvious because the division is clear</td>
<td>● Unclear division makes it difficult to know when to simplify.</td>
</tr>
</tbody>
</table>

In creating the new problem set for the study, it was important to maintain structure and question style. The questions in the control group (problem set PSAV89B) required students to do some unkind multiplication. [Appendix 3.4]
For the treatment, researchers hoped to make “Kind” problems. These problems contained multiplication and division that students could do using simple, mental math. This way, their focus would be on the skill being taught (dividing a mixed number) instead of spending on their energy on multiplying and dividing unnecessarily “unkind” numbers. Researchers worked together to identify the exact boundaries between “unkind” and “kind”
numbers. Eventually, they were able to form problems that only used “kind” multiplication and division. [Appendix 3.5]

In addition to a new problem set for the treatment, researchers had to create a post test to measure the information learned by students completing this study. The first problem in the post test has students dividing a mixed number by another mixed number. They must first change both mixed numbers to improper fraction. Simplifying once they change the division problem into a multiplication problem makes the process easier. [Appendix 3.6] For the second problem, students have to complete an “unkind” problem (complicated arithmetic). [Appendix 3.7]
One difficulty in measuring the results of this study is the selection bias that was unintentionally created by the difference in difficulty between the control group and test group. Because the arithmetic in the “kind” problems (test group) is overall simpler than the involved arithmetic involved with the “unkind” problems (control group), researches expect more students to drop out in the control group. It will be difficult to fairly compare the results on the post test if there is a significant difference in the number of students taking it in the control and test groups.
Data Analysis on Hints and Work Examples (PSAUK57)

I worked with Korinn Ostrow to analyze data on a study using PSAUK57. The problem set, “Converting Fractions, Decimals and Percents”, was used in a study to test the effectiveness of different styles of hints. In addition to testing effectiveness of currently used hints, this study was seeking to find other effective methods of helping students through hints. The conditions in the study were “Correctness Only”, “Hints Only”, “Worked Example- Text” and “Worked Example- Video”. Any students who couldn’t see and hear the video were placed into the “No Video” condition which virtually removed them from the study. This way, study results are not biased for or against students who didn’t have access to videos.

This was the first part of the problem set (“video check”). Students who can see and hear the video were told to type in the number “1”. Failure to do so put students in the “No Video” condition and removed them from the study.
In “Correctness Only”, students only had the option to see the right answer if they were struggling with the problem. There was no option for them to receive a hint within ASSISTments.
In the “Hints Only” condition, students received a hint that walked them through the steps to solve that particular problem. This is how most hints are in most ASSISTments problems.
The “Worked Example” conditions both went through a similar problem in great detail.

For “Worked Example- Text”, text is given to explain the problem. Intentional formatting and coloring is designed to help students understand the problem broken down.
“Worked Example- Video” simply shows a video with a teacher both explaining and writing out the steps for the problem. With both “Worked Example” conditions, the student would need to be able to apply the method used in this example to the problem in front of him/her.
A total of 1,090 students participated in the study. The data was received through the Assessment of Learning Infrastructure (ALI). The Student Level data was then imported into Microsoft Excel. Each row represents a student's actions in Student Level. When first imported, it was not clear which condition each student was in. To change this, I copied all of the ID’s from each condition in ASSISTments into a separate spreadsheet. From there, I converted a list of ID’s into separate cells using the “Text To Column” and then put each condition’s ID’s into a designated column. Using the VlookUp function to assign each student a condition based on his/her ID matching with those on the second sheet, I sorted the rows by Condition. From there, I summarized parts of the data to get means and standard deviations for each condition for different variables including “total problem count”, “mastery status”, and “Assessment Time”. Then, a chi squared test was run on observed completeness versus expected completeness. Completeness was measured by the number of students who completed the problem set in each condition. The p value for this chi squared test is not less than alpha (.05) so we fail to come to a conclusion from these results.

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>Complete</th>
<th>Not Complete</th>
<th>Total</th>
<th>% Drop</th>
<th>rows</th>
<th>columns</th>
<th>df</th>
<th>p</th>
<th>chi</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>219</td>
<td>58</td>
<td>277</td>
<td></td>
<td>20.94</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hint Only</td>
<td>214</td>
<td>70</td>
<td>284</td>
<td></td>
<td>24.65</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td>181</td>
<td>68</td>
<td>249</td>
<td></td>
<td>27.31</td>
<td></td>
<td>0.397</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video</td>
<td>211</td>
<td>69</td>
<td>280</td>
<td></td>
<td>24.64</td>
<td>1.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>825</td>
<td>265</td>
<td>1090</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Expected</th>
<th>Complete</th>
<th>Not Complete</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>209.66</td>
<td>67.34</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>Hint Only</td>
<td>214.95</td>
<td>69.05</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td>188.46</td>
<td>60.54</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>Video</td>
<td>211.93</td>
<td>68.07</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>825</td>
<td>265</td>
<td>1090</td>
<td></td>
</tr>
</tbody>
</table>
After organizing data through excel, the Student Level data was exported into Statistical Package for Social Sciences (SPSS). SPSS is widely used in a variety of research areas. It has statistical analysis, data management, and data documentation capabilities allowing any researcher to use to it quantify results. Using SPSS, we ran an ANOVA test. [Appendix 4.1]
Conclusion

This project looked at a few specific studies through ASSISTments. All of these involved research using ASSISTments Test Bed to some degree. In this project, I learned about the research steps involved with conducting a study in ASSISTments. I got to work hands on with designing a few of these studies and making sure biases were eliminated. After students participated in studies, I got to look at the data and learn how to read this information.

ASSISTments Test Bed is a fantastic opportunity for researchers. The website itself provides clear direction for someone who may be doing classroom research for the first time. It also describes how ASSISTments can be integrated into a study involving students. Because ASSISTments reaches students in many states and in a variety of schools, it provides a great sample of students. The program ASSISTments is very user friendly so anyone with basic computer skills can learn to make a skill builder specific to a study. Additionally, since so many classrooms use ASSISTments, many teachers have already created skill builders available for public use. Since everything is online, collecting data is very easy and information can be incredibly valuable. ASSISTments Test Bed has the ability to help researchers answer questions about learning, teaching, and comprehension that could change education for generations to come.
Appendix 1.1 "View Problems" PSA4D9T

Problem Set "(Copy of) Simplifying Logarithms F-BF.B.5" id:[PSA5QQE]

☐ Select All

☐ 1) Problem #PRABCNUM "PRABCNUM - simplifying fractions"

Simplify

\[\log_{1/2}(1/4) \]

Algebraic Expression:

✔ 2

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem you have

logarithmic form \(\log_{1/2}(1/4) = c \)

Exponential form: \(1/4 = 1/2^c \)

- Now we want to find what \(c \) equals

\(1/4 = 1/2^c \)

\((1/2)^2 = 1/2^c \)

2 = c

Type 2

☐ 2) Problem #PRABCNUM "PRABCNUM - simplifying fractions"

Simplify

\[\log_{1/5}(1/25) \]

Algebraic Expression:

✔ 2

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form
Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem you have

logarithmic form \(\log_{1/5}(1/25) = c \)

Exponential form: \(1/25 = 1/5^c \)

- Now we want to find what \(c \) equals

\(1/25 = 1/5^c \)

\((1/5)^2 = 1/5^c \)

\(2 = c \)

Type 2

3) Problem #PRABCNUR "PRABCNUR - simplifying fractions"

Simplify

\(\log_{1/8}(1/64) \)

Algebraic Expression:

\(2 \)

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem you have

logarithmic form \(\log_{1/8}(1/64) = c \)

Exponential form: \(1/64 = 1/8^c \)

- Now we want to find what \(c \) equals

\(1/64 = 1/8^c \)

\((1/8)^2 = 1/8^c \)

\(2 = c \)
Type 2

☐ 4) Problem #PRABCNUS "PRABCNUS - simplifying fractions"
Simplify

\[\log_{1/4}(1/16) \]

Algebraic Expression:

\[\checkmark 2 \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b{a} = c \)

Exponential form: \(a = b^c \)

- In this problem you have

logarithmic form \(\log_{1/4}(1/16) = c \)

Exponential form: \(1/16 = 1/4^c \)

- Now we want to find what \(c \) equals

\[1/16 = 1/4^c \]

\[(1/4)^2 = 1/4^c \]

\[2 = c \]

Type 2

☐ 5) Problem #PRABCNUT "PRABCNUT - simplifying fractions"
Simplify

\[\log_{1/6}(1/36) \]

Algebraic Expression:

\[\checkmark 2 \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b{a} = c \)
Exponential form: \(a = b^c \)

- In this problem you have

logarithmic form \(\log_{1/6}(1/36)=c \)

Exponential form: \(1/36=1/6^c \)

- Now we want to find what \(c \) equals

\[1/36=1/6^c \]

\[(1/6)^2=1/6^c \]

\[2=c \]

Type 2

6) Problem #PRABCNUV "PRABCNUV - simplifying fractions"

Simplify

\(\log_{1/9}(1/81) \)

Algebraic Expression:

\[2 \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem you have

logarithmic form \(\log_{1/9}(1/81)=c \)

Exponential form: \(1/81=1/9^c \)

- Now we want to find what \(c \) equals

\[1/81=1/9^c \]

\[(1/9)^2=1/9^c \]

\[2=c \]

Type 2
7) Problem #PRABCNUX "PRABCNUX - simplifying fractions"

Simplify

\[\log_{1/10}(1/100) \]

Algebraic Expression:

\[2 \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem you have

logarithmic form \(\log_{1/10}(1/100) = c \)

Exponential form: \(1/100 = 1/10^c \)

- Now we want to find what \(c \) equals

\[1/100 = 1/10^c \]
\[(1/10)^2 = 1/10^c \]
\[2 = c \]

Type 2

8) Problem #PRABCNUY "PRABCNUY - simplifying fractions"

Simplify

\[\log_{1/7}(1/49) \]

Algebraic Expression:

\[2 \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem you have
logarithmic form $\log_{1/7}(1/49) = c$

Exponential form: $1/49 = 1/7^c$
- Now we want to find what c equals

$1/49 = 1/7^c$

$(1/7)^2 = 1/7^c$

$2 = c$

Type 2

9) Problem #PRABCNU4 "PRABCNU4 - varying exponents"

simplify

$log_{12}(12^{5b})$

Leave your answer as an expression

Algebraic Expression:

✓ $5b$

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: $\log_b a = c$

Exponential form: $a = b^c$

- In this problem we have

Logarithmic form: $\log_{12}(12^{5b}) = c$

Exponential form: $12^{5b} = 12^c$
- We want to find what c equals

$12^{5b} = 12^c$

$5b = c$

Type 5b

10) Problem #PRABCNU5 "PRABCNU5 - varying exponents"
simplify

\[\log_8(8^{7b}) \]

Leave your answer as an expression

Algebraic Expression:

\[7b \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_8(8^{7b})=c \)

Exponential form: \(8^{7b} = 8^c \)

- We want to find what \(c \) equals

\[8^{7b} = 8^c \]

\[7b = c \]

Type 7b

11) Problem #PRABCNU6 "PRABCNU6 - varying exponents"

simplify

\[\log_6(6^{6b}) \]

Leave your answer as an expression

Algebraic Expression:

\[6b \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)
Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_6(6^b) = c \)

Exponential form: \(6^b = 6^c \)

- We want to find what \(c \) equals

\[
6^b = 6^c \\
6b = c \\
\text{Type } 6b
\]

12) Problem #PRABCNU7 "PRABCNU7 - varying exponents"

simplify

\[\log_{11}(11^{7n}) \]

Leave your answer as an expression

Algebraic Expression:

\(7n\)

Hints:

- Sometimes to simplify it helps to change from the **logarithmic form** to **exponential form**

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_{11}(11^{7n}) = c \)

Exponential form: \(11^{7n} = 11^c \)

- We want to find what \(c \) equals

\[
11^{7n} = 11^c \\
7n = c \\
\text{Type } 7n
\]
13) Problem #PRABCNU8 "PRABCNU8 - varying exponents"

simplify

\(\log_3(3^{2n}) \)

Leave your answer as an expression

Algebraic Expression:

✓ 2n

Hints:

- Sometimes to simplify it helps to change from the **logarithmic form** to **exponential form**

 Logarithmic form: \(\log_b a = c \)

 Exponential form: \(a = b^c \)

- In this problem we have

 Logarithmic form: \(\log_3(3^{2n}) = c \)

 Exponential form: \(3^{2n} = 3^c \)

- We want to find what \(c \) equals

 \(3^{2n} = 3^c \)

 \(2n = c \)

 Type \(2n \)

14) Problem #PRABCNU9 "PRABCNU9 - varying exponents"

simplify

\(\log_2(2^{9m}) \)

Leave your answer as an expression

Algebraic Expression:

✓ 9m

Hints:

- Sometimes to simplify it helps to change from the **logarithmic form** to **exponential form**

 Logarithmic form: \(\log_b a = c \)
Exponential form: $a = b^c$

- In this problem we have

Logarithmic form: $\log_2(2^9m) = c$

Exponential form: $2^9m = 2^c$
- We want to find what c equals

$2^9m = 2^c$

$9m = c$

Type 9m

☐ 15) Problem #PRABCNVA "PRABCNVA - varying exponents"

simplify

$\log_{10}(10^9h)$

Leave your answer as an expression

Algebraic Expression:

✓ 9h

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: $\log_b a = c$

Exponential form: $a = b^c$

- In this problem we have

Logarithmic form: $\log_{10}(10^9h) = c$

Exponential form: $10^9h = 10^c$
- We want to find what c equals

$10^9h = 10^c$

$9h = c$

Type 9h
16) Problem #PRABCNVB "PRABCNVB - varying exponents"
simplify

\[\log_{13}(13^{3h}) \]

Leave your answer as an expression

Algebraic Expression:

✓ \(3h\)

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c\)

Exponential form: \(a = b^c\)

- In this problem we have

Logarithmic form: \(\log_{13}(13^{3h}) = c\)

Exponential form: \(13^{3h} = 13^c\)

- We want to find what \(c\) equals

\[13^{3h} = 13^c\]

\[3h = c\]

Type 3h

17) Problem #PRABCNVC "PRABCNVC - varying exponents"
simplify

\[\log_7(7^{3h}) \]

Leave your answer as an expression

Algebraic Expression:

✓ \(3b\)

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

- In this problem we have

Logarithmic form: \(\log_7(7^{3b}) = c\)

Exponential form: \(7^{3b} = 7^c\)

- We want to find what \(c\) equals

\[7^{3b} = 7^c\]

\[3b = c\]

Type 3b
Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_7(7^{3b})=c \)

Exponential form: \(7^{3b} = 7^c \)
- We want to find what \(c \) equals

\[7^{3b} = 7^c \]

\[3b = c \]

Type 3b

[18) Problem #PRABCNVD "PRABCNVD - varying exponents"

simplify]

\(\log_{13}(13^{4m}) \)

Leave your answer as an expression

Algebraic Expression:

✓ 4m

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_{13}(13^{4m})=c \)

Exponential form: \(13^{4m} = 13^c \)
- We want to find what \(c \) equals

\[13^{4m} = 13^c \]

\[4m = c \]
Type 4m

☐ 19) Problem #PRABCNVE "PRABCNVE - varying exponents"
simplify

\[\log_9(9^{2n}) \]

Leave your answer as an expression

Algebraic Expression:

\[\checkmark 2n \]

Hints:

- Sometimes to simplify it helps to change from the **logarithmic form** to **exponential form**

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_9(9^{2n})=c \)

Exponential form: \(9^{2n} = 9^c \)

- We want to find what \(c \) equals

\(9^{2n} = 9^c \)

\(2n = c \)

Type 2n

☐ 20) Problem #PRABCNVF "PRABCNVF - varying exponents"
simplify

\[\log_{14}(14^{4h}) \]

Leave your answer as an expression

Algebraic Expression:

\[\checkmark 4h \]

Hints:

- Sometimes to simplify it helps to change from the **logarithmic form** to **exponential**
form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_{14}(14^{4h}) = c \)

Exponential form: \(14^{4h} = 14^c \)
- We want to find what \(c \) equals

\[14^{4h} = 14^c \]

\[4h = c \]

Type 4h

☐ 21) Problem #PRABCNVG "PRABCNVG - varying exponents"
simplify

\(\log_3(3^{7n}) \)

Leave your answer as an expression

Algebraic Expression:

✓ \(7n \)

Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)
- In this problem we have

Logarithmic form: \(\log_3(3^{7n}) = c \)

Exponential form: \(3^{7n} = 3^c \)
- We want to find what \(c \) equals

\[3^{7n} = 3^c \]
7n = c

Type 7n

22) Problem #PRABCNVH "PRABCNVH - varying exponents"
simplify

\[\log_{11}(11^{6b}) \]

Leave your answer as an expression

Algebraic Expression:

✔️ 6b

Hints:

- Sometimes to simplify it helps to change from the **logarithmic form** to **exponential form**

 Logarithmic form: \(\log_b a = c \)

 Exponential form: \(a = b^c \)

- In this problem we have

 Logarithmic form: \(\log_{11}(11^{6b}) = c \)

 Exponential form: \(11^{6b} = 11^c \)

- We want to find what \(c \) equals

\[11^{6b} = 11^c \]

6b = c

Type 6b

23) Problem #PRABCNVJ "PRABCNVJ - varying exponents"
simplify

\[\log_2(2^{8m}) \]

Leave your answer as an expression

Algebraic Expression:

✔️ 8m

Hints:
• Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

• In this problem we have

Logarithmic form: \(\log_2 (2^{8m}) = c \)

Exponential form: \(2^{8m} = 2^c \)

• We want to find what \(c \) equals

\[2^{8m} = 2^c \]

\[8m = c \]

Type 8m

24) Problem #PRABCNVK "PRABCNVK - varying exponents"

simplify

\[\log_{13} (13^{8h}) \]

Leave your answer as an expression

Algebraic Expression:

✅ 8h

Hints:

• Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

• In this problem we have

Logarithmic form: \(\log_{13} (13^{8h}) = c \)

Exponential form: \(13^{8h} = 13^c \)

• We want to find what \(c \) equals

\[13^{8h} = 13^c \]
8n=c
Type 8n

25) Problem #PRABCNVM "PRABCNVM - varying exponents"
simplify

\[\log_8(8^{8n}) \]

Leave your answer as an expression

Algebraic Expression:
✓ 8n

Hints:
• Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

• In this problem we have

Logarithmic form: \(\log_8(8^{8n}) = c \)

Exponential form: \(8^{8n} = 8^c \)

• We want to find what c equals

\[8^{8n} = 8^c \]

\[8n = c \]

Type 8n

26) Problem #PRABCNVN "PRABCNVN - varying exponents"
simplify

\[\log_{10}(10^{7k}) \]

Leave your answer as an expression

Algebraic Expression:
✓ 7k

Hints:
Sometimes to simplify it helps to change from the logarithmic form to exponential form.

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

In this problem we have

Logarithmic form: \(\log_{10}(10^{7k}) = c \)

Exponential form: \(10^{7k} = 10^c \)

We want to find what \(c \) equals

\[
10^{7k} = 10^c
\]

\[
7k = c
\]

Type 7k

☐ 27) Problem #PRABCNVP "PRABCNVP - varying exponents"

Simplify

\(\log_{10}(10^{4h}) \)

Leave your answer as an expression

Algebraic Expression:

\(4h \)

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form.

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

In this problem we have

Logarithmic form: \(\log_{10}(10^{4h}) = c \)

Exponential form: \(10^{4h} = 10^c \)

We want to find what \(c \) equals
10^{4h} = 10^c
4h = c
Type 4h

☐ 28) Problem #PRABCNVQ "PRABCNVQ - varying exponents"
simplify

\[\log_{13}(13^{6m}) \]

Leave your answer as an expression

Algebraic Expression:
✓ 6m

Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_{13}(13^{6m}) = c \)

Exponential form: \(13^{6m} = 13^c \)
- We want to find what c equals

\[13^{6m} = 13^c \]

6m = c

Type 6m

☐ 29) Problem #PRABCNVR "PRABCNVR - varying exponents"
simplify

\[\log_{12}(12^{5h}) \]

Leave your answer as an expression

Algebraic Expression:
✓ 5h
Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_{12}(12^{5h}) = c \)

Exponential form: \(12^{5h} = 12^c \)

- We want to find what \(c \) equals

\[12^{5h} = 12^c \]

\(5h = c \)

Type 5h

☐ 30) Problem #PRABCNVS "PRABCNVS - varying exponents"

simplify

\(\log_{13}(13^{9h}) \)

Leave your answer as an expression

Algebraic Expression:

\(\checkmark 9h \)

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_{13}(13^{9h}) = c \)

Exponential form: \(13^{9h} = 13^c \)

- We want to find what \(c \) equals
$13^{9h} = 13^c$

$9h = c$

Type 9h

31) Problem #PRABCNV "PRABCNV - varying exponents"
simplify

$\log_3(3^{9n})$

Leave your answer as an expression

Algebraic Expression:

✓ $9n$

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: $\log_b a = c$

Exponential form: $a = b^c$

- In this problem we have

Logarithmic form: $\log_3(3^{9n}) = c$

Exponential form: $3^{9n} = 3^c$

- We want to find what c equals

$3^{9n} = 3^c$

$9n = c$

Type 9n

32) Problem #PRABCNU "PRABCNU - varying exponents"
simplify

$\log_9(9^{7b})$

Leave your answer as an expression

Algebraic Expression:
7b

Hints:

- Sometimes to simplify it helps to change from the \textit{logarithmic form} to \textit{exponential form}

Logarithmic form: $\log_b a = c$

Exponential form: $a = b^c$

- In this problem we have

Logarithmic form: $\log_9 (9^{7b}) = c$

Exponential form: $9^{7b} = 9^c$

- We want to find what c equals

$9^{7b} = 9^c$

$7b = c$

Type 7b

33) Problem #PRABCNVV "PRABCNVV - varying exponents"

simplify

$log_{14}(14^{5n})$

Leave your answer as an expression

\textbf{Algebraic Expression:}

\checkmark 5n

Hints:

- Sometimes to simplify it helps to change from the \textit{logarithmic form} to \textit{exponential form}

Logarithmic form: $\log_b a = c$

Exponential form: $a = b^c$

- In this problem we have

Logarithmic form: $\log_{14}(14^{5n}) = c$

Exponential form: $14^{5n} = 14^c$

- We want to find what c equals
34) Problem #PRABCNVW "PRABCNVW - varying exponents"
simplify

\[
\log_9(9^{9b})
\]

Leave your answer as an expression

Algebraic Expression:

✓ 9b

Hints:

- Sometimes to simplify it helps to change from the **logarithmic form** to **exponential form**

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_9(9^{9b}) = c \)

Exponential form: \(9^{9b} = 9^c \)

- We want to find what c equals

\(9^{9b} = 9^c \)

9b = c

Type 9b

35) Problem #PRABCNVX "PRABCNVX - varying exponents"
simplify

\[
\log_{14}(14^{3n})
\]

Leave your answer as an expression
Algebraic Expression:

✓ 3n

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_{14}(14^{3n}) = c \)

Exponential form: \(14^{3n} = 14^c \)

- We want to find what \(c \) equals

\(14^{3n} = 14^c \)

\(3n = c \)

Type 3n

36) Problem #PRABCNVY "PRABCNVY - varying exponents"

simplify

\(\log_9(9^{7b}) \)

Leave your answer as an expression

Algebraic Expression:

✓ 7b

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_9 a = c \)

Exponential form: \(a = 9^c \)

- In this problem we have

Logarithmic form: \(\log_9(9^{7b}) = c \)

Exponential form: \(9^{7b} = 9^c \)
- We want to find what c equals

$$9^{7b} = 9^c$$

$7b = c$

Type 7b

37) Problem #PRABCNVZ "PRABCNVZ - varying exponents"

simplify

$$\log_6(6^{2k})$$

Leave your answer as an expression

Algebraic Expression:

✅ $2k$

Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: $\log_b a = c$

Exponential form: $a = b^c$

- In this problem we have

Logarithmic form: $\log_6(6^{2k}) = c$

Exponential form: $6^{2k} = 6^c$

- We want to find what c equals

$$6^{2k} = 6^c$$

$2k = c$

Type 2k

38) Problem #PRABCNV2 "PRABCNV2 - varying exponents"

simplify

$$\log_6(6^{7h})$$

Leave your answer as an expression

https://www.assistments.org/build/print/sequence/787466?mode=debug&op_scaf=false&op_hint=false&op_answer_op=false&op_answer=false&op_name=false&o... 25/57
Algebraic Expression:

✓ 7h

Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: logₐa = c

Exponential form: a = b^c

- In this problem we have

Logarithmic form: log₆(6^{7h}) = c

Exponential form: 6^{7h} = 6^c

- We want to find what c equals

6^{7h} = 6^c

7h = c

Type 7h

☐ 39) Problem #PRABCNV3 "PRABCNV3 - varying exponents"
simplify

log₁₂(12^{6n})

Leave your answer as an expression

Algebraic Expression:

✓ 6n

Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: logₐa = c

Exponential form: a = b^c

- In this problem we have

Logarithmic form: log₁₂(12^{6n}) = c
Exponential form: $12^{6n} = 12^c$

- We want to find what c equals

\[12^{6n} = 12^c \]

\[6n = c \]

Type 6n

- 40) Problem #PRABCNV4 "PRABCNV4 - varying exponents"
simplify

\[\log_4(4^{6m}) \]

Leave your answer as an expression

Algebraic Expression:

✔️ 6m

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: $\log_b a = c$

Exponential form: $a = b^c$

- In this problem we have

Logarithmic form: $\log_4(4^{6m}) = c$

Exponential form: $4^{6m} = 4^c$

- We want to find what c equals

\[4^{6m} = 4^c \]

\[6m = c \]

Type 6m

- 41) Problem #PRABCNV5 "PRABCNV5 - varying exponents"
simplify

\[\log_3(3^{6h}) \]
Leave your answer as an expression

Algebraic Expression:

\[6h \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_3(3^{6h}) = c \)

Exponential form: \(3^{6h} = 3^c \)

- We want to find what \(c \) equals

\[3^{6h} = 3^c \]

\[6h = c \]

Type 6h

42) Problem #PRABCNV6 "PRABCNV6 - varying exponents"

simplify

\[\log_{12}(12^{7m}) \]

Leave your answer as an expression

Algebraic Expression:

\[7m \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have
Logarithmic form: \(\log_{12}(12^7m) = c \)

Exponential form: \(12^7m = 12^c \)
- We want to find what \(c \) equals

\(12^7m = 12^c \)

7m = c

Type 7m

☐ 43) Problem #PRABCNV7 "PRABCNV7 - varying exponents"

simplify

\(\log_2(2^{9b}) \)

Leave your answer as an expression

Algebraic Expression:

\(\checkmark \) 9b

Hints:
- Sometimes to simplify it helps to change from the **logarithmic form** to **exponential form**

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_2(2^{9b}) = c \)

Exponential form: \(2^{9b} = 2^c \)
- We want to find what \(c \) equals

\(2^{9b} = 2^c \)

9b = c

Type 9b

☐ 44) Problem #PRABCNV8 "PRABCNV8 - varying exponents"

simplify

https://www.assistments.org/build/print/sequence/787466?mode=debug&op_scaf=false&op_hint=false&op_answer_op=false&op_answer=false&op_name=false&o...
\[\log_8(8^{6m}) \]

Leave your answer as an expression

Algebraic Expression:

![Correct Answer]

Hints:

- Sometimes to simplify it helps to change from the **logarithmic form** to **exponential form**

 Logarithmic form: \(\log_b a = c \)

 Exponential form: \(a = b^c \)

- In this problem we have

 Logarithmic form: \(\log_8(8^{6m}) = c \)

 Exponential form: \(8^{6m} = 8^c \)

- We want to find what \(c \) equals

 \[8^{6m} = 8^c \]

 \[6m = c \]

 Type 6m

45) Problem #PRABCNV9 "PRABCNV9 - varying exponents"

simplify

\[\log_8(8^{4n}) \]

Leave your answer as an expression

Algebraic Expression:

![Correct Answer]

Hints:

- Sometimes to simplify it helps to change from the **logarithmic form** to **exponential form**

 Logarithmic form: \(\log_b a = c \)

 Exponential form: \(a = b^c \)
In this problem we have

Logarithmic form: \(\log_8(8^{4n}) = c \)

Exponential form: \(8^{4n} = 8^c \)

We want to find what \(c \) equals

\(8^{4n} = 8^c \)

\(4n = c \)

Type 4n

46) Problem #PRABCNWA "PRABCNWA - varying exponents"
simplify

\(\log_2(2^{6n}) \)

Leave your answer as an expression

Algebraic Expression:

\(6n \)

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

In this problem we have

Logarithmic form: \(\log_2(2^{6n}) = c \)

Exponential form: \(2^{6n} = 2^c \)

We want to find what \(c \) equals

\(2^{6n} = 2^c \)

\(6n = c \)

Type 6n

47) Problem #PRABCNWB "PRABCNWB - varying exponents"
simplify

https://www.assistments.org/build/print/sequence/787466?mode=debug&op Scaffold=false&op Hint=false&op_answer_op=false&op answer=false&op answer=false&op name=false&op...
\[\log_7(7^{6n}) \]

Leave your answer as an expression

Algebraic Expression:

\[\checkmark 6n \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_7(7^{6n}) = c \)

Exponential form: \(7^{6n} = 7^c \)

- We want to find what \(c \) equals

\[7^{6n} = 7^c \]

\[6n = c \]

Type 6n

48) Problem #PRABCNWC "PRABCNWC - varying exponents"

simplify

\[\log_{14}(14^{5m}) \]

Leave your answer as an expression

Algebraic Expression:

\[\checkmark 5m \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)
In this problem we have

Logarithmic form: \(\log_{14}(14^{5m}) = c \)

Exponential form: \(14^{5m} = 14^c \)

- We want to find what \(c \) equals

\[14^{5m} = 14^c \]

\[5m = c \]

Type 5m

49) Problem #PRBCNWD "PRABCNWD - varying exponents"

simplify

\(\log_{14}(14^{4m}) \)

Leave your answer as an expression

Algebraic Expression:

\(\checkmark 4m \)

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_{14}(14^{4m}) = c \)

Exponential form: \(14^{4m} = 14^c \)

- We want to find what \(c \) equals

\[14^{4m} = 14^c \]

\[4m = c \]

Type 4m

50) Problem #PRBCNWE "PRABCNWE - varying exponents"
simplify

\[\log_{13}(13^{8m}) \]

Leave your answer as an expression

Algebraic Expression:

\[\checkmark \quad 8m \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_{13}(13^{8m})=c \)

Exponential form: \(13^{8m} = 13^c \)
- We want to find what \(c \) equals

\[13^{8m} = 13^c \]

\[8m = c \]

Type 8m

☐ 51) Problem #PRABCNWF "PRABCNWF - varying exponents"

simplify

\[\log_2(2^{8h}) \]

Leave your answer as an expression

Algebraic Expression:

\[\checkmark \quad 8h \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)
Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_2(2^{8h}) = c \)

Exponential form: \(2^{8h} = 2^c \)

- We want to find what \(c \) equals

\[2^{8h} = 2^c \]

\[8h = c \]

Type 8h

52) Problem #PRABCNWG "PRABCNWG - varying exponents"

simplify

\(\log_{11}(11^{9h}) \)

Leave your answer as an expression

Algebraic Expression:

\(\checkmark \) 9h

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_{11}(11^{9h}) = c \)

Exponential form: \(11^{9h} = 11^c \)

- We want to find what \(c \) equals

\[11^{9h} = 11^c \]

\[9h = c \]

Type 9h
53) Problem #PRABCNWH "PRABCNWH - varying exponents"
simplify

\[\log_{12}(12^{4h}) \]

Leave your answer as an expression

Algebraic Expression:

✅ 4h

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_{12}(12^{4h}) = c \)

Exponential form: \(12^{4h} = 12^c \)

- We want to find what \(c \) equals

\[12^{4h} = 12^c \]

\[4h = c \]

Type 4h

54) Problem #PRABCNWJ "PRABCNWJ - varying exponents"
simplify

\[\log_{10}(10^{6n}) \]

Leave your answer as an expression

Algebraic Expression:

✅ 6n

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)
Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_{10}(10^{6n}) = c \)

Exponential form: \(10^{6n} = 10^c \)
- We want to find what \(c \) equals

\[10^{6n} = 10^c \]
\[6n = c \]
Type 6n

55) Problem #PRABCNWK "PRABCNWK - varying exponents"

simplify

\[\log_{12}(12^{3n}) \]

Leave your answer as an expression

Algebraic Expression:

✓ 3n

Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)
- In this problem we have

Logarithmic form: \(\log_{12}(12^{3n}) = c \)

Exponential form: \(12^{3n} = 12^c \)
- We want to find what \(c \) equals

\[12^{3n} = 12^c \]
\[3n = c \]
Type 3n
56) Problem #PRABCNWM "PRABCNWM - varying exponents"

simplify

\[\log_{10}(10^{9b}) \]

Leave your answer as an expression

Algebraic Expression:

\[9b \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_{10}(10^{9b}) = c \)

Exponential form: \(10^{9b} = 10^c \)

- We want to find what \(c \) equals

\[10^{9b} = 10^c \]

\[9b = c \]

Type 9b

57) Problem #PRABCNWN "PRABCNWN - varying exponents"

simplify

\[\log_{13}(13^{9b}) \]

Leave your answer as an expression

Algebraic Expression:

\[9b \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form
Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_{13}(13^{9b}) = c \)

Exponential form: \(13^{9b} = 13^c \)

- We want to find what \(c \) equals

\[13^{9b} = 13^c \]

\[9b = c \]

Type 9b

58) Problem #PRABCNWP "PRABCNWP - varying exponents"

simplify

\(\log_6(6^{4k}) \)

Leave your answer as an expression

Algebraic Expression:

\(\checkmark \) 4k

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem we have

Logarithmic form: \(\log_6(6^{4k}) = c \)

Exponential form: \(6^{4k} = 6^c \)

- We want to find what \(c \) equals

\[6^{4k} = 6^c \]

\[4k = c \]
Type 4k

59) Problem #PRABCNWQ "PRABCNWQ - simplifying negative exponents"
simplify
\[\log_{1/3}(9) \]

Algebraic Expression:
✓ -2

Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/3}(9)=c \)

Exponential form: \(9 = (1/3)^c \)

- Find what \(c \) equals

\[9 = (1/3)^c \]
\[(3)^2 = (3)^{-c} \]
\[2 = -c \]
\[-2 = c \]

Type -2

60) Problem #PRABCNWR "PRABCNWR - simplifying negative exponents"
simplify
\[\log_{1/7}(49) \]

Algebraic Expression:
✓ -2

Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

https://www.assistments.org/build/print/sequence/787466?mode=debug&op_scaf=false&op_hint=false&op_answer_op=false&op_answer=false&op_name=false&op...
form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/7} (49) = c \)

Exponential form: \(49 = (1/7)^c \)

- Find what \(c \) equals

\[49 = (1/7)^c \]
\[(7)^2 = (7)^c \]
\[2 = -c \]
\[-2 = c \]

Type -2

61) Problem #PRABCNWS "PRABCNWS - simplifying negative exponents"

simplify

\(\log_{1/5} (25) \)

Algebraic Expression:

-2

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/5} (25) = c \)

Exponential form: \(25 = (1/5)^c \)

- Find what \(c \) equals
62) Problem #PRABCNWU "PRABCNWU - simplifying negative exponents"

simplify

\[\log_{1/2}(4) \]

Algebraic Expression:

-2

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/2}(4) = c \)

Exponential form: \(4 = (1/2)^c \)

Find what \(c \) equals

\[4 = (1/2)^c \]
\[(2)^2 = (2)^c \]

Type -2

63) Problem #PRABCNWV "PRABCNWV - simplifying negative exponents"

simplify

https://www.assistments.org/build/print/sequence/787466?mode=debug&op_scaf=false&op_hint=false&op_answer_op=false&op_answer=false&op_name=false&op…
log_{1/4}(16)

Algebraic Expression:
✓ -2

Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_{b} a = c \)

Exponential form: \(a = b^{c} \)

- In this problem

Logarithmic form: \(\log_{1/4}(16) = c \)

Exponential form: \(16 = (1/4)^{c} \)

- Find what \(c \) equals

\(16 = (1/4)^{c} \)

\((4)^{2} = (4)^{c} \)

\(2 = -c \)

\(-2 = c \)

Type -2

□ 64) Problem #PRABCNW "PRABCNW - simplifying negative exponents"

simplify

\(\log_{1/9}(81) \)

Algebraic Expression:
✓ -2

Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_{b} a = c \)

Exponential form: \(a = b^{c} \)
• In this problem

Logarithmic form: \(\log_{1/9}(81) = c \)

Exponential form: \(81 = (1/9)^c \)

• Find what \(c \) equals

\[81 = (1/9)^c \]
\[(9)^2 = (9)^c \]
\[2 = -c \]
\[-2 = c \]

Type -2

65) Problem #PRABCNW7 "PRABCNW7 - simplifying fractions"

Simplify

\(\log_{1/4}(1/64) \)

Algebraic Expression:

✓ 3

Hints:

• Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

• In this problem you have

logarithmic form \(\log_{1/4}(1/64) = c \)

Exponential form: \(1/64 = 1/4^c \)

• Now we want to find what \(c \) equals

\[1/64 = 1/4^c \]
\[(1/4)^3 = 1/4^c \]
\[3 = c \]

Type 3
66) Problem #PRABCNW8 "PRABCNW8 - simplifying fractions"
Simplify

\[\log_{1/2}(1/8) \]

Algebraic Expression:

\[\checkmark 3 \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem you have

logarithmic form \(\log_{1/2}(1/8) = c \)

Exponential form: \(1/8 = (1/2)^c \)

- Now we want to find what \(c \) equals

\(1/8 = (1/2)^3 \)

\((1/2)^3 = (1/2)^c \)

\(3 = c \)

Type 3

67) Problem #PRABCNXB "PRABCNXB - simplifying fractions"
Simplify

\[\log_{1/3}(1/27) \]

Algebraic Expression:

\[\checkmark 3 \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)
In this problem you have

logarithmic form \(\log_{1/3}(1/27)=c \)

Exponential form: \(1/27=1/3^c \)

Now we want to find what \(c \) equals

\(1/27=1/3^c \)

\((1/3)^3=1/3^c \)

\(3=c \)

Type 3

68) Problem #PRABCNXC "PRABCNXC - simplifying fractions"

Simplify

\(\log_{1/5}(1/125) \)

Algebraic Expression:

✓ 3

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem you have

logarithmic form \(\log_{1/5}(1/125)=c \)

Exponential form: \(1/125=1/5^c \)

Now we want to find what \(c \) equals

\(1/125=1/5^c \)

\((1/5)^3=1/5^c \)

\(3=c \)

Type 3

69) Problem #PRABCNXP "PRABCNXP - simplifying negative exponents"

https://www.assistments.org/build/print/sequence/787466?mode=debug&op_scaf=false&op_hint=false&op_answer_op=false&op_answer=false&op_name=false&op...
simplify

\[\log_{1/7}(7) \]

Algebraic Expression:

-1

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/7}(7) = c \)

Exponential form: \(7 = (1/7)^c \)

- Find what \(c \) equals

\(7 = (1/7)^c \)

\((7)^1 = (7)^c \)

\(1 = c \)

\(-1 = c \)

Type -1

70) Problem #PRABCNXQ "PRABCNXQ - simplifying negative exponents"

simplify

\[\log_{1/9}(9) \]

Algebraic Expression:

-1

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)
5/9/2017

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/9}(9) = c \)

Exponential form: \(9 = (1/9)^c \)

- Find what \(c \) equals

\[9 = (1/9)^c \]
\[(9)^1 = (9)^c \]
\[1 = c \]
\[-1 = c \]

Type -1

71) Problem #PRABCNXS "PRABCNXS - simplifying negative exponents"
simplify

\(\log_{1/8}(8) \)

Algebraic Expression:

✓ -1

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/8}(8) = c \)

Exponential form: \(8 = (1/8)^c \)

- Find what \(c \) equals

\[8 = (1/8)^c \]
\[(8)^1 = (8)^c \]
72) Problem #PRABCNXT "PRABCNXT - simplifying negative exponents"

simplify

log_{1/14}(14)

Algebraic Expression:

✓ -1

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/14}(14) = c \)

Exponential form: \(14 = (1/14)^c \)

- Find what \(c \) equals

\[14 = (1/14)^c \]

\[(14)^1 = (14)^c \]

\[1 = -c \]

\[-1 = c \]

Type -1

73) Problem #PRABCNXU "PRABCNXU - simplifying negative exponents"

simplify

log_{1/3}(3)
Algebraic Expression:

-1

Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/3}(3) = c \)

Exponential form: \(3 = (1/3)^c \)

Find what \(c \) equals

\[3 = (1/3)^c \]
\[(3)^1 = (3)^c \]
\[1 = c \]
\[-1 = c \]

Type -1

74) Problem #PRABCNXW "PRABCNXW - simplifying negative exponents"

simplify

\(\log_{1/4}(4) \)

Algebraic Expression:

-1

Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/4}(4) = c \)
Exponential form: \(4 = (\frac{1}{4})^c \)

Find what \(c \) equals

\[4 = (\frac{1}{4})^c \]

\[(4)^1 = (4)^{-c} \]

\[1 = -c \]

\[-1 = c \]

Type -1

75) Problem #PRABCNXX "PRABCNXX - simplifying negative exponents"

simplify

\(\log_{1/5}(5) \)

Algebraic Expression:

✅ -1

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/5}(5) = c \)

Exponential form: \(5 = (1/5)^c \)

Find what \(c \) equals

\[5 = (1/5)^c \]

\[(5)^1 = (5)^{-c} \]

\[1 = -c \]

\[-1 = c \]

Type -1
76) Problem #PRABCNXY "PRABCNXY - simplifying negative exponents"

simplify

\[\log_{1/6}(6) \]

Algebraic Expression:

-1

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/6}(6) = c \)

Exponential form: \(6 = (1/6)^c \)

- Find what \(c \) equals

\[6 = (1/6)^c \]

\[(6)^1 = (6)^{-c} \]

\[1 = -c \]

\[-1 = c \]

Type -1

77) Problem #PRABCNXZ "PRABCNXZ - simplifying negative exponents"

simplify

\[\log_{1/7}(7) \]

Algebraic Expression:

-1

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

https://www.assistments.org/build/print/sequence/787466?mode=debug&op_scaf=false&op_hint=false&op_answer_op=false&op_answer=false&op_name=false&o
form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/7}(7)=c \)

Exponential form: \(7 = (1/7)^c \)

Find what \(c \) equals

\[7 = (1/7)^c \]

\[(7)^1 = (7)^{-c} \]

\[1 = -c \]

\[-1 = c \]

Type -1

78) Problem #PRABCNX4 "PRABCNX4 - simplifying negative exponents"

simplify

\(\log_{1/10}(10) \)

Algebraic Expression:

\[\boxed{-1} \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/10}(10)=c \)

Exponential form: \(10 = (1/10)^c \)

Find what \(c \) equals
10 = \left(\frac{1}{10}\right)^c

(10)^1 = (10)^c

l = -c

-1 = c

Type -1

☐ 79) Problem #PRABCNX5 "PRABCNX5 - simplifying negative exponents"
simplify

\log_{1/11}(11)

Algebraic Expression:

-1

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \log_b a = c

Exponential form: a = b^c

- In this problem

Logarithmic form: \log_{1/11}(11) = c

Exponential form: 11 = \left(\frac{1}{11}\right)^c

Find what c equals

11 = \left(\frac{1}{11}\right)^c

(11)^1 = (11)^c

l = -c

-1 = c

Type -1

☐ 80) Problem #PRABCNX6 "PRABCNX6 - simplifying negative exponents"
simplify
\[\log_{1/3}(27) \]

Algebraic Expression:

\[\checkmark -3 \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/3}(27) = c \)

Exponential form: \(27 = \left(\frac{1}{3}\right)^c \)

- Find what \(c \) equals

\[27 = \left(\frac{1}{3}\right)^3 \]

\[(3)^3 = (3)^{-c} \]

\[3 = -c \]

\[-3 = c \]

Type \(-3\)

81) Problem #PRABCNX8 "PRABCNX8 - simplifying negative exponents"

simplify

\[\log_{1/5}(125) \]

Algebraic Expression:

\[\checkmark -3 \]

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)
In this problem

Logarithmic form: \(\log_{1/5}(125) = c \)

Exponential form: \(125 = (1/5)^c \)

Find what \(c \) equals

\[
125 = (1/5)^c \\
(5)^3 = (5)^{-c} \\
3 = -c \\
-3 = c
\]

Type -3

82) Problem #PRABCNYA "PRABCNYA - simplifying negative exponents"

Simplify \(\log_{1/4}(64) \)

Algebraic Expression:

-3

Hints:

- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log_b a = c \)

Exponential form: \(a = b^c \)

- In this problem

Logarithmic form: \(\log_{1/4}(64) = c \)

Exponential form: \(64 = (1/4)^c \)

Find what \(c \) equals

\[
64 = (1/4)^c \\
(4)^3 = (4)^{-c} \\
3 = -c \\
-3 = c
\]
Type -3
Appendix 2.1 Think Aloud

Finding Slope from a Linear Equation 8.F.B.4 [6 students]

| Gaps in procedural fluency observed | • In form, \(ax+cy=d \), find \(a \)
• Incorrect expression manipulation
• Finds intercept instead of slope
• Calculation errors
• Miscopies own answer
• Incorrect connection to graphical representation [1 student] |
|-----------------------------------|--|
| Learning strategies observed | • Read hint
• Compare own answer to hint
• Write out hint for later reference
• Write out expression manipulation from hint to make sure it’s understood |
| Assessment evidence of learning focal skill | • Some students seem to learn or improve their skill to put the equation into slope-intercept form |
| Ineffective / inefficient learning processes | • Guessing by typing in various numbers from the equation
• Guessing by trying various operations (e.g., add \(x \) coefficient and intercept)
• Reviews calculations and keeps missing mistake
• Distracted off-task talk [1 student] |
| SkillBuilder features that could matter | • Students often do not understand the hints
• Random ordering of problems does not support productive persistence -- does not help students identify the source of their errors systematically. Ordering of these problems can be critical. Ordering from more simple to more complex could help with both diagnosing the source of misunderstanding, and provide pedagogical scaffolding to help students build skills by practicing easier to harder problems.
• Does not accept decimal answers rounded to the hundredths
• Sometimes students’ 3-right-in-a-row do not require they put \(ax+cy=d \) into slope-intercept form (get them right by chance) |
Problem Set "Finding Slope from a Linear Equation 8.F.B.4"

Select All

1) Problem #PRACMWE "PRACMWE - 57935 - Algebra1 Finding Slope From Equation Mastery Learning 2"

Determine the slope from the following equation:

\[y = -\frac{9}{6}x + 5 \]

Algebraic Expression:

-9/6

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

- In our problem we have:

\[y = -\frac{9}{6}x + 5 \]
2) Problem #PRACMUF "PRACMUF - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[4y = 2x + 5 \]

Algebraic Expression:

2/4

Hints:

- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by 4.

\[
\begin{align*}
4y &= 2x + 5 \\
4 &= 4
\end{align*}
\]
\[y = \frac{2}{4}x + \frac{5}{4} \]

- The slope is the coefficient of \(x \), or \(\frac{2}{4} \). Type \(\frac{2}{4} \).

3) Problem #PRACMUP "PRACMUP - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:

\[-8y = 2x + 5\]

Algebraic Expression:

\[\frac{2}{-8} \]

Hints:

- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:
• To do this, divide each side by -8.

\[-8y = 2x + 5\]
\[-8 = -8\]

\[y = \frac{2}{-8}x + \frac{5}{-8}\]
4) Problem #PRACMVS "PRACMVS - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"

Determine the slope from the following equation:

\[y = \frac{10}{6}x + 10 \]

Algebraic Expression:

\[\frac{10}{6} \]

Hints:

- The slope is the coefficient of \(x \), or \(\frac{2}{-8} \). Type \(\frac{2}{-8} \).
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = \frac{10}{6}x + 10 \]

• In our problem we have:
 \[y = \frac{10}{6}x + 10 \]

• The slope is the coefficient of \(x \), or \(\frac{10}{6} \). Type \(\frac{10}{6} \).

5) Problem #PRACMWZ "PRACMWZ - Algebra1 Finding Slope From Equation Mastery Learning 7"

Determine the slope from the following equation:

\[3x + 2y = 9 \]

Algebraic Expression:

\[-\frac{3}{2} \]

Hints:

• In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

\[2y = 9 - 3x \]

Then, divide each side by 2.

\[\frac{2y}{2} = \frac{9 - 3x}{2} \]

\[y = \frac{9 - 3x}{2} \]
\[y = \frac{9}{2} - \frac{3}{2}x \]

- The slope is the coefficient of \(x \), or \(-\frac{3}{2}\). Type \(-\frac{3}{2}\).

6) Problem #PRACMU6 "PRACMU6 - 57939 - Algebra1 Finding Slope From Equation Mastery Learning 6"

Determine the slope from the following equation:
10y = 4

Algebraic Expression:

\[0 \]

Hints:

- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

\[y = 0x + \frac{4}{10} \]

- To do this, divide each side by 10. The equation should now look like this:

\[
\begin{align*}
10y &= 4 \\
10 &= 10 \\
y &= 0x + \frac{4}{10}
\end{align*}
\]

- We added in the \(x \) so that you can see it. \(0x = 0 \)
- The slope is the coefficient of \(x \), or 0.
 Type in 0.

7) Problem #PRACMT7 "PRACMT7 - Algebra1 Finding Slope From Equation Mastery Learning 8"

Determine the slope from the following equation:
7y - 5x = 5

Algebraic Expression:

\[5/7 \]

Hints:
In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[y = m \cdot x + b \]

Variable

- First, you must subtract 5x from both sides, giving you:
 \[7y = 5 + 5x \]

Then, divide each side by 7.

\[7y = 5 + 5x \]
\[7 = 5 \]
\[y = \frac{5}{7} + \frac{5}{7}x \]

- The slope is the coefficient of x, or \(\frac{5}{7} \). Type \(\frac{5}{7} \).

8) Problem #PRACMUW "PRACMUW - Algebra1 Finding Slope From Equation Mastery Learning 9"

Determine the slope from the following equation:

10y = 10x

Algebraic Expression:

\[1 \]

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[y = m \cdot x + b \]

Variable

- To do this, divide each side by 10.

\[10y = 10x \]
\[y = x \]

- The slope is the coefficient of \(x \), or in this case, 1. Type 1.

9) Problem #PRACMWY "PRACMWY - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:

\[y = 8 \]

Algebraic Expression:

\[0 \]

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[
\begin{align*}
\text{A Number} & \quad \text{that is the} \quad \text{A Number} \\
\text{that is the} & \quad \text{the} \quad \text{the} \\
\text{slope} & \quad \text{y-intercept} \quad \text{y-intercept} \\
y = mx + b \\
\text{Variable}
\end{align*}
\]

- In our problem we have:

\[y = 0x + 8 \]

We added in the \(x \) to this equation so that you could see it. \(0x = 0 \)

- The slope is the coefficient of \(x \), or 0.

Type in 0.

10) Problem #PRACMV6 "PRACMV6 - 57935 - Algebra1 Finding Slope From Equation Mastery Learning 2"

Determine the slope from the following equation:

\[y = -\frac{8}{4}x + 4 \]

Algebraic Expression:

\[-\frac{8}{4} \]

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

- In our problem we have:
 \[y = -\frac{8}{4}x + 4 \]

- The slope is the coefficient of x, or \(-8/4\). Type \(-8/4\).

11) Problem #PRACMWB "PRACMWB - 57935 - Algebra1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:
\[y = -\frac{3}{9}x + 10 \]

Algebraic Expression:

-3/9

Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

- In our problem we have:
 \[y = -\frac{3}{9}x + 10 \]

- The slope is the coefficient of x, or \(-3/9\). Type \(-3/9\).

12) Problem #PRACMVQ "PRACMVQ - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"
Determine the slope from the following equation:
\[y = \frac{2}{9}x + 8 \]
Algebraic Expression:
✓ 2/9

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = \frac{2}{9}x + 8 \]

• The slope is the coefficient of x, or 2/9. Type 2/9.

13) Problem #PRACMUY "PRACMUY - Algebra1 Finding Slope From Equation Mastery Learning 9"

Determine the slope from the following equation:
6y = 6x

Algebraic Expression:
✓ 1

Hints:
• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[y = \frac{1}{6}x \]

• To do this, divide each side by 6.

\[
\begin{align*}
6y &= 6x \\
6 &= 6
\end{align*}
\]

\[y = x \]

• The slope is the coefficient of x, or in this case, 1. Type 1.
14) Problem #PRACMVN "PRACMVN - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"

Determine the slope from the following equation:
y = \frac{2}{7}x + 8

Algebraic Expression:

\[\frac{2}{7} \]

Hints:

• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

- A Number that is the slope
- A Number that is the y-intercept
- Variable

• In our problem we have:
 \[y = \frac{2}{7}x + 8 \]
 • The slope is the coefficient of x, or \(\frac{2}{7} \). Type \(\frac{2}{7} \).

15) Problem #PRACMV5 "PRACMV5 - 57935 - Algebra1 Finding Slope From Equation Mastery Learning 2"

Determine the slope from the following equation:
y = -\frac{10}{3}x + 10

Algebraic Expression:

\[-\frac{10}{3} \]

Hints:

• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

- A Number that is the slope
- A Number that is the y-intercept
- Variable

• In our problem we have:
 \[y = -\frac{10}{3}x + 10 \]
• The slope is the coefficient of x, or \(-\frac{10}{3}\). Type \(-\frac{10}{3}\).

**16) Problem #PRACMWH "PRACMWH - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:

\[y = 2 \]

Algebraic Expression:

\[0 \]

Hints:

• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = \text{A Number} \times x + \text{A Number} \]

• In our problem we have:

\[y = 0x + 2 \]

We added in the x to this equation so that you could see it. 0x=0

• The slope is the coefficient of x, or 0.

Type in 0.

**17) Problem #PRACMUN "PRACMUN - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[4y = 1x + 8 \]

Algebraic Expression:

\[\frac{1}{4} \]

Hints:
• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
y = \frac{1}{4}x + \frac{8}{4}
\]

• The slope is the coefficient of x, or $\frac{1}{4}$. Type $\frac{1}{4}$.

18) Problem #PRACMWT "PRACMWT - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:

$y = 9$

Algebraic Expression:

✓ 0

Hints:

• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[
y = mx + b
\]

• In our problem we have:

\[
y = 0x + 9
\]

We added in the x to this equation so that you could see it. $0x = 0$

• The slope is the coefficient of x, or 0. Type 0.
19) Determine the slope from the following equation:
\[y = -\frac{9}{5}x + 8 \]

Algebraic Expression:

\[\frac{-9}{5} \]

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

![Slope Intercept Form Diagram]

- In our problem we have:
 \[y = -\frac{9}{5}x + 8 \]

- The slope is the coefficient of \(x \), or \(-\frac{9}{5}\). Type \(-\frac{9}{5}\).

20) Determine the slope from the following equation:
\[3y - 3x = 5 \]

Algebraic Expression:

\[\frac{3}{3} \]

Hints:

- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

![Slope Intercept Form Diagram]
• First, you must subtract $3x$ from both sides, giving you:
\[3y = 5 + 3x\]

Then, divide each side by 3.
\[\frac{3y}{3} = \frac{5 + 3x}{3}\]
\[y = \frac{5}{3} + \frac{3}{3}x\]

• The slope is the coefficient of x, or $\frac{3}{3}$. Type $\frac{3}{3}$.

21) Problem #PRACMU3 "PRACMU3 - Algebra1 Finding Slope From Equation Mastery Learning 9"
Determine the slope from the following equation:
\[2y = 2x\]

Algebraic Expression:

✓ 1

Hints:
• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[y = \frac{1}{2} \cdot x\]

To do this, divide each side by 2.
\[\frac{2y}{2} = \frac{2x}{2}\]
\[y = x\]

• The slope is the coefficient of x, or in this case, 1. Type 1.

22) Problem #PRACMUU "PRACMUU - Algebra1 Finding Slope From Equation Mastery Learning 5"
Determine the slope from the following equation:
\[-4y = 1x + 6\]

Algebraic Expression:

✓ $\frac{1}{-4}$

Hints:
• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

$$y = mx + b$$

• To do this, divide each side by -4.

$$-4y = 1x + 6$$

$$-4 = \frac{1x}{-4} + \frac{6}{-4}$$

$$y = \frac{1}{-4}x + \frac{6}{-4}$$

• The slope is the coefficient of x, or $\frac{1}{-4}$. Type $\frac{1}{-4}$.

23) Problem #PRACMUQ "PRACMUQ - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:

$-2y = 10x + 3$

Algebraic Expression:

$\checkmark \quad \frac{10}{-2}$

Hints:

• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

$$y = mx + b$$

• To do this, divide each side by -2.

$$-2y = 10x + 3$$

$$-2 = \frac{10x}{-2} + \frac{3}{-2}$$
\[y = \frac{10}{-2}x + \frac{3}{-2} \]

- The slope is the coefficient of \(x \), or \(\frac{10}{-2} \). Type \(\frac{10}{-2} \).

\[\square \quad \text{24) Problem #PRACMWP "PRACMWP - Algebra1 Finding Slope From Equation Mastery Learning 3"} \]

Determine the slope from the following equation:
\[y = 8 \]

Algebraic Expression:

- \(0 \)

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

- In our problem we have:

\[y = 0x + 8 \]

We added in the \(x \) to this equation so that you could see it. \(0x=0 \)

- The slope is the coefficient of \(x \), or \(0 \).

Type in \(0 \).

\[\square \quad \text{25) Problem #PRACMVB "PRACMVB - 57939 - Algebra1 Finding Slope From Equation Mastery Learning 6"} \]

Determine the slope from the following equation:
\[6y = 1 \]

Algebraic Expression:

- \(0 \)

Hints:
In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

$$y = \frac{1}{6}$$

To do this, divide each side by 6. The equation should now look like this:

$$y = 0x + \frac{1}{6}$$

We added in the x so that you can see it. $0x = 0$.

- The slope is the coefficient of x, or 0.
 Type in 0.

26) Problem #PRACMWA "PRACMWA - 57935 - Algebra1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:
$$y = -\frac{3}{3}x + 7$$

Algebraic Expression:
✓ $-3/3$

Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

$y = \frac{1}{6}$

In our problem we have:
$$y = -\frac{3}{3}x + 7$$

- The slope is the coefficient of x, or $-3/3$. Type $-3/3$.
27) Problem #PRACMVH "PRACMVH - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"

Determine the slope from the following equation:
y = 9/10x + 5

Algebraic Expression:
✓ 9/10

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

A Number that is the slope

\[
y = mx + b
\]

A Number that is the y-intercept

Variable

• In our problem we have:
y = 9/10x + 5
• The slope is the coefficient of x, or 9/10. Type 9/10.

28) Problem #PRACMWQ "PRACMWQ - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:
y = 6

Algebraic Expression:
✓ 0

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

A Number that is the slope

\[
y = mx + b
\]

A Number that is the y-intercept

Variable

• In our problem we have:
y = 0x + 6
• We added in the x to this equation so that you could see it. 0x=0
• The slope is the coefficient of x, or 0.
 Type in 0.

29) Problem #PRACMWF "PRACMWF - 57935 - Algebra1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:

\[y = -\frac{4}{3}x + 2 \]

Algebraic Expression:

✅ -4/3

Hints:

• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

• In our problem we have:
 \[y = -\frac{4}{3}x + 2 \]

• The slope is the coefficient of x, or -4/3. Type -4/3.

30) Problem #PRACMU9 "PRACMU9 - 57939 - Algebra1 Finding Slope From Equation Mastery Learning 6"
Determine the slope from the following equation:

\[5y = 1 \]

Algebraic Expression:

✅ 0

Hints:

• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[y = mx + b \]

• To do this, divide each side by 5. The equation should now look like this:

\[
\frac{5x}{5} = \frac{1}{5} \\
\frac{y}{5} = \frac{1}{5}
\]

\[y = 0x + \frac{1}{5} \]

We added in the x so that you can see it. 0x=0

• The slope is the coefficient of x, or 0.
 Type in 0.

31) Problem #PRACMWS "PRACMWS - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:

\[y = 9 \]

Algebraic Expression:

\[0 \]

Hints:

• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

• In our problem we have:

\[y = 0x + 9 \]

We added in the x to this equation so that you could see it. 0x=0

• The slope is the coefficient of x, or 0.
 Type in 0.
32) Problem #PRACMV3 "PRACMV3 - 57935 - Algebra1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:
\(y = -\frac{3}{10}x + 10 \)

Algebraic Expression:

\[-\frac{3}{10} \]

Hints:

- For a Linear Equation, you can read the slope and \(y \)-intercept when it is in slope intercept form:

\[y = mx + b \]

- In our problem we have:
\(y = -\frac{3}{10}x + 10 \)

- The slope is the coefficient of \(x \), or \(-\frac{3}{10}\). Type \(-\frac{3}{10}\).

33) Problem #PRACMV9 "PRACMV9 - 57935 - Algebra1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:
\(y = -\frac{3}{2}x + 3 \)

Algebraic Expression:

\[-\frac{3}{2} \]

Hints:

- For a Linear Equation, you can read the slope and \(y \)-intercept when it is in slope intercept form:

\[y = mx + b \]

- The slope is the coefficient of \(x \), or \(-\frac{3}{2}\). Type \(-\frac{3}{2}\).
• In our problem we have:

 \[y = -\frac{3}{2}x + 3 \]

• The slope is the coefficient of x, or \(-\frac{3}{2}\). Type \(-\frac{3}{2}\).

34) Problem #PRACMW6 "PRACMW6 - Algebra 1 Finding Slope From Equation Mastery Learning 7"
Determine the slope from the following equation:
\[7x + 5y = 9 \]

Algebraic Expression:
✓ \(-\frac{7}{5}\)

Hints:
• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[y = mx + b \]

First, you must subtract 7x from both sides, giving you:
\[5y = 9 - 7x \]

Then, divide each side by 5.

\[\frac{5y}{5} = \frac{9 - 7x}{5} \]

\[y = \frac{9}{5} - \frac{7}{5}x \]

• The slope is the coefficient of x, or \(-\frac{7}{5}\). Type \(-\frac{7}{5}\).

35) Problem #PRACMV F "PRACMV F - 56520 - Algebra 1 Finding Slope From Equation Mastery Learning"
Determine the slope from the following equation:
\[y = \frac{1}{2}x + 6 \]

Algebraic Expression:
✓ \(\frac{1}{2}\)

Hints:
For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

In our problem we have:
\[y = \frac{1}{2}x + 6 \]
The slope is the coefficient of \(x \), or \(\frac{1}{2} \). Type \(\frac{1}{2} \).

36) Problem #PRACMV4 "PRACMV4 - 57935 - Algebra1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:
\[y = \frac{-6}{2}x + 1 \]

Algebraic Expression:
\[\frac{-6}{2} \]

Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

In our problem we have:
\[y = \frac{-6}{2}x + 1 \]
The slope is the coefficient of \(x \), or \(-\frac{6}{2} \). Type \(-\frac{6}{2} \).

37) Problem #PRACMVP "PRACMVP - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"
Determine the slope from the following equation:
\[y = \frac{4}{5}x + 4 \]

Algebraic Expression:
Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[
y = mx + b
\]

- In our problem we have:
 \[y = \frac{4}{5}x + 4\]
 - The slope is the coefficient of x, or \(4/5\). Type \(4/5\).

38) Problem #PRACMWC "PRACMWC - 57935 - Algebra 1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:
\[y = -\frac{6}{1}x + 8\]

Algebraic Expression:
\(-\frac{6}{1}\)

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[
y = mx + b
\]

- In our problem we have:
 \[y = -\frac{6}{1}x + 8\]
 - The slope is the coefficient of x, or \(-6/1\). Type \(-6/1\).

39) Problem #PRACMWK "PRACMWK - Algebra 1 Finding Slope From Equation Mastery Learning 3"
Determine the slope from the following equation:

\[y = 1 \]

Algebraic Expression:

\[0 \]

Hints:

- For a Linear Equation, you can read the slope and \(y \)-intercept when it is in slope intercept form:

\[y = mx + b \]

- In our problem we have:

\[y = 0x + 1 \]

 We added in the \(x \) to this equation so that you could see it. 0\(x \)=0

- The slope is the coefficient of \(x \), or 0.

 Type in 0.

40) Problem #PRACMUK "PRACMUK - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[3y = 2x + 5 \]

Algebraic Expression:

\[\frac{2}{3} \]

Hints:

- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

\[y = mx + b \]

- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:
• To do this, divide each side by 3.

\[\frac{3y}{3} = \frac{2x + 5}{3} \]

\[y = \frac{2}{3}x + \frac{5}{3} \]

• The slope is the coefficient of x, or \(\frac{2}{3} \). Type \(\frac{2}{3} \).

41) Problem #PRACMWX "PRACMWX - Algebra1 Finding Slope From Equation Mastery Learning 3"
Determine the slope from the following equation:
\(y = 10 \)

Algebraic Expression:

✓ 0

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

• In our problem we have:

\[y = 0x + 10 \]

We added in the x to this equation so that you could see it. \(0x=0 \)

• The slope is the coefficient of x, or 0.

Type in 0.

42) Problem #PRACMWJ "PRACMWJ - Algebra1 Finding Slope From Equation Mastery Learning 3"
Determine the slope from the following equation:
\(y = 7 \)

Algebraic Expression:

✓ 0

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

• In our problem we have:

\[y = 0x + 7 \]

We added in the x to this equation so that you could see it. \(0x=0\)

• The slope is the coefficient of \(x\), or 0.

Type in 0.

43) Problem #PRACMW2 "PRACMW2 - Algebra1 Finding Slope From Equation Mastery Learning 7"

Determine the slope from the following equation:

\[10x + 6y = 6 \]

Algebraic Expression:

\[\frac{-10}{6} \]

Hints:

• In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

\[6y = 6 - 10x \]

First, you must subtract 10x from both sides, giving you:

\[6y = 6 - 10x \]

Then, divide each side by 6.

\[\frac{6y}{6} = \frac{6 - 10x}{6} \]

\[y = \frac{6 - 10x}{6} \]
\[y = \frac{6}{6} - \frac{10}{6}x \]

• The slope is the coefficient of x, or \(-\frac{10}{6}\). Type \(-\frac{10}{6}\).

44) Problem #PRACMW8 "PRACMW8 - Algebra1 Finding Slope From Equation Mastery Learning 7"

Determine the slope from the following equation:

\[5x + 2y = 5 \]

Algebraic Expression:

\[-\frac{5}{2} \]

Hints:

• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
\begin{align*}
A \text{ Number} & \quad A \text{ Number} \\
\text{that is the} & \quad \text{that is the} \\
\text{slope} & \quad \text{y-intercept} \\
\end{align*}
\]

\[y = \frac{5}{2} - \frac{5}{2}x \]

• The slope is the coefficient of x, or \(-\frac{5}{2}\). Type \(-\frac{5}{2}\).

45) Problem #PRACMVY "PRACMVY - 57935 - Algebra1 Finding Slope From Equation Mastery Learning 2"

Determine the slope from the following equation:

\[y = -\frac{7}{8}x + 3 \]

Algebraic Expression:

\[-\frac{7}{8} \]

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = \frac{-7}{8}x + 3 \]

• In our problem we have:

\[y = \frac{-7}{8}x + 3 \]

• The slope is the coefficient of \(x\), or \(-7/8\). Type \(-7/8\).

46) Problem #PRACMUJ "PRACMUJ - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[6y = 5x + 2 \]

Algebraic Expression:

\[5/6 \]

Hints:

• In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

\[6y = 5x + 2 \]

\[\frac{6y}{6} = \frac{5x + 2}{6} \]

\[y = \frac{5}{6}x + \frac{2}{6} \]

• The slope is the coefficient of \(x\), or \(5/6\). Type \(5/6\).
47) Problem #PRACMWN "PRACMWN - Algebra1 Finding Slope From Equation Mastery Learning 3"
Determine the slope from the following equation:
\(y = 9 \)

Algebraic Expression:
- 0

Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:
 \[y = m \times x + b \]

- In our problem we have:
 \(y = 0x + 9 \)
 We added in the x to this equation so that you could see it. \(0x = 0 \)
- The slope is the coefficient of \(x \), or 0.
 Type in 0.

48) Problem #PRACMUH "PRACMUH - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(9y = 9x + 5 \)

Algebraic Expression:
- 9/9

Hints:
- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:
 \[y = m \times x + b \]
• To do this, divide each side by 9.

\[
\begin{align*}
9y &= 9x + 5 \\
9 &= 9
\end{align*}
\]

\[y = \frac{9}{9}x + \frac{5}{9}\]

• The slope is the coefficient of \(x\), or \(\frac{9}{9}\). Type \(\frac{9}{9}\).

☐ 49) Problem #PRACMVA "PRACMVA - 57939 - Algebra1 Finding Slope From Equation Mastery Learning 6"

Determine the slope from the following equation:

\(4y = 9\)

Algebraic Expression:

✔ \(0\)

Hints:

• In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

\[
y = \text{A Number that is the slope} x + \text{A Number that is the y-intercept}
\]

\[
y = m \cdot x + b
\]

• To do this, divide each side by 4. The equation should now look like this:

\[
\begin{align*}
4y &= 9 \\
4 &= 4
\end{align*}
\]

\[y = 0x + \frac{9}{4}\]

We added in the \(x\) so that you can see it. \(0x=0\)

• The slope is the coefficient of \(x\), or \(0\).

Type in \(0\).

☐ 50) Problem #PRACMVG "PRACMVG - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"

Determine the slope from the following equation:

\(y = \frac{6}{8}x + 9\)

Algebraic Expression:

✔ \(\frac{6}{8}\)

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

• In our problem we have:
 \[y = \frac{6}{8}x + 9 \]
 • The slope is the coefficient of x, or \(\frac{6}{8} \). Type \(\frac{6}{8} \).

51) Problem #PRACMVD "PRACMVD - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"
Determine the slope from the following equation:
\[y = \frac{6}{6}x + 2 \]

Algebraic Expression:

✓ 6/6

Hints:

• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

• In our problem we have:
 \[y = \frac{6}{6}x + 2 \]
 • The slope is the coefficient of x, or \(\frac{6}{6} \). Type \(\frac{6}{6} \).

52) Problem #PRACMU2 "PRACMU2 - Algebra1 Finding Slope From Equation Mastery Learning 9"
Determine the slope from the following equation:
\[6y = 6x \]

Algebraic Expression:

✓ 1
Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

$$y = mx + b$$

- To do this, divide each side by 6.

$$6y = 6x$$

$$\frac{6y}{6} = \frac{6x}{6}$$

$$y = x$$

- The slope is the coefficient of x, or in this case, 1. Type 1.

53) Problem #PRACMUM "PRACMUM - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation: $6y = 3x + 8$

Algebraic Expression:

$\checkmark \frac{3}{6}$

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

$$y = mx + b$$

- To do this, divide each side by 6.

$$6y = 3x + 8$$

$$\frac{6y}{6} = \frac{3x + 8}{6}$$

$$y = \frac{3}{6}x + \frac{8}{6}$$

$$y = \frac{1}{2}x + \frac{4}{3}$$
\[y = \frac{3}{6}x + \frac{8}{6} \]

- The slope is the coefficient of \(x \), or \(\frac{3}{6} \). Type \(\frac{3}{6} \).

54) Problem #PRACMWU "PRACMWU - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:
\[y = 9 \]

Algebraic Expression:

\[0 \]

Hints:

- For a Linear Equation, you can read the slope and \(y \)-intercept when it is in slope intercept form:

\[
\begin{align*}
 y &= \text{A Number} \times x + \text{A Number} \times y \text{-intercept} \\
 y &= \text{Variable}
\end{align*}
\]

- In our problem we have:

\[y = 0x + 9 \]

We added in the \(x \) to this equation so that you could see it. \(0x = 0 \)

- The slope is the coefficient of \(x \), or \(0 \).

 Type in \(0 \).

55) Problem #PRACMVT "PRACMVT - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"

Determine the slope from the following equation:
\[y = \frac{7}{6}x + 1 \]

Algebraic Expression:

\[\frac{7}{6} \]

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

$y = \frac{7}{6}x + 1$

• The slope is the coefficient of x, or $\frac{7}{6}$. Type $\frac{7}{6}$.

56) Problem #PRACMU8 "PRACMU8 - 57939 - Algebra1 Finding Slope From Equation Mastery Learning 6"

Determine the slope from the following equation:

$7y = 1$

Algebraic Expression:

0

Hints:

• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

$y = \frac{1}{7}$

$y = 0x + \frac{1}{7}$

We added in the x so that you can see it. $0x = 0$

• The slope is the coefficient of x, or 0.

Type in 0.
57) Problem #PRACMVR "PRACMVR - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"
Determine the slope from the following equation:
\[y = \frac{7}{5}x + 2 \]
Algebraic Expression:
✓ 7/5

Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

 \[y = mx + b \]

- In our problem we have:
 \[y = \frac{7}{5}x + 2 \]
- The slope is the coefficient of x, or \(\frac{7}{5} \). Type 7/5.

58) Problem #PRACMT8 "PRACMT8 - Algebra1 Finding Slope From Equation Mastery Learning 8"
Determine the slope from the following equation:
\[6y - 4x = 3 \]

Algebraic Expression:
✓ 4/6

Hints:
- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

 \[y = mx + b \]

- First, you must subtract 4x from both sides, giving you:
 \[6y = 3 + 4x \]
Then, divide each side by 6.

\[6y = 3 + 4x \]

\[6 = 6 \]

\[y = \frac{3}{6} + \frac{4}{6}x \]

• The slope is the coefficient of x, or \(\frac{4}{6}\). Type \(\frac{4}{6}\).

59) Problem #PRACMW3 "PRACMW3 - Algebra 1 Finding Slope From Equation Mastery Learning 7"
Determine the slope from the following equation:

\[9x + 3y = 4 \]

Algebraic Expression:

\[-\frac{9}{3} \]

Hints:
• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[y = \frac{4}{3} - \frac{9}{3}x \]

• The slope is the coefficient of x, or \(-\frac{9}{3}\). Type \(-\frac{9}{3}\).

60) Problem #PRACMUC "PRACMUC - Algebra 1 Finding Slope From Equation Mastery Learning 8"

First, you must subtract 9x from both sides, giving you:

\[3y = 4 - 9x \]

Then, divide each side by 3.

\[3y = 4 - 9x \]

\[3 = 3 \]

\[y = \frac{4}{3} - \frac{9}{3}x \]

• The slope is the coefficient of x, or \(-\frac{9}{3}\). Type \(-\frac{9}{3}\).
Determine the slope from the following equation:
7y - 2x = 1

Algebraic Expression:
\[\frac{2}{7} \]

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
7y = 1 + 2x
\]

Then, divide each side by 7.

\[
7y = \frac{1}{7} + \frac{2}{7}x
\]

- The slope is the coefficient of x, or \(\frac{2}{7} \). Type \(\frac{2}{7} \).

61) Problem #PRACMUR "PRACMUR - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:
-3y = 1x + 4

Algebraic Expression:
\[\frac{1}{-3} \]

Hints:
• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[y = \frac{1}{-3}x + \frac{4}{-3}\]

• To do this, divide each side by -3.

\[-3y = \frac{1}{10}x + 4\]
\[-3 = -3\]

\[y = \frac{1}{-3}x + \frac{4}{-3}\]

• The slope is the coefficient of x, or \(\frac{1}{-3}\). Type \(\frac{1}{-3}\).
\[y=x \]

- The slope is the coefficient of \(x \), or in this case, 1. Type 1.

Problem #PRACMVC "PRACMVC - 57939 - Algebra1 Finding Slope From Equation Mastery Learning 6"

Determine the slope from the following equation:
\[1y = 6 \]

Algebraic Expression:

- 0

Hints:

- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

 \[
 \frac{y}{1} = \frac{6}{1}
 \]

 We added in the \(x \) so that you can see it. \(0x=0 \)

- The slope is the coefficient of \(x \), or 0.
 Type in 0.

Problem #PRACMUZ "PRACMUZ - Algebra1 Finding Slope From Equation Mastery Learning 9"

Determine the slope from the following equation:
\[8y = 8x \]

Algebraic Expression:

- 1

Hints:
• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

$y = \frac{8x}{8} = \frac{8x}{8}$

$y = x$

• The slope is the coefficient of x, or in this case, 1. Type 1.

65) Problem #PRACMWV "PRACMWV - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:

$y = 9$

Algebraic Expression:

0

Hints:

• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

$y = 0x + 9$

We added in the x to this equation so that you could see it. $0x = 0$

• The slope is the coefficient of x, or 0. Type in 0.
66) Problem #PRACMVE "PRACMVE - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"
Determine the slope from the following equation:
\[y = \frac{7}{1}x + 10 \]
Algebraic Expression:
\[\frac{7}{1} \]
Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:
 \[y = mx + b \]

 ![Diagram](https://www.assistments.org/build/print/sequence/8949?mode=debug&op_scaf=false&op_h...)

- In our problem we have:
 \[y = \frac{7}{1}x + 10 \]
- The slope is the coefficient of \(x \), or \(\frac{7}{1} \). Type \(\frac{7}{1} \).

67) Problem #PRACMUA "PRACMUA - Algebra1 Finding Slope From Equation Mastery Learning 8"
Determine the slope from the following equation:
\[4y - 10x = 4 \]
Algebraic Expression:
\[\frac{10}{4} \]
Hints:
- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

 ![Diagram](https://www.assistments.org/build/print/sequence/8949?mode=debug&op_scaf=false&op_h...)

- First, you must subtract 10x from both sides, giving you:
 \[4y = 4 + 10x \]
Then, divide each side by 4.

\[4y = 4 + 10x \]

\[4 = 4 \]

\[y = \frac{4}{4} + \frac{10}{4}x \]

• The slope is the coefficient of \(x \), or \(\frac{10}{4} \). Type \(\frac{10}{4} \).

68) Problem #PRACMUT "PRACMUT - Algebra1 Finding Slope From Equation Mastery Learning 5"
Determine the slope from the following equation:
\(-3y = 7x + 3\)

Algebraic Expression:

✓ \(\frac{7}{-3} \)

Hints:
• In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

\[y = \frac{7}{-3}x + \frac{3}{-3} \]

• To do this, divide each side by -3.

\[-3y = 7x + 3 \]

\[-3 = -3 \]

\[y = \frac{7}{-3}x + \frac{3}{-3} \]

• The slope is the coefficient of \(x \), or \(\frac{7}{-3} \). Type \(\frac{7}{-3} \).

69) Problem #PRACMWM "PRACMWM - Algebra1 Finding Slope From Equation Mastery Learning 3"
Determine the slope from the following equation:
\(y = 6 \)

Algebraic Expression:

✓ 0
Hints:

• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

• In our problem we have:

\[y = 0x + 6 \]
We added in the x to this equation so that you could see it. 0x=0

• The slope is the coefficient of x, or 0.
Type in 0.

70) Problem #PRACMWR "PRACMWR - Algebra1 Finding Slope From Equation Mastery Learning 3"
Determine the slope from the following equation:
\[y = 8 \]

Algebraic Expression:

\[0 \]

Hints:

• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

• In our problem we have:

\[y = 0x + 8 \]
We added in the x to this equation so that you could see it. 0x=0

• The slope is the coefficient of x, or 0.
Type in 0.
71) Problem #PRACMUG "PRACMUG - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\[6y = 3x + 5\]

Algebraic Expression:

✓ \[\frac{3}{6}\]

Hints:

• In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

\[y = \frac{3}{6}x + \frac{5}{6}\]

• The slope is the coefficient of \(x\), or \(\frac{3}{6}\). Type \(\frac{3}{6}\).

72) Problem #PRACMUE "PRACMUE - Algebra1 Finding Slope From Equation Mastery Learning 8"
Determine the slope from the following equation:
\[2y - 4x = 1\]

Algebraic Expression:

✓ \[\frac{4}{2}\]

Hints:
• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

$$y = m \cdot x + b$$

- First, you must subtract $4x$ from both sides, giving you:
 $$2y = 1 + 4x$$
 Then, divide each side by 2.
 $$2y = 1 + 4x$$
 $$2 = 2$$
 $$y = 1/2 + 4/2x$$

- The slope is the coefficient of x, or $4/2$. Type $4/2$.

73) Problem #PRACMVW "PRACMVW - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"

Determine the slope from the following equation:

$$y = \frac{10}{4}x + 1$$

Algebraic Expression:

✓ 10/4

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

$$y = m \cdot x + b$$

- In our problem we have:
 $$y = \frac{10}{4}x + 1$$
The slope is the coefficient of x, or \(\frac{10}{4} \). Type \(\frac{10}{4} \).

74) Problem #PRACMV8 "PRACMV8 - 57935 - Algebra1 Finding Slope From Equation Mastery Learning 2"

Determine the slope from the following equation:
\[y = \frac{-1}{10}x + 7 \]

Algebraic Expression:

\(-\frac{1}{10} \)

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:
 \[y = mx + b \]

 - In our problem we have:
 \[y = \frac{-1}{10}x + 7 \]
 - The slope is the coefficient of x, or \(-\frac{1}{10} \). Type \(-\frac{1}{10} \).

75) Problem #PRACMWV "PRACMWV - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:
\[y = 3 \]

Algebraic Expression:

\(0 \)

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:
 \[y = mx + b \]
 - A Number that is the slope
 - A Number that is the y-intercept
• In our problem we have:

$$y = 0x + 3$$

We added in the x to this equation so that you could see it. 0x=0

• The slope is the coefficient of x, or 0.
Type in 0.

76) Problem #PRACMVX "PRACMVX - 57935 - Algebra1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:
y = -3/2x + 3

Algebraic Expression:
✓ -3/2

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

• In our problem we have:

$$y = -3/2x + 3$$

• The slope is the coefficient of x, or -3/2. Type -3/2.

77) Problem #PRACMVK "PRACMVK - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"
Determine the slope from the following equation:
y = 10/7x + 3

Algebraic Expression:
✓ 10/7

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = \frac{10}{7}x + 3 \]

• The slope is the coefficient of x, or \(\frac{10}{7} \). Type \(\frac{10}{7} \).

78) Problem #PRACMVV "PRACMVV - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"
Determine the slope from the following equation:
\[y = \frac{10}{6}x + 1 \]

Algebraic Expression:
√ 10/6

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = \frac{10}{6}x + 1 \]

• The slope is the coefficient of x, or \(\frac{10}{6} \). Type \(\frac{10}{6} \).

79) Problem #PRACMUV "PRACMUV - Algebra1 Finding Slope From Equation Mastery Learning 5"
Determine the slope from the following equation:
\[-8y = 5x + 10\]

Algebraic Expression:
√ 5/-8
Hints:
• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[y = \frac{5}{-8}x + \frac{10}{-8} \]

• To do this, divide each side by -8.

\[\frac{-8y}{-8} = \frac{5x + 10}{-8} \]
\[y = \frac{5}{-8}x + \frac{10}{-8} \]

• The slope is the coefficient of x, or \(\frac{5}{-8} \). Type \(\frac{5}{-8} \).

□ 80) Problem #PRACMVJ "PRACMVJ - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"
Determine the slope from the following equation:
\[y = \frac{1}{1}x + 9 \]

Algebraic Expression:
\[\checkmark \frac{1}{1} \]

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = \frac{1}{1}x + 9 \]

• In our problem we have:
\[y = \frac{1}{1}x + 9 \]
• The slope is the coefficient of x, or \(\frac{1}{1} \). Type \(\frac{1}{1} \).
81) Problem #PRACMV7 "PRACMV7 - 57935 - Algebra1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:
y = -8/7x + 5

Algebraic Expression:
✓ -8/7

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

```
    A Number
    that is the
    slope

    A Number
    that is the
    y-intercept

    y = m x + b
```

• In our problem we have:
y = -8/7x + 5

• The slope is the coefficient of x, or -8/7. Type -8/7.

82) Problem #PRACMUD "PRACMUD - Algebra1 Finding Slope From Equation Mastery Learning 8"
Determine the slope from the following equation:
7y - 1x = 5

Algebraic Expression:
✓ 1/7

Hints:
• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-
 intercept form:

```
    A Number
    that is the
    slope

    A Number
    that is the
    y-intercept

    y = m x + b
```

• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-
 intercept form:
• First, you must subtract 1x from both sides, giving you:
 \[7y = 5 + 1x \]

Then, divide each side by 7.
 \[7y = \frac{5}{7} + \frac{1}{7}x \]
 \[y = \frac{5}{7} + \frac{1}{7}x \]

• The slope is the coefficient of x, or \(\frac{1}{7} \). Type \(\frac{1}{7} \).

83) Problem #PRACMVZ "PRACMVZ - 57935 - Algebra1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:
\[y = -\frac{5}{3}x + 2 \]

Algebraic Expression:
✓ -\(\frac{5}{3} \)

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

```
A Number
that is the
slope

\[ y = mx + b \]

A Number
that is the
y-intercept

Variable
```

• In our problem we have:
\[y = -\frac{5}{3}x + 2 \]

• The slope is the coefficient of x, or \(-\frac{5}{3} \). Type \(-\frac{5}{3} \).

84) Problem #PRACMVM "PRACMVM - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"
Determine the slope from the following equation:
\[y = \frac{10}{8}x + 2 \]

Algebraic Expression:
✓ 10/8

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = \frac{10}{8}x + 2 \]

• The slope is the coefficient of x, or \(\frac{10}{8} \). Type \(\frac{10}{8} \).

85) Problem #PRACMUB "PRACMUB - Algebra1 Finding Slope From Equation Mastery Learning 8"

Determine the slope from the following equation:

\[8y - 5x = 4 \]

Algebraic Expression:

\(\frac{5}{8} \)

Hints:

• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[8y = 4 + 5x \]

Then, divide each side by 8.

\[y = \frac{4}{8} + \frac{5}{8}x \]
• The slope is the coefficient of x, or 5/8. Type 5/8.

86) Problem #PRACMUS "PRACMUS - Algebra1 Finding Slope From Equation Mastery Learning 5"
Determine the slope from the following equation:
-2y = 3x + 7

Algebraic Expression:
✓ 3/-2

Hints:
• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
\begin{align*}
\text{A Number} & \quad \text{A Number} \\
\text{that is the} & \quad \text{that is the} \\
slope & \quad y-intercept \\
y = m \cdot x + b \\
\text{Variable}
\end{align*}
\]

• To do this, divide each side by -2.

\[
\begin{align*}
-2y &= 3x + 7 \\
-2 &= -2
\end{align*}
\]

\[
y = \frac{3}{-2}x + \frac{7}{-2}
\]

• The slope is the coefficient of x, or 3/-2. Type 3/-2.

87) Problem #PRACMV2 "PRACMV2 - Algebra1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:
y = -2/1x + 6

Algebraic Expression:
✓ -2/1

Hints:
For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

In our problem we have:
\[y = \frac{-2}{1}x + 6 \]

The slope is the coefficient of \(x \), or \(-\frac{2}{1}\). Type \(-\frac{2}{1}\).

88) Problem #PRACMWG "PRACMWG - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:
\[y = 6 \]

Algebraic Expression:

0

Hints:

For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

In our problem we have:
\[y = 0x + 6 \]

We added in the \(x \) to this equation so that you could see it. \(0x = 0 \)

The slope is the coefficient of \(x \), or 0.

Type in 0.

89) Problem #PRACMU5 "PRACMU5 - Algebra1 Finding Slope From Equation Mastery Learning 9"
Determine the slope from the following equation:
4y = 4x

Algebraic Expression:

1

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

 \[y = mx + b \]

- To do this, divide each side by 4.

 \[
 \begin{align*}
 4y &= 4x \\
 \frac{4y}{4} &= \frac{4x}{4} \\
 y &= x
 \end{align*}
 \]

- The slope is the coefficient of x, or in this case, 1. Type 1.

90) Problem #PRACMU4 "PRACMU4 - Algebra1 Finding Slope From Equation Mastery Learning 9"

Determine the slope from the following equation:
3y = 3x

Algebraic Expression:

1

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

 \[y = mx + b \]

- The slope is the coefficient of x, or in this case, 1. Type 1.
• To do this, divide each side by 3.
\[
3y = 3x \\
\frac{3y}{3} = \frac{3x}{3} \\
y = x
\]

• The slope is the coefficient of x, or in this case, 1. Type 1.

91) Problem #PRACMW4 "PRACMW4 - Algebra1 Finding Slope From Equation Mastery Learning 7"

Determine the slope from the following equation:
\[6x + 10y = 6\]

Algebraic Expression:

\[
\frac{-6}{10}
\]

Hints:

• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
10y = 6 - 6x \\
\frac{10y}{10} = \frac{6 - 6x}{10} \\
y = \frac{6}{10} - \frac{6}{10}x
\]

• The slope is the coefficient of x, or \(-6/10\). Type \(-6/10\).

92) Problem #PRACMW5 "PRACMW5 - Algebra1 Finding Slope From Equation Mastery Learning 7"

Determine the slope from the following equation:
\[4x + 3y = 7\]

Algebraic Expression:

\[-\frac{4}{3}\]
Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
y = \frac{7}{3} - \frac{4}{3}x
\]

- The slope is the coefficient of x, or $-\frac{4}{3}$. Type $-\frac{4}{3}$.

93) Problem #PRACMW7 "PRACMW7 - Algebra 1 Finding Slope From Equation Mastery Learning 7"

Determine the slope from the following equation:

$9x + 5y = 6$

Algebraic Expression:

- $\frac{-9}{5}$

Hints:
• In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

\[
5y = 6 - 9x
\]

First, you must subtract 9x from both sides, giving you:

\[
5y = 6 - 9x
\]

Then, divide each side by 5.

\[
\frac{5y}{5} = \frac{6-9x}{5}
\]

\[
y = \frac{6}{5} - \frac{9}{5}x
\]

• The slope is the coefficient of \(x \), or \(-\frac{9}{5}\). Type \(-\frac{9}{5}\).

94) Problem #PRACMVU "PRACMVU - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"

Determine the slope from the following equation:

\[
y = \frac{4}{4}x + 10
\]

Algebraic Expression:

\[
\checkmark \frac{4}{4}
\]

Hints:

• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:
In our problem we have:

\[y = \frac{4}{4}x + 10 \]

- The slope is the coefficient of \(x \), or \(\frac{4}{4} \). Type \(4/4 \).

Problem #PRACMU7 "PRACMU7 - 57939 - Algebra1 Finding Slope From Equation Mastery Learning 6"

Determine the slope from the following equation:

\[3y = 9 \]

Algebraic Expression:

\[y = 0x + \frac{9}{3} \]

Hints:

- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

\[y = mx + b \]

- To do this, divide each side by 3. The equation should now look like this:

\[
\begin{align*}
3y &= 9 \\
3 &= 3
\end{align*}
\]

\[y = 0x + \frac{9}{3} \]

- We added in the x so that you can see it. \(0x = 0 \)

- The slope is the coefficient of \(x \), or \(0 \). Type in \(0 \).
To do this, divide each side by 3. The equation should now look like this:

\[3y = 9 \]
\[y = \frac{9}{3} \]

We added in the x so that you can see it. 0x=0

The slope is the coefficient of x, or 0.

Type in 0.

End of MasterySection "Control" [5083749]

MasterySection "Experiment " [5083754]

97) Problem #PRABC2QP "PRABC2QP - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[2y = 8x + 9 \]

Algebraic Expression:

8

You just made a very common mistake. You took the number in front of x as the slope. Remember in order the read the slope from the equation, it **must** be in the form

\[y = mx + b \]

you must solve for y first

\[2y = 8x + 9 \]
Divide everything by 2

\[
\frac{2y}{2} = \frac{8x + 9}{2}
\]

\[
y = \frac{8}{2}x + \frac{9}{2}
\]

Now you can read the coefficient of x as the slope \((m)\)

Hints:
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

\[
y = mx + b
\]

- To do this, divide each side by 2.

\[
\frac{2y}{2} = \frac{8x + 9}{2}
\]

\[
y = \frac{8}{2}x + \frac{9}{2}
\]

- The slope is the coefficient of \(x\), or \(8/2\). Type \(8/2\).

98) Problem #PRABC2QQ "PRABC2QQ - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\(8y = 3x + 5\)

Algebraic Expression:

\(\checkmark\) 3/8

\(\xmark\) 3
You just made a very common mistake. You took the number in front of x as the slope. Remember in order the read the slope from the equation, it **must** be in the form

$$y = mx + b$$

you must solve for y first

$$8y = 3x + 5$$

Divide everything by 8

$$\frac{8y}{8} = \frac{3x + 5}{8}$$

$$y = \frac{3}{8}x + \frac{5}{8}$$

Now you can read the coefficient of x as the slope (m)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

$$y = m x + b$$

- To do this, divide each side by 8.
8y = 3x + 5
8 = 8

y = 3/8x + 5/8

- The slope is the coefficient of x, or 3/8. Type 3/8.

99) Problem #PRABC2QR "PRABC2QR - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:
3y = 3x + 10

Algebraic Expression:

✅ 3/3
❌ 3

You just made a very common mistake. You took the number in front of x as the slope. Remember in order to read the slope from the equation, it must be in the form

y = mx + b

you must solve for y first

3y = 3x + 10

Divide everything by 3

\[
\begin{align*}
3y &= 3x + 10 \\
\frac{3y}{3} &= \frac{3x + 10}{3} \\
y &= \frac{3}{3}x + \frac{10}{3}
\end{align*}
\]

Now you can read the coefficient of x as the slope (m)
Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
\begin{align*}
A \text{ Number} & \quad \text{that is the slope} \\
A \text{ Number} & \quad \text{that is the y-intercept} \\
y = & \quad mx + b
\end{align*}
\]

- To do this, divide each side by 3.

\[
\begin{align*}
3y &= 3x + 10 \\
3 &= 3 \\
y &= \frac{3x}{3} + \frac{10}{3}
\end{align*}
\]

- The slope is the coefficient of x, or \(\frac{3}{3}\). Type \(\frac{3}{3}\).

100) Problem #PRABC2QS "PRABC2QS - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\(10y = 8x + 2\)

Algebraic Expression:

- ✔ 8/10
- ✗ 8

You just made a very common mistake. You took the number in front of x as the slope. Remember in order the read the slope from the equation, it must be in the form

\[y = mx + b\]

you must solve for y first

\[10y = 8x + 2\]
Divide everything by 10

\[
\frac{10y}{10} = \frac{8x + 2}{10}
\]

\[
y = \frac{8}{10}x + \frac{2}{10}
\]

Now you can read the coefficient of \(x\) as the slope \((m)\)

Hints:
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

\[
y = m x + b
\]

- To do this, divide each side by 10.

\[
\frac{10y}{10} = \frac{8x + 2}{10}
\]

\[
y = \frac{8}{10}x + \frac{2}{10}
\]

- The slope is the coefficient of \(x\), or \(\frac{8}{10}\). Type \(\frac{8}{10}\).

\[101\) Problem #PRABC2QT "PRABC2QT - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[9y = 2x + 4\]

Algebraic Expression:

\[\checkmark \ 2/9\]

\[\times \ 2\]
You just made a very common mistake. You took the number in front of \(x \) as the slope. Remember in order to read the slope from the equation, it **must** be in the form

\[y = mx + b \]

you must solve for \(y \) first

\[9y = 2x + 4 \]

Divide everything by 9

\[
\begin{align*}
9y &= 2x + 4 \\
9 &= 2x + 4
\end{align*}
\]

\[y = \frac{2}{9}x + \frac{4}{9} \]

Now you can read the coefficient of \(x \) as the slope (\(m \))

Hints:
- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

\[
\begin{align*}
\text{A Number} & \quad \text{A Number} \\
\text{that is the} & \quad \text{that is the} \\
slope & \quad \text{y-intercept} \\
y = mx + b
\end{align*}
\]

- To do this, divide each side by 9.
\[
\begin{align*}
9y &= 2x + 4 \\
9 &= 9 \\
y &= \frac{2}{9}x + \frac{4}{9}
\end{align*}
\]

- The slope is the coefficient of \(x \), or \(\frac{2}{9} \). Type \(\frac{2}{9} \).

102) Problem #PRABC2QU "PRABC2QU - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[
5y = 9x + 2
\]

Algebraic Expression:

- \(\frac{9}{5} \)
- \(9 \)

You just made a very common mistake. You took the number in front of \(x \) as the slope. Remember in order to read the slope from the equation, it **must** be in the form

\[
y = mx + b
\]

you must solve for \(y \) first

\[
5y = 9x + 2
\]

Divide everything by 5

\[
\begin{align*}
5y &= 9x + 2 \\
5 &= 5 \\
y &= \frac{9}{5}x + \frac{2}{5}
\end{align*}
\]

\[
\text{Now you can read the coefficient of } x \text{ as the slope (} m \text{)}
\]

https://www.assistments.org/build/print/sequence/755585?mode=custom&op_scaf=true&op_hint=true&op_answer_op=true&op_answer=true&op_name=true&op...
Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
\begin{align*}
A \text{ Number} & \quad \text{that is the slope} \\
A \text{ Number} & \quad \text{that is the y-intercept} \\
y = m \cdot x + b \\
\text{Variable}
\end{align*}
\]

- To do this, divide each side by 5.

\[
\begin{align*}
5y & = 9x + 2 \\
5 & = 5 \\
y & = \frac{9}{5}x + \frac{2}{5}
\end{align*}
\]

- The slope is the coefficient of x, or \(\frac{9}{5}\). Type \(\frac{9}{5}\).

103) Problem #PRABC2QV "PRABC2QV - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[10y = 2x + 8\]

Algebraic Expression:

✓ 2/10

✗ 2

You just made a very common mistake. You took the number in front of x as the slope. Remember in order the read the slope from the equation, it must be in the form

\[y = mx + b\]

you must solve for y first

\[10y = 2x + 8\]
Divide everything by 10

\[
\frac{10y}{10} = \frac{2x + 8}{10}
\]

\[y = \frac{2}{10}x + \frac{8}{10}\]

Now you can read the coefficient of x as the slope \((m)\)

Hints:
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

\[
y = \frac{2}{10}x + \frac{8}{10}
\]

- To do this, divide each side by 10.

\[
\frac{10y}{10} = \frac{2x + 8}{10}
\]

\[y = \frac{2}{10}x + \frac{8}{10}\]
- The slope is the coefficient of \(x\), or \(\frac{2}{10}\). Type \(\frac{2}{10}\).
You just made a very common mistake. You just took the number in front of y as the slope. But remember, we can't just take the number in front of y as the slope.

Recall, in order to read the slope from an equation, it **must** be in the form

$$y = mx + b$$

you must solve for y first

$$1y = 2$$

Divide everything by 1

$$\frac{1y}{1} = \frac{2}{1}$$

$$y = 0x + \frac{2}{1}$$

Since there's no x, it's as if we have a 0 in front of the x after this division

You just made a very common mistake. You just took the number on the other side of the y as the slope. But remember, we can't just take the number on the other side of the equation from y.

Recall, in order to read the slope from an equation, it **must** be in the form
\[
y = mx + b
\]

you must solve for \(y \) first

\[
y = 2
\]

Divide everything by 1

\[
\begin{align*}
y &= 2 \\
1 &= 1
\end{align*}
\]

\[
y = 0x + \frac{2}{1}
\]

Since there's no \(x \), it's as if we have a 0 in front of the \(x \) after this division

Hints:

- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

\[
y = mx + b
\]

- To do this, divide each side by 1. The equation should now look like this:

\[
\begin{align*}
y &= 2 \\
1 &= 1
\end{align*}
\]
\[y = 0x + 2/1 \]

We added in the x so that you can see it. \(0x=0 \)

- The slope is the coefficient of x, or \(0 \).

 Type in 0.

105) Problem #PRABC2QX "PRABC2QX - 57939 - Algebra1 Finding Slope From Equation Mastery Learning 6"

Determine the slope from the following equation:

10y = 4

Algebraic Expression:

- \(\checkmark \) 0
- \(\times \) 10

You just made a very common mistake. You just took the number in front of \(y \) as the slope. But remember, we can't just take the number in front of \(y \) as the slope.

Recall, in order to read the slope from an equation, it **must** be in the form

\[y = mx + b \]

you must solve for \(y \) first

10y = 4

Divide everything by 10

\[
\begin{align*}
10y &= 4 \\
10 &= 10
\end{align*}
\]

\[y = 0x + 4/10 \]
Since there's no x, it's as if we have a 0 in front of the x after this division

\[4 \]

You just made a very common mistake. You just took the number on the other side of the y as the slope. But remember, we can't just take the number on the other side of the equation from y.

Recall, in order to read the slope from an equation, it **must** be in the form

\[y = mx + b \]

you must solve for y first

\[10y = 4 \]

Divide everything by 10

\[
\begin{align*}
10y &= 4 \\
10 &= 10
\end{align*}
\]

\[y = 0x + 4/10 \]

Since there's no x, it's as if we have a 0 in front of the x after this division

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by 10. The equation should now look like this:

\[10y = 4 \]
\[10 = 10 \]

\[y = 0x + \frac{4}{10} \]

We added in the x so that you can see it. \(0x = 0 \)

The slope is the coefficient of \(x \), or 0.

Type in 0.

106) Problem #PRABC2QY "PRABC2QY - 57939 - Algebra1 Finding Slope From Equation Mastery Learning 6"
Determine the slope from the following equation:

\[3y = 3 \]

Algebraic Expression:

\[\checkmark 0 \]
\[\times 3 \]

You just made a very common mistake. You just took the number in front of \(y \) as the slope. But remember, we can't just take the number in front of \(y \) as the slope.

Recall, in order to read the slope from an equation, it **must** be in the form

\[y = mx + b \]

you must solve for \(y \) first

\[3y = 3 \]
Divide everything by 3

\[
\begin{align*}
3y &= 3 \\
3 &= 3
\end{align*}
\]

\[y = 0x + 3/3\]

Since there's no x, it's as if we have a 0 in front of the x after this division

\[- \times 3\]

You just made a very common mistake. You just took the number on the other side of the y as the slope. But remember, we can't just take the number on the other side of the equation from y.

Recall, in order to read the slope from an equation, it must be in the form

\[y = mx + b\]

you must solve for y first

\[3y = 3\]

Divide everything by 3

\[
\begin{align*}
3y &= 3 \\
3 &= 3
\end{align*}
\]
y = 0x + 3/3

Since there's no x, it's as if we have a 0 in front of the x after this division

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
\frac{2x}{3} = \frac{2}{3}
\]

\[y = 0x + \frac{3}{3}\]

We added in the x so that you can see it. 0x = 0

- The slope is the coefficient of x, or 0.
 Type in 0.

107) Problem #PRABC2QZ "PRABC2QZ - 57939 - Algebra1 Finding Slope From Equation Mastery Learning 6"

Determine the slope from the following equation:

9y = 5

Algebraic Expression:

0 ✓
9 ✗
You just made a very common mistake. You just took the number in front of \(y \) as the slope. But remember, we can't just take the number in front of \(y \) as the slope.

Recall, in order to read the slope from an equation, it **must** be in the form

\[y = mx + b \]

you must solve for \(y \) first

\[9y = 5 \]

Divide everything by 9

\[
\begin{align*}
9y &= 5 \\
9 &= 9
\end{align*}
\]

\[y = 0x + \frac{5}{9} \]

Since there's no \(x \), it's as if we have a 0 in front of the \(x \) after this division

\[x \]

\[5 \]

\[9 \]

You just made a very common mistake. You just took the number on the other side of the \(y \) as the slope. But remember, we can't just take the number on the other side of the equation from \(y \).

Recall, in order to read the slope from an equation, it **must** be in the form

\[y = mx + b \]
you must solve for y first

$$9y = 5$$

Divide everything by 9

$$\begin{align*}
9y &= 5 \\
9 &= 9
\end{align*}$$

$$y = 0x + \frac{5}{9}$$

Since there's no x, it's as if we have a 0 in front of the x after this division

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

 A Number that is the slope

 $$y = mx + b$$

 A Number that is the y-intercept

 Variable

- To do this, divide each side by 9. The equation should now look like this:

 $$\begin{align*}
9y &= 5 \\
9 &= 9
\end{align*}$$

 $$y = 0x + \frac{5}{9}$$

 We added in the x so that you can see it. $0x = 0$
The slope is the coefficient of x, or 0.
Type in 0.

Appendix 2.3 "View Problems" Test Group- Common Wrong Answer

- 108) Problem #PRABC2Q2 "PRABC2Q2 - 57939 - Algebra1 Finding Slope From Equation Mastery Learning 6"

Determine the slope from the following equation:

$6y = 3$

Algebraic Expression:

- \checkmark 0
- \times 6

You just made a very common mistake. You just took the number in front of y as the slope. But remember, we can't just take the number in front of y as the slope.

Recall, in order to read the slope from an equation, it **must** be in the form

$$y = mx + b$$

you must solve for y first

$6y = 3$

Divide everything by 6

$$\frac{6y}{6} = \frac{3}{6}$$

$$y = 0x + \frac{3}{6}$$
Since there's no x, it's as if we have a 0 in front of the x after this division

3

You just made a very common mistake. You just took the number on the other side of the y as the slope. But remember, we can't just take the number on the other side of the equation from y.

Recall, in order to read the slope from an equation, it must be in the form

\[y = mx + b \]

you must solve for y first

\[6y = 3 \]

Divide everything by 6

\[\frac{6y}{6} = \frac{3}{6} \]

\[y = \frac{0}{1}x + \frac{3}{6} \]

Since there's no x, it's as if we have a 0 in front of the x after this division

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by 6. The equation should now look like this:

\[6y = 3 \]
\[6 = 6 \]

\[y = 0x + \frac{3}{6} \]
We added in the \(x \) so that you can see it. \(0x = 0 \)

- The slope is the coefficient of \(x \), or \(0 \).
Type in \(0 \).

109) Problem #PRABC2Q3 "PRABC2Q3 - 57939 - Algebra1 Finding Slope From Equation Mastery Learning 6"
Determine the slope from the following equation:
\[7y = 4 \]

Algebraic Expression:

\checkmark \; 0
\xmark \; 7

You just made a very common mistake. You just took the number in front of \(y \) as the slope. But remember, we can't just take the number in front of \(y \) as the slope.

Recall, in order to read the slope from an equation, it \textbf{must} be in the form

\[y = mx + b \]

you must solve for \(y \) first

\[7y = 4 \]
Divide everything by 7

\[
\begin{align*}
7y &= 4 \\
7 &= 7
\end{align*}
\]

\[
y = 0x + 4/7
\]

Since there's no x, it's as if we have a 0 in front of the x after this division

\[
\times 4
\]

You just made a very common mistake. You just took the number on the other side of the y as the slope. But remember, we can't just take the number on the other side of the equation from y.

Recall, in order to read the slope from an equation, it **must** be in the form

\[
y=mx+b
\]

you must solve for y first

\[
7y = 4
\]

Divide everything by 7

\[
\begin{align*}
7y &= 4 \\
7 &= 7
\end{align*}
\]
\[y = 0x + \frac{4}{7} \]

Since there's no \(x\), it's as if we have a 0 in front of the \(x\) after this division

Hints:
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

\[
\begin{align*}
\text{A Number} & \quad \text{that is the} \\
\text{y-intercept} & \quad \\
\text{Variable} & \quad \text{A Number} \\
\text{that is the} & \quad \\
\text{slope} & \quad \\
\end{align*}
\]

\[y = mx + b \]

- To do this, divide each side by 7. The equation should now look like this:

\[
\begin{align*}
7x & = 4 \\
7 & = 7 \\
\end{align*}
\]

\[y = 0x + \frac{4}{7} \]

We added in the \(x\) so that you can see it. 0\(x\)=0

- The slope is the coefficient of \(x\), or 0.

Type in 0.

Problem #PRABC2Q4 "PRABC2Q4 - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:

\[5y + 9x = 1 \]

Algebraic Expression:

- \(\checkmark\) \(-9/5\)
- \(\xmark\) \(-9\)

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it **must**
be in the form

\[y = mx + b \]

you must solve for \(y \) first

\[5y + 9x = 1 \]

subtract \(9x \) from both sides to get \(y \) by itself

\[5y = -9x + 1 \]

Divide everything by 5

\[
\begin{align*}
5y &= -9x + 1 \\
5 &= 5
\end{align*}
\]

\[y = -\frac{9}{5}x + \frac{1}{5} \]

Now you can read the coefficient of \(x \) as the slope (\(m \))

\[1.8 \]

\[9 \]

Don't forget the negative!

You just made a very common mistake. You just took the number in front of \(x \) as the slope. But remember in order the read the slope from the equation, it must be in the form

\[y = mx + b \]
you must solve for y first

$5y + 9x = 1$

subtract $9x$ from both sides to get y by itself

$5y = -9x + 1$

Divide everything by 5. Don't forget the negative in front of the x!

\[
\begin{align*}
5y &= -9x + 1 \\
5 &= 5
\end{align*}
\]

$y = -\frac{9}{5}x + \frac{1}{5}$

Now you can read the coefficient of x as the slope (m)

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

 \[
 y = m x + b
 \]

 A Number that is the slope
 A Number that is the y-intercept

 Variable

- To do this, divide each side by 5.

\[
\begin{align*}
5y &= -9x + 1 \\
5 &= 5
\end{align*}
\]
The slope is the coefficient of x, or $-\frac{9}{5}$. Type $-\frac{9}{5}$.

111) Problem #PRABC2Q5 "PRABC2Q5 - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:

$8y + 8x = 5$

Algebraic Expression:

-8/8

X -8

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order the read the slope from the equation, it must be in the form

$y = mx + b$

you must solve for y first

$8y + 8x = 5$

subtract $8x$ from both sides to get y by itself

$8y = -8x + 5$

Divide everything by 8

$\frac{8y}{8} = \frac{-8x + 5}{8}$

$y = -\frac{8}{8}x + \frac{5}{8}$
Now you can read the coefficient of x as the slope (m)

- 1

Don't forget the negative!

- 8

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order to read the slope from the equation, it must be in the form $y = mx + b$.

You must solve for y first

$$8y + 8x = 5$$

Subtract $8x$ from both sides to get y by itself

$$8y = -8x + 5$$

Divide everything by 8. Don't forget the negative in front of the x!

$$8y = -8x + 5$$

$$y = \frac{-8}{8}x + \frac{5}{8}$$

Now you can read the coefficient of x as the slope (m)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into $y = mx + b$.

https://www.assistments.org/build/print/sequence/755585?mode=custom&op_scaf=true&op_hint=true&op_answer_op=true&op_answer=true&op_name=true&op... 95/221
In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

$$8y = -8x + 5$$

To do this, divide each side by 8.

$$8 \frac{y}{8} = \frac{-8x + 5}{8}$$

$$y = \frac{-8}{8}x + \frac{5}{8}$$

The slope is the coefficient of x, or $-\frac{8}{8}$. Type $-8/8$.

112) Problem #PRABC2Q6 "PRABC2Q6 - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:

$4y + 7x = 4$

Algebraic Expression:

- $-7/4$
- -7 (X)

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order to read the slope from the equation, it **must** be in the form

$$y = mx + b$$

you must solve for y first

$$4y + 7x = 4$$

subtract $7x$ from both sides to get y by itself
\[4y = -7x + 4 \]

Divide everything by 4

\[
\begin{align*}
4y &= \frac{-7x + 4}{4} \\
4 &= 4
\end{align*}
\]

\[y = \frac{-7}{4}x + \frac{4}{4} \]

Now you can read the coefficient of x as the slope (m)

\[\times \quad 1.75 \]

Don't forget the negative!

\[\times \quad 7 \]

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order the read the slope from the equation, it must be in the form

\[y = mx + b \]

you must solve for y first

\[4y + 7x = 4 \]

subtract 7x from both sides to get y by itself

\[4y = -7x + 4 \]
Divide everything by 4. Don't forget the negative in front of the x!

\[
4y = -7x + 4 \\
4 = 4
\]

\[y = -\frac{7}{4}x + \frac{4}{4}\]

Now you can read the coefficient of x as the slope (m)

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

A Number that is the slope

A Number that is the y-intercept

\[y = m \cdot x + b\]

Variable

- To do this, divide each side by 4.

\[
4y = -7x + 4 \\
4 = 4
\]

\[y = -\frac{7}{4}x + \frac{4}{4}\]

- The slope is the coefficient of x, or -\(\frac{7}{4}\). Type -\(\frac{7}{4}\).

113) Problem #PRABC2Q7 "PRABC2Q7 - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:

\[1y + 4x = 9\]

Algebraic Expression:

-4/1

-4
You just made a very common mistake. You just took the number in front of \(x \) as the slope. But remember in order the read the slope from the equation, it **must** be in the form

\[y = mx + b \]

you must solve for \(y \) first

\[1y + 4x = 9 \]

subtract \(4x \) from both sides to get \(y \) by itself

\[1y = -4x + 9 \]

Divide everything by 1

\[1y = \frac{-4x + 9}{1} \]

\[1 = 1 \]

\[y = -\frac{4}{1}x + \frac{9}{1} \]

Now you can read the coefficient of \(x \) as the slope (\(m \))

\[\times \] 4

\[\times \] 4

Don't forget the negative!

You just made a very common mistake. You just took the number in front of \(x \) as the slope. But remember in order the read the slope from the equation, it **must** be in the form
\[y = mx + b \]

you must solve for \(y \) first

\[1y + 4x = 9 \]

subtract \(4x \) from both sides to get \(y \) by itself

\[1y = -4x + 9 \]

Divide everything by 1. Don't forget the negative in front of the \(x \)!

\[\frac{1y}{1} = \frac{-4x + 9}{1} \]

\[y = -\frac{4}{1}x + \frac{9}{1} \]

Now you can read the coefficient of \(x \) as the slope \((m) \)

Hints:
- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

\[
\begin{align*}
\text{A Number} & \quad \text{A Number} \\
\text{that is the} & \quad \text{that is the} \\
\text{slope} & \quad \text{y-intercept} \\
\hline
y & = mx + b \\
\text{Variable} &
\end{align*}
\]

- To do this, divide each side by 1.
\[
\begin{align*}
1y &= -4x + 9 \\
1 &= 1 \\
\end{align*}
\]

\[y = -\frac{4}{1}x + \frac{9}{1}\]

- The slope is the coefficient of \(x\), or \(-\frac{4}{1}\). Type \(-\frac{4}{1}\).

Problem #PRABC2Q8 "PRABC2Q8 - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:

\[2y + 10x = 3\]

Algebraic Expression:

- ✔️ \(-\frac{10}{2}\)
- ❌ \(-10\)

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form

\[y = mx + b\]

you must solve for \(y\) first

\[2y + 10x = 3\]

subtract \(10x\) from both sides to get \(y\) by itself

\[2y = -10x + 3\]

Divide everything by 2

\[\begin{align*}
2y &= -10x + 3 \\
2 &= 2 \\
\end{align*}\]
y = \(-\frac{10}{2}x + \frac{3}{2}\)

Now you can read the coefficient of x as the slope \((m)\)

\(-\frac{10}{2}\)

\cdot

Don't forget the negative!

\(-10\)

\cdot

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order the read the slope from the equation, it must be in the form

\(y = mx + b\)

you must solve for y first

\(2y + 10x = 3\)

subtract 10x from both sides to get y by itself

\(2y = -10x + 3\)

Divide everything by 2. Don't forget the negative in front of the x!

\(\frac{2y}{2} = \frac{-10x + 3}{2}\)

\(y = -\frac{10}{2}x + \frac{3}{2}\)

Now you can read the coefficient of x as the slope \((m)\)
Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

$$y = \frac{-10}{2}x + \frac{3}{2}$$

- The slope is the coefficient of x, or $\frac{-10}{2}$. Type $-\frac{10}{2}$.

115) Problem #PRABC2Q9 "PRABC2Q9 - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:

$8y + 10x = 4$

Algebraic Expression:
- \checkmark $-\frac{10}{8}$
- \times -10

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order to read the slope from the equation, it must be in the form

$$y = mx + b$$

you must solve for y first

$8y + 10x = 4$
subtract 10x from both sides to get y by itself

\[8y = -10x + 4 \]

Divide everything by 8

\[\frac{8y}{8} = \frac{-10x + 4}{8} \]

\[y = \frac{-10}{8}x + \frac{4}{8} \]

Now you can read the coefficient of x as the slope (m)

\[\times 1.25 \]

\[\times \]

Don't forget the negative!

\[\times 10 \]

\[\times \]

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order to read the slope from the equation, it must be in the form

\[y = mx + b \]

you must solve for y first

\[8y + 10x = 4 \]

subtract 10x from both sides to get y by itself

\[8y = -10x + 4 \]
Divide everything by 8. Don't forget the negative in front of the x!

\[8y = -10x + 4 \]
\[8 = 8 \]

\[y = -\frac{10}{8}x + \frac{4}{8} \]

Now you can read the coefficient of x as the slope (m)

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

 \[y = mx + b \]

 - A Number that is the slope
 - A Number that is the y-intercept
 - Variable

- To do this, divide each side by 8.

 \[8y = -10x + 4 \]
 \[8 = 8 \]

 \[y = -\frac{10}{8}x + \frac{4}{8} \]

 - The slope is the coefficient of x, or \(-10/8\). Type \(-10/8\).

116) Problem #PRABC2RA "PRABC2RA - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:

\[5y + 5x = 1 \]

Algebraic Expression:
You just made a very common mistake. You just took the number in front of x as the slope. But remember in order the read the slope from the equation, it **must** be in the form

$$y = mx + b$$

you must solve for y first

$$5y + 5x = 1$$

subtract $5x$ from both sides to get y by itself

$$5y = -5x + 1$$

Divide everything by 5

$$\frac{5y}{5} = \frac{-5x + 1}{5}$$

$$y = -\frac{5}{5}x + \frac{1}{5}$$

Now you can read the coefficient of x as the slope (m)

$$\times \frac{-5}{5}$$

Don't forget the negative!

$$\times 5$$
You just made a very common mistake. You just took the number in front of \(x \) as the slope. But remember in order to read the slope from the equation, it must be in the form

\[y = mx + b \]

you must solve for \(y \) first

\[5y + 5x = 1 \]

subtract 5x from both sides to get \(y \) by itself

\[5y = -5x + 1 \]

Divide everything by 5. Don't forget the negative in front of the \(x \)!

\[\frac{5y}{5} = \frac{-5x + 1}{5} \]

\[y = -\frac{5}{5}x + \frac{1}{5} \]

Now you can read the coefficient of \(x \) as the slope (\(m \))

Hints:

- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by 5.

\[5y = -5x + 1 \]
\[5 = 5 \]

\[y = -\frac{5}{5}x + \frac{1}{5} \]

- The slope is the coefficient of \(x \), or \(-\frac{5}{5}\). Type \(-\frac{5}{5}\).

Problem #PRABC2RB "PRABC2RB - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:

\[2y + 7x = 5 \]

Algebraic Expression:

-7/2

-7

You just made a very common mistake. You just took the number in front of \(x \) as the slope. But remember in order to read the slope from the equation, it **must** be in the form

\[y = mx + b \]

you must solve for \(y \) first

\[2y + 7x = 5 \]

subtract 7\(x \) from both sides to get \(y \) by itself
2y = -7x + 5

Divide everything by 2

\[
\begin{align*}
2y &= -7x + 5 \\
\frac{2y}{2} &= \frac{-7x + 5}{2} \\
y &= -\frac{7}{2}x + \frac{5}{2}
\end{align*}
\]

Now you can read the coefficient of x as the slope \(m\)

\[\times \quad 3.5\]

\[\times \quad 7\]

Don't forget the negative!

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form

\[y = mx + b\]

you must solve for \(y\) first

\[2y + 7x = 5\]

subtract 7x from both sides to get \(y\) by itself

\[2y = -7x + 5\]
Divide everything by 2. Don't forget the negative in front of the x!

\[\frac{2y}{2} = \frac{-7x + 5}{2}\]

\[y = \frac{-7}{2}x + \frac{5}{2}\]

Now you can read the coefficient of x as the slope (m)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
 \[y = \frac{-7}{2}x + \frac{5}{2}\]
 The slope is the coefficient of x, or \(-\frac{7}{2}\). Type \(-\frac{7}{2}\).
- To do this, divide each side by 2.

118) Problem #PRABC2RC "PRABC2RC - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:
\[y = 8\]

Algebraic Expression:

\[0\]
You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form $y=mx+b$

This problem is tricky because there isn't an x in the equation. We already have y by itself. We have

$y=8$

Also written as

$y=0x+8$

Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

 A Number that is the slope
 \[y = mx + b \]
 A Number that is the y-intercept
 Variable

- In our problem we have:

 $y = 0x + 8$

 We added in the x to this equation so that you could see it. $0x=0$

 - The slope is the coefficient of x, or 0.
 - Type in 0.

119) Problem #PRABC2RD "PRABC2RD - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:
You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form $y=mx+b$. This problem is tricky because there isn't an x in the equation. We already have y by itself. We have $y=2$.

Also written as $y=0x+2$.

Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

 ![Slope Intercept Form Diagram]

 - In our problem we have:

 $$y = 0x + 2$$

 We added in the x to this equation so that you could see it. $0x=0$

 - The slope is the coefficient of x, or 0. Type in 0.

120) Problem #PRABC2RE "PRABC2RE - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:

\[y = 10 \]

Algebraic Expression:

- ✔️ 0
- ✗ 10

You just made a very common mistake. Remember the slope is the coefficient of \(x \) when it's in the form

\[y = mx + b \]

This problem is tricky because there isn't an \(x \) in the equation. We already have \(y \) by itself. We have

\[y = 10 \]

Also written as

\[y = 0x + 10 \]

Hints:

- For a Linear Equation, you can read the slope and \(y \)-intercept when it is in slope intercept form:

 \[
 y = \color{green}{m}x + \color{red}{b}
 \]

 - A Number that is the slope
 - A Number that is the \(y \)-intercept
 - Variable

- In our problem we have:

 \[y = 0x + 10 \]

 We added the \(x \) to this equation so that you could see it. \(0x = 0 \)
The slope is the coefficient of x, or 0.
Type in 0.

121) Problem #PRABC2RF "PRABC2RF - Algebra1 Finding Slope From Equation Mastery Learning 3"
Determine the slope from the following equation:
y = 3

Algebraic Expression:
✓ 0
✗ 3

You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form

\[y = mx + b \]

This problem is tricky because there isn't an x in the equation. We already have y by itself. We have

\[y = 3 \]

Also written as

\[y = 0x + 3 \]

Hints:
• For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]
In our problem we have:

\[y = 0x + 3 \]

We added in the x to this equation so that you could see it. \(0x=0\)

- The slope is the coefficient of \(x\), or \(0\).
- Type in 0.

122) Problem #PRABC2RG "PRABC2RG - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:

\[y = 4 \]

Algebraic Expression:

- \(\checkmark 0\)
- \(\times 4\)

You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form

\[y=mx+b \]

This problem is tricky because there isn't an \(x\) in the equation. We already have \(y\) by itself. We have

\[y=4 \]

Also written as

\[y=0x+4 \]

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:
In our problem we have:

\[y = 0x + 4 \]

We added in the \(x \) to this equation so that you could see it. \(0x=0 \)

- The slope is the coefficient of \(x \), or \(0 \).
- Type in \(0 \).

123) Problem #PRABC2RH "PRABC2RH - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:

\[y = 7 \]

Algebraic Expression:

- Correct: \(0 \)
- Incorrect: \(7 \)

You just made a very common mistake. Remember the slope is the coefficient of \(x \) when it's in the form

\[y=mx+b \]

This problem is tricky because there isn't an \(x \) in the equation. We already have \(y \) by itself. We have

\[y=7 \]

Also written as

\[y=0x+7 \]
Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

 \[y = mx + b \]

- In our problem we have:

 \[y = 0x + 7 \]

 We added in the x to this equation so that you could see it. \(0x=0\)

- The slope is the coefficient of \(x\), or \(0\).

 Type in \(0\).

124) Problem #PRABC2RJ "PRABC2RJ - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:

\[y = 2 \]

Algebraic Expression:

- ✔ 0
- ✗ 2

You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form

\[y=mx+b \]

This problem is tricky because there isn't an \(x\) in the equation. We already have \(y\) by itself. We have

\[y=2 \]

Also written as

y=0x+2

Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

```
A Number 
that is the 
slope
A Number 
that is the 
y-intercept
```

```
y = mx + b
```

- In our problem we have:

\[y = 0x + 2 \]

We added in the x to this equation so that you could see it. 0x=0

- The slope is the coefficient of x, or

\[0 \]

Type in 0.

125) Problem #PRABC2RK "PRABC2RK - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:

\[y = 8 \]

Algebraic Expression:

✓ 0

✗ 8

You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form

\[y=mx+b \]

This problem is tricky because there isn't an x in the equation. We already have y by itself. We have

\[y=8 \]
Also written as

\[y = 0x + 8 \]

Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[
y = mx + b
\]

- In our problem we have:

\[y = 0x + 8 \]

We added in the \(x \) to this equation so that you could see it. 0x=0

- The slope is the coefficient of \(x \), or 0. Type in \(0 \).

126) Problem #PRABC2RM "PRABC2RM - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:

\[y = 1 \]

Algebraic Expression:

- \(0 \)
- \(1 \)

You just made a very common mistake. Remember the slope is the coefficient of \(x \) when it's in the form

\[y = mx + b \]

This problem is tricky because there isn't an \(x \) in the equation. We already have \(y \) by itself. We have
Also written as

\[y = 0x + 1 \]

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

- In our problem we have:

\[y = 0x + 1 \]

We added in the x to this equation so that you could see it. 0x=0

- The slope is the coefficient of x, or 0.

Type in 0.

Problem #PRABC2RN "PRABC2RN - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:

\[y = 6 \]

Algebraic Expression:

- ✔ 0
- ✗ 6

You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form

\[y = mx + b \]
This problem is tricky because there isn't an x in the equation. We already have y by itself. We have

\[y = 6 \]

Also written as

\[y = 0x + 6 \]

Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

- In our problem we have:

\[y = 0x + 6 \]

We added in the x to this equation so that you could see it. 0x = 0
- The slope is the coefficient of x, or 0.
 Type in 0.

128) Problem #PRABC2RP "PRABC2RP - Algebra1 Finding Slope From Equation Mastery Learning 3"
Determine the slope from the following equation:
\[y = 6 \]

Algebraic Expression:

✓ 0

✗ 6

You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form
y=mx+b

This problem is tricky because there isn't an x in the equation. We already have y by itself. We have

y=6

Also written as

y=0x+6

Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

```
A Number that is the slope
A Number that is the y-intercept
```

```
y = m x + b
```

Variable

- In our problem we have:

\[y = 0x + 6 \]

We added in the x to this equation so that you could see it. 0x=0

- The slope is the coefficient of x, or 0.
 - Type in 0.

129) Problem #PRABC2RQ "PRABC2RQ - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:

\[y = 6 \]

Algebraic Expression:

- 0
- **x** 6
You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form

\[y = mx + b \]

This problem is tricky because there isn't an x in the equation. We already have y by itself. We have

\[y = 6 \]

Also written as

\[y = 0x + 6 \]

Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

 \[y = \text{A Number that is the slope} \times x + \text{A Number that is the y-intercept} \]

- In our problem we have:

 \[y = 0x + 6 \]

 We added in the x to this equation so that you could see it. 0x=0

- The slope is the coefficient of x, or 0.

 Type in 0.

130) **Problem #PRABC2RR "PRABC2RR - Algebra1 Finding Slope From Equation Mastery Learning 3"**

Determine the slope from the following equation:

\[y = 5 \]

Algebraic Expression:
You just made a very common mistake. Remember the slope is the coefficient of
x when it's in the form

\[y = mx + b \]

This problem is tricky because there isn't an x in the equation. We already have y
by itself. We have

\[y = 5 \]

Also written as

\[y = 0x + 5 \]

Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept
form:

\[y = mx + b \]

- In our problem we have:

\[y = 0x + 5 \]

We added in the x to this equation so that you could see it. 0x=0
- The slope is the coefficient of x, or

0.

Type in 0.
y = 4

Algebraic Expression:

✔️ 0

✘ 4

You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form

\[y = mx + b \]

This problem is tricky because there isn't an x in the equation. We already have y by itself. We have

\[y = 4 \]

Also written as

\[y = 0x + 4 \]

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\[y = mx + b \]

- In our problem we have:

\[y = 0x + 4 \]

We added in the x to this equation so that you could see it. 0x=0

- The slope is the coefficient of x, or 0.

Type in 0.
132) Problem #PRABC2RT "PRABC2RT - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:
\[y = 9 \]

Algebraic Expression:

- \(0\)
- \(9\)

You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it’s in the form

\[y = mx + b \]

This problem is tricky because there isn’t an \(x\) in the equation. We already have \(y\) by itself. We have

\[y = 9 \]

Also written as

\[y = 0x + 9 \]

Hints:

- For a Linear Equation, you can read the slope and \(y\)-intercept when it is in slope intercept form:

\[
\begin{align*}
\text{A Number} & \quad \text{that is the} \\
\text{that is the} & \quad \text{y-intercept} \\
\text{slope} & \\
\text{Variable} & \\
y = mx + b
\end{align*}
\]

- In our problem we have:

\[y = 0x + 9 \]

We added in the \(x\) to this equation so that you could see it. \(0x = 0\)
The slope is the coefficient of x, or 0. Type in 0.

133) Problem #PRABC2RU "PRABC2RU - Algebra1 Finding Slope From Equation Mastery Learning 3"
Determine the slope from the following equation:
$y = 6$

Algebraic Expression:

<table>
<thead>
<tr>
<th>✔</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td>6</td>
</tr>
</tbody>
</table>

You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form $y=mx+b$

This problem is tricky because there isn't an x in the equation. We already have y by itself. We have

$y=6$

Also written as

$y=0x+6$

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

$$y = mx + b$$

Variable
In our problem we have:

\[y = 0x + 6 \]

We added in the x to this equation so that you could see it. \(0x=0\)

- The slope is the coefficient of \(x\), or \(0\).

Type in 0.

134) Problem #PRABC2RV "PRABC2RV - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:

\[y = 3 \]

Algebraic Expression:

- Correct: 0
- Incorrect: 3

You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form

\[y=mx+b \]

This problem is tricky because there isn't an \(x\) in the equation. We already have \(y\) by itself. We have

\[y=3 \]

Also written as

\[y=0x+3 \]

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:
In our problem we have:

\[y = 0x + 3 \]

We added in the `x` to this equation so that you could see it. 0x=0

- The slope is the coefficient of `x`, or
- `0`.

Type in 0.

135) Problem #PRABC2RW "PRABC2RW - Algebra1 Finding Slope From Equation Mastery Learning 9"

Determine the slope from the following equation:

8y = 8x

Algebraic Expression:

- ✔ 1
- ✗ 8

You just made a very common mistake. Remember the slope is the coefficient of `x` when it's in the form

\[y = mx + b \]

Also written as

\[y = mx + 0 \]

We have

8y=8x
Divide both sides by 8 to get y by itself

\[y = \frac{8}{8}x \]

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[y = \text{A Number that is the slope} \cdot x + \text{A Number that is the y-intercept} \]

\[y = mx + b \]

- To do this, divide each side by 8.

\[
\begin{align*}
8y &= 8x \\
\frac{8y}{8} &= \frac{8x}{8} \\
y &= x
\end{align*}
\]

- The slope is the coefficient of x, or in this case, 1. Type 1.

136) Problem #PRABC2RX "PRABC2RX - Algebra1 Finding Slope From Equation Mastery Learning 9"

Determine the slope from the following equation:

\[4y = 4x \]

Algebraic Expression:

- ✔ 1
- ✗ 4

You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form

\[y = mx + b \]
y = mx + 0

We have

4y = 4x

Divide both sides by 4 to get y by itself

y = (4/4)x

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
\begin{align*}
\text{A Number} & \quad \text{A Number} \\
\text{that is the} & \quad \text{that is the} \\
slope & \quad y\text{-intercept} \\
y = mx + b & \\
\text{Variable} & \\
\end{align*}
\]

- To do this, divide each side by 4.

\[
\begin{align*}
4y & = 4x \\
4 & = 4 \\
y & = x
\end{align*}
\]

- The slope is the coefficient of x, or in this case, 1. Type 1.

137) Problem #PRABC2RY "PRABC2RY - Algebra1 Finding Slope From Equation Mastery Learning 9"
Determine the slope from the following equation:
2y = 2x

Algebraic Expression:

✓ 1
✗ 2

https://www.assistments.org/build/print/sequence/755585?mode=custom&op_scaf=true&op_hint=true&op_answer_op=true&op_answer=true&op_name=true&o...
You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form

\[y = mx + b \]

Also written as

\[y = mx + 0 \]

We have

\[2y = 2x \]

Divide both sides by 2 to get y by itself

\[y = \frac{2}{2}x \]

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[y = mx + b \]

- To do this, divide each side by 2.

\[\frac{2y}{2} = \frac{2x}{2} \]

\[y = x \]

- The slope is the coefficient of x, or in this case, 1. Type 1.
Problem #PRABC2RZ "PRABC2RZ - Algebra1 Finding Slope From Equation Mastery Learning 9"

Determine the slope from the following equation:
7y = 7x

Algebraic Expression:

- **✓** 1
- **✗** 7

You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form

\[y = mx + b \]

Also written as

\[y = mx + 0 \]

We have

\[7y = 7x \]

Divide both sides by 7 to get y by itself

\[y = \frac{7}{7}x \]

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by 7.

\[\frac{7y}{7} = \frac{7x}{7} \]

\[y = x \]

The slope is the coefficient of x, or in this case, 1. Type 1.

139) Problem #PRABC2R2 "PRABC2R2 - Algebra1 Finding Slope From Equation Mastery Learning 9"

Determine the slope from the following equation:

4y = 4x

Algebraic Expression:

\[\checkmark 1 \]

\[\times 4 \]

You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form

\[y = mx + b \]

Also written as

\[y = mx + 0 \]

We have

4y = 4x
Divide both sides by 4 to get y by itself

$$y = \frac{4}{4}x$$

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

$$\frac{4y}{4} = \frac{4x}{4}$$

$$y = x$$

- The slope is the coefficient of x, or in this case, 1. Type 1.

140) Problem #PRABC2R3 "PRABC2R3 - Algebra1 Finding Slope From Equation Mastery Learning 9"

Determine the slope from the following equation:

$$1y = 1x$$

Algebraic Expression:

- **✓** 1
- **✗** 1

You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form

$$y = mx + b$$

Also written as

$$y = mx + 0$$
We have

\[1y = 1x \]

Divide both sides by 1 to get y by itself

\[y = (1/1)x \]

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

 \[
 y = \frac{A \text{ Number that is the slope}}{1} \cdot x + \frac{A \text{ Number that is the y-intercept}}{1}
 \]

- To do this, divide each side by 1.

\[
\begin{align*}
1y &= 1x \\
1 &= 1
\end{align*}
\]

\[y = x \]
- The slope is the coefficient of x, or in this case, 1. Type 1.

141) **Problem #PRABC2R4 "PRABC2R4 - Algebra1 Finding Slope From Equation Mastery Learning 9"**

Determine the slope from the following equation:

\[8y = 8x \]

Algebraic Expression:

\[\checkmark \quad 1 \]
\[\xmark \quad 8 \]

You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form
\[y = mx + b \]

Also written as

\[y = mx + 0 \]

We have

\[8y = 8x \]

Divide both sides by 8 to get \(y \) by itself

\[y = (\frac{8}{8})x \]

Hints:
- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

\[y = \text{A Number that is the slope} \times \text{Variable} + \text{A Number that is the y-intercept} \]

- To do this, divide each side by 8.

\[
\begin{align*}
8y &= 8x \\
\frac{8y}{8} &= \frac{8x}{8} \\
y &= x
\end{align*}
\]

- The slope is the coefficient of \(x \), or in this case, 1. Type 1.

142) Problem #PRABC2R5 "PRABC2R5 - Algebra1 Finding Slope From Equation Mastery Learning 9"
Determine the slope from the following equation:
\[4y = 4x \]
Algebraic Expression:

✓ 1

✗ 4

You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form

\[y = mx + b \]

Also written as

\[y = mx + 0 \]

We have

\[4y = 4x \]

Divide both sides by 4 to get y by itself

\[y = \frac{4}{4}x \]

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[y = mx + b \]

- To do this, divide each side by 4.

\[
\begin{align*}
4y &= 4x \\
4 &= 4
\end{align*}
\]
y=x

• The slope is the coefficient of x, or in this case, 1. Type 1.

143) Problem #PRABC2R6 "PRABC2R6 - Algebra1 Finding Slope From Equation Mastery Learning 8"
Determine the slope from the following equation:
10y - 3x = 8

Algebraic Expression:

✓ 3/10

✗ -3

* You just made a very common mistake. You just took the number in front of x as the slope. But remember in order the read the slope from the equation, it must be in the form

y = mx + b

you must solve for y first

10y - 3x = 8

add 3x to both sides to get y by itself

10y = 3x + 8

Divide everything by 10. *Don't forget the negative in front of the x!*

\[
\begin{align*}
10y &= 3x + 8 \\
10 &= 10
\end{align*}
\]

\[y = \frac{3}{10}x + \frac{8}{10}\]
Now you can read the coefficient of x as the slope (m)

✗ -0.3
•
don't forget the negative!

✗ 3
•

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order to read the slope from the equation, it must be in the form

\[y = mx + b \]

you must solve for y first

\[10y + 3x = 8 \]

add 3x to both sides to get y by itself

\[10y = 3x + 8 \]

Divide everything by 10

\[\frac{10y}{10} = \frac{3x + 8}{10} \]

\[y = \frac{3}{10}x + \frac{8}{10} \]

Now you can read the coefficient of x as the slope (m)

Hints:
• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
First, you must subtract 3x from both sides, giving you:

\[10y = 8 + 3x \]

Then, divide each side by 10.

\[\frac{10y}{10} = \frac{8 + 3x}{10} \]

\[y = \frac{8}{10} + \frac{3}{10}x \]

The slope is the coefficient of \(x \), or \(\frac{3}{10} \). Type \(\frac{3}{10} \).

144) Problem #PRABC2R7 "PRABC2R7 - Algebra1 Finding Slope From Equation Mastery Learning 8"

Determine the slope from the following equation:

\[4y - 8x = 10 \]

Algebraic Expression:

- \(\checkmark \) 8/4
- \(\times \) -8

You just made a very common mistake. You just took the number in front of \(x \) as the slope. But remember in order the read the slope from the equation, it must be in the form

\[y = mx + b \]

you must solve for \(y \) first

\[4y - 8x = 10 \]
add 8x to both sides to get y by itself

\[4y = 8x + 10 \]

Divide everything by 4. \textit{Don't forget the negative in front of the x!}

\[
\begin{align*}
4y & = 8x + 10 \\
4 & = 4 \\
\end{align*}
\]

\[y = \frac{8}{4}x + \frac{10}{4} \]

\textbf{Now} you can read the coefficient of x as the slope \((m)\)

\(\times \) -2

\(\times \) 8

\(\cdot \) don't forget the negative!

\(\times \) 8

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it \textbf{must} be in the form

\[y = mx + b \]

you must solve for \(y\) first

\[4y + 8x = 10 \]

add 8x to both sides to get y by itself

\[4y = 8x + 10 \]
Divide everything by 4

\[
4y = \frac{8x + 10}{4} = \frac{8x}{4} + \frac{10}{4}
\]

Now you can read the coefficient of x as the slope (m)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
y = \frac{8}{4}x + \frac{10}{4}
\]

- First, you must subtract 8x from both sides, giving you:

\[
4y = 10 + 8x
\]

Then, divide each side by 4.

\[
4 = \frac{10 + 8x}{4}
\]

\[
y = \frac{10}{4} + \frac{8}{4}x
\]

- The slope is the coefficient of x, or \(\frac{8}{4}\). Type \(\frac{8}{4}\).
Algebraic Expression:

✓ 6/6
✗ -6
•

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order the read the slope from the equation, it must be in the form

\[y = mx + b \]

you must solve for y first

\[6y - 6x = 9 \]

add 6x to both sides to get y by itself

\[6y = 6x + 9 \]

Divide everything by 6. Don't forget the negative in front of the x!

\[\frac{6y}{6} = x + \frac{9}{6} \]

Now you can read the coefficient of x as the slope (m)

✗ -1
•

don't forget the negative!

✗ 6
•
You just made a very common mistake. You just took the number in front of x as the slope. But remember in order the read the slope from the equation, it **must** be in the form

$$y=mx+b$$

you must solve for y first

$$6y + 6x = 9$$

add $6x$ to both sides to get y by itself

$$6y = 6x + 9$$

Divide everything by 6

$$\frac{6y}{6} = \frac{6x + 9}{6}$$

$$y = \frac{6}{6}x + \frac{9}{6}$$

Now you can read the coefficient of x as the slope (m)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
First, you must subtract 6x from both sides, giving you:
\[6y = 9 + 6x \]

Then, divide each side by 6.
\[\frac{6y}{6} = \frac{9 + 6x}{6} \]
\[y = \frac{9}{6} + \frac{6}{6}x \]

The slope is the coefficient of x, or \(\frac{6}{6} \). Type \(\frac{6}{6} \).

Problem #PRABC2R9 "PRABC2R9 - Algebra1 Finding Slope From Equation Mastery Learning 8"

Determine the slope from the following equation:
\[8y - 1x = 4 \]

Algebraic Expression:
- Correct: \(\frac{1}{8} \)
- Incorrect: \(-1 \)

You just made a very common mistake. You just took the number in front of \(x \) as the slope. But remember in order to read the slope from the equation, it **must** be in the form

\[y = mx + b \]

you must solve for \(y \) first

\[8y - 1x = 4 \]
add 1x to both sides to get y by itself

\[8y = 1x + 4 \]

Divide everything by 8. *Don't forget the negative in front of the x!*

\[\frac{8y}{8} = \frac{1x + 4}{8} \]

\[y = \frac{1}{8}x + \frac{4}{8} \]

Now you can read the coefficient of x as the slope \(m \)

-0.125

don't forget the negative!

1

You just made a very common mistake. You just took the number in front of \(x \) as the slope. But remember in order the read the slope from the equation, it **must** be in the form

\[y = mx + b \]

you must solve for \(y \) first

\[8y + 1x = 4 \]

add 1x to both sides to get y by itself

\[8y = 1x + 4 \]
Divide everything by 8

\[
8y = 1x + 4 \\
8 = 8
\]

\[y = \frac{1}{8}x + \frac{4}{8}\]

Now you can read the coefficient of x as the slope \((m)\)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
\begin{align*}
\text{A Number} & \quad \text{that is the} \\
\text{that is the} & \quad \text{y-intercept} \\
\text{slope} & \\
y = mx + b \\
\text{Variable}
\end{align*}
\]

- First, you must subtract 1x from both sides, giving you:

\[8y = 4 + 1x\]

Then, divide each side by 8.

\[
\begin{align*}
8x & = 4 + 1x \\
8 & = 8
\end{align*}
\]

\[y = \frac{4}{8} + \frac{1}{8}x\]

- The slope is the coefficient of x, or \(1/8\). Type \(1/8\).

147) Problem #PRABC2SA "PRABC2SA - Algebra1 Finding Slope From Equation Mastery Learning 8"

Determine the slope from the following equation:

\[10y - 10x = 5\]
Algebraic Expression:

- 10/10
- -10

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order to read the slope from the equation, it **must** be in the form

\[y = mx + b \]

you must solve for y first

\[10y - 10x = 5 \]

add 10x to both sides to get y by itself

\[10y = 10x + 5 \]

Divide everything by 10. *Don't forget the negative in front of the x!*

\[\frac{10y}{10} = \frac{10x + 5}{10} \]

\[y = \frac{10/10}{x} + \frac{5/10}{x} \]

Now you can read the coefficient of x as the slope \(m \)

- -1
 - don't forget the negative!
- 10
 -
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order to read the slope from the equation, it must be in the form

\[y = mx + b\]

you must solve for \(y\) first

\[10y + 10x = 5\]

add \(10x\) to both sides to get \(y\) by itself

\[10y = 10x + 5\]

Divide everything by 10

\[
\begin{align*}
10y &= 10x + 5 \\
10 &= 10 \\
y &= \frac{10}{10}x + \frac{5}{10}
\end{align*}
\]

Now you can read the coefficient of \(x\) as the slope \((m)\)

Hints:
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:
First, you must subtract 10x from both sides, giving you:
10y = 5 + 10x

Then, divide each side by 10.

\[
\frac{10y}{10} = \frac{5 + 10x}{10}
\]

\[
y = \frac{5}{10} + \frac{10}{10}x
\]

The slope is the coefficient of x, or 10/10. Type 10/10.

148) Problem #PRABC2SB "PRABC2SB - Algebra1 Finding Slope From Equation Mastery Learning 8"
Determine the slope from the following equation:
4y - 2x = 3

Algebraic Expression:

- ✔ 2/4
- ✗ -2

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order the read the slope from the equation, it **must** be in the form

\[y = mx + b\]

you must solve for y first

4y - 2x = 3
add 2x to both sides to get y by itself

\[4y = 2x + 3 \]

Divide everything by 4. Don't forget the negative in front of the x!

\[
\begin{align*}
4y &= 2x + 3 \\
4 &= 4
\end{align*}
\]

\[y = \frac{2}{4}x + \frac{3}{4} \]

Now you can read the coefficient of x as the slope \((m)\)

\[\times \quad -0.5 \]
\[\bullet \]

Don't forget the negative!

\[\times \quad 2 \]
\[\bullet \]

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order the read the slope from the equation, it must be in the form \(y = mx + b\)

\[y = mx + b \]

you must solve for y first

\[4y + 2x = 3 \]

add 2x to both sides to get y by itself

\[4y = 2x + 3 \]
Divide everything by 4

\[4y = 2x + 3\]
\[
\begin{align*}
4 &= 4 \\
y &= \frac{2}{4}x + \frac{3}{4}
\end{align*}
\]

Now you can read the coefficient of \(x\) as the slope (\(m\))

Hints:

- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

\[y = \frac{3}{4} + \frac{2}{4}x\]

- First, you must subtract 2x from both sides, giving you:

\[4y = 3 + 2x\]

Then, divide each side by 4.

\[4y = 3 + 2x\]
\[
\begin{align*}
4 &= 4 \\
y &= \frac{3}{4} + \frac{2}{4}x
\end{align*}
\]

- The slope is the coefficient of \(x\), or \(\frac{2}{4}\). Type \(\frac{2}{4}\).
Algebraic Expression:

✓ 6/6
✗ -6

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order to read the slope from the equation, it **must** be in the form

\[y = mx + b \]

you must solve for y first

\[6y - 6x = 4 \]

add 6x to both sides to get y by itself

\[6y = 6x + 4 \]

Divide everything by 6. *Don't forget the negative in front of the x!*

\[\frac{6y}{6} = \frac{6x + 4}{6} \]

\[y = \frac{6}{6}x + \frac{4}{6} \]

Now you can read the coefficient of x as the slope \((m)\)

✗ -1

don't forget the negative!

✗ 6
You just made a very common mistake. You just took the number in front of x as the slope. But remember in order to read the slope from the equation, it **must** be in the form

$$y=mx+b$$

you must solve for y first

$$6y + 6x = 4$$

add $6x$ to both sides to get y by itself

$$6y = 6x + 4$$

Divide everything by 6

$$\frac{6y}{6} = \frac{6x + 4}{6}$$

$$y = \frac{6}{6}x + \frac{4}{6}$$

Now you can read the coefficient of x as the slope (m)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
First, you must subtract $6x$ from both sides, giving you:

$$6y = 4 + 6x$$

Then, divide each side by 6.

$$\frac{6y}{6} = \frac{4 + 6x}{6}$$

$$y = \frac{4}{6} + \frac{6}{6}x$$

The slope is the coefficient of x, or $\frac{6}{6}$. Type $\frac{6}{6}$.

150) Problem #PRABC2SD "PRABC2SD - Algebra1 Finding Slope From Equation Mastery Learning 8"

Determine the slope from the following equation:

$$2y - 10x = 2$$

Algebraic Expression:

✓ $\frac{10}{2}$

✗ -10

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order the read the slope from the equation, it must be in the form

$$y = mx + b$$

you must solve for y first

$$2y - 10x = 2$$
add 10x to both sides to get y by itself

\[2y = 10x + 2 \]

Divide everything by 2. *Don't forget the negative in front of the x!*

\[
\begin{align*}
2y &= 10x + 2 \\
2 &= 2
\end{align*}
\]

\[y = \frac{10}{2}x + \frac{2}{2} \]

Now you can read the coefficient of x as the slope (m)

-5
 - don't forget the negative!

10
 -

You just made a very common mistake. You just took the number in front of x as the slope. But remember in order the read the slope from the equation, it **must** be in the form \[y=mx+b \]

you must solve for y first

\[2y + 10x = 2 \]

add 10x to both sides to get y by itself

\[2y = 10x + 2 \]
Divide everything by 2

\[
\frac{2y}{2} = \frac{10x + 2}{2} = 5x + 1
\]

\[
y = \frac{10}{2}x + \frac{2}{2} = 5x + 1
\]

Now you can read the coefficient of x as the slope (\(m\))

Hints:
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

\[
y = \frac{10}{2}x + \frac{2}{2}
\]

The slope is the coefficient of \(x\), or \(\frac{10}{2}\). Type \(\frac{10}{2}\).

151) Problem #PRABC2SE "PRABC2SE - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\(-7y = 8x + 5\)
Algebraic Expression:

\[\frac{8}{-7} \]

\[\times \quad 8 \]

\[\cdot \]

You just made a very common mistake. You took the number in front of \(x \) as the slope. Remember in order to read the slope from the equation, it must be in the form

\[y = mx + b \]

you must solve for \(y \) first

\[-7y = 8x + 5\]

Divide everything by -7

\[-7y = 8x + 5\]

\[-7 \]

\[-7 \]

\[y = \frac{8}{-7}x + \frac{5}{-7} \]

Now you can read the coefficient of \(x \) as the slope (\(m \))

\[\times \quad 1.14285714285714 \]

\[\cdot \]

Don't forget the negative!

Hints:

- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by -7.

\[-7y = 8x + 5\]

\[-7 = -7\]

\[y = \frac{8}{-7}x + \frac{5}{-7}\]

The slope is the coefficient of x, or \(\frac{8}{-7}\). Type \(\frac{8}{-7}\).

152) Problem #PRABC2SF "PRABC2SF - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[-6y = 5x + 6\]

Algebraic Expression:

\[\checkmark \ \frac{5}{-6}\]

\[\xmark \ \ 5\]

You just made a very common mistake. You took the number in front of x as the slope. Remember in order the read the slope from the equation, it **must** be in the form

\[y = mx + b\]

you must solve for y first

\[-6y = 5x + 6\]

Divide everything by -6
\[-6y \quad 5x + 6\]
\[
\begin{array}{c}
-6 \\
-6 \\
\end{array}
\]

\[y = \frac{5}{-6}x + \frac{6}{-6}\]

Now you can read the coefficient of \(x\) as the slope (\(m\))

\[\times \quad 0.833333333333333\]

\[\times \quad \text{Don't forget the negative!}\]

Hints:
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:
 \[y = \frac{5}{-6}x + \frac{6}{-6}\]
 The slope is the coefficient of \(x\), or \(\frac{5}{-6}\). Type \(\frac{5}{-6}\).
- To do this, divide each side by \(-6\).

\[\begin{array}{c}
-6y = 5x + 6 \\
-6 = -6 \\
\end{array}\]

\[y = \frac{5}{-6}x + \frac{6}{-6}\]

153) Problem #PRABC2SG "PRABC2SG - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\[-3y \quad 4x + 1\]

Algebraic Expression:
\[\checkmark \quad 4/-3\]
You just made a very common mistake. You took the number in front of \(x \) as the slope. Remember in order the read the slope from the equation, it **must** be in the form

\[y = mx + b \]

you must solve for \(y \) first

\[-3y = 4x + 1\]

Divide everything by -3

\[
\begin{align*}
-3y &= 4x + 1 \\
\frac{-3y}{-3} &= \frac{4x}{-3} + \frac{1}{-3}
\end{align*}
\]

\[y = \frac{4}{-3}x + \frac{1}{-3} \]

Now you can read the coefficient of \(x \) as the slope (\(m \))

\(1.33333333333333 \)

Don't forget the negative!

Hints:

- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by -3.

\[-3y = 4x + 1\]

\[-3 = -3\]

\[y = \frac{4}{-3}x + \frac{1}{-3}\]

The slope is the coefficient of \(x\), or \(\frac{4}{-3}\). Type \(\frac{4}{-3}\).

You just made a very common mistake. You took the number in front of \(x\) as the slope. Remember in order the read the slope from the equation, it must be in the form

\[y = mx + b\]

you must solve for \(y\) first

\[-3y = 6x + 7\]

Divide everything by -3
\[
\begin{align*}
-3y &= 6x + 7 \\
\quad -3 &= -3
\end{align*}
\]

\[
y = \frac{6}{-3}x + \frac{7}{-3}
\]

Now you can read the coefficient of \(x\) as the slope \((m)\)

\[
\times 2
\]

Don't forget the negative!

Hints:

- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

\[
y = \frac{6}{-3}x + \frac{7}{-3}
\]

- The slope is the coefficient of \(x\), or \(\frac{6}{-3}\). Type \(\frac{6}{-3}\).

155) Problem #PRABC2SJ "PRABC2SJ - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[-6y = 3x + 5\]

Algebraic Expression:

\[\checkmark \frac{3}{-6}\]
You just made a very common mistake. You took the number in front of x as the slope. Remember in order the read the slope from the equation, it must be in the form $y = mx + b$

you must solve for y first

$-6y = 3x + 5$

Divide everything by -6

\[
\begin{align*}
-6y &= 3x + 5 \\
-6 &= -6
\end{align*}
\]

$y = \frac{3}{-6}x + \frac{5}{-6}$

Now you can read the coefficient of x as the slope (m)

Don't forget the negative!

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by -6.

\[-6y = 3x + 5\]
\[-6 = \frac{3}{-6}x + \frac{5}{-6}\]

The slope is the coefficient of x, or \(\frac{3}{-6}\). Type \(\frac{3}{-6}\).

**156) Problem #PRABC2SK "PRABC2SK - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[-6y = 3x + 3\]

Algebraic Expression:

- ✓ \(\frac{3}{-6}\)
- ✗ 3

You just made a very common mistake. You took the number in front of x as the slope. Remember in order the read the slope from the equation, it must be in the form

\[y = mx + b\]

you must solve for y first

\[-6y = 3x + 3\]

Divide everything by -6
\[-6y = 3x + 3\]
\[-6\]

\[y = \frac{3}{-6}x + \frac{3}{-6}\]

Now you can read the coefficient of x as the slope \((m)\)

\[\times 0.5\]

- Don't forget the negative!

Hints:
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

\[
\begin{align*}
-6y &= 3x + 3 \\
\frac{-6y}{-6} &= \frac{3x + 3}{-6} \\
y &= \frac{3}{-6}x + \frac{3}{-6}
\end{align*}
\]

- The slope is the coefficient of \(x\), or \(\frac{3}{-6}\). Type \(\frac{3}{-6}\).

157) Problem #PRABC2SM "PRABC2SM - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:
\[-9y = 2x + 10\]

Algebraic Expression:

\[\checkmark \ 2/-9\]
You just made a very common mistake. You took the number in front of x as the slope. Remember in order to read the slope from the equation, it must be in the form

$$y = mx + b$$

you must solve for y first

$$-9y = 2x + 10$$

Divide everything by -9

$$\frac{-9y}{-9} = \frac{2x + 10}{-9}$$

$$y = \frac{2}{-9}x + \frac{10}{-9}$$

Now you can read the coefficient of x as the slope (m)

$$0.2222222222222222$$

Don't forget the negative!

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by -9.

\[-9y = 2x + 10\]

\[-9 = -9\]

\[y = \frac{2}{-9}x + \frac{10}{-9}\]

The slope is the coefficient of \(x\), or \(\frac{2}{-9}\). Type \(\frac{2}{-9}\).

□ 158) Problem #PRABC2SN "PRABC2SN - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[y = \frac{6}{2}x + 2\]

Algebraic Expression:

✓ 6/2

X 2

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order to read the slope from the equation, it **must** be in the form

\[y = mx + b\]

We must read the number in front of \(x\) as the slope.

\[y = \frac{6}{2}x + 2\]

Now you can read the coefficient of \(x\) as the slope (\(m\))
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = 6/2x + 2 \]

Now you can read the coefficient of x as the slope (m)

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
\begin{align*}
2y &= 6x + 2 \\
2 &= 2
\end{align*}
\]

\[y = 6/2x + 2/2 \]

- The slope is the coefficient of x, or 6/2. Type 6/2.

159) Problem #PRABC2SP "PRABC2SP - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[y = 6/5x + 6 \]
Algebraic Expression:

✓ 6/5

✗ 5

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order the read the slope from the equation, it must be in the form

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{6}{5}x + 6 \]

Now you can read the coefficient of x as the slope (m)

✗ 6

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{6}{5}x + 6 \]

Now you can read the coefficient of x as the slope (m)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by 5.

\[
\begin{align*}
5y &= 6x + 6 \\
5 &= 5 \\
y &= \frac{6}{5}x + \frac{6}{5}
\end{align*}
\]

• The slope is the coefficient of x, or \(\frac{6}{5} \). Type \(\frac{6}{5} \).

160) Problem #PRABC2SQ "PRABC2SQ - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[y = \frac{5}{8}x + 6 \]

Algebraic Expression:

✔ \(\frac{5}{8} \)

✗ 8

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order the read the slope from the equation, it **must** be in the form

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{5}{8}x + 6 \]

Now you can read the coefficient of x as the slope \(m \).
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{5}{8}x + 6 \]

Now you can read the coefficient of x as the slope (m)

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[\frac{8y}{8} = \frac{5x + 6}{8} \]

\[y = \frac{5}{8}x + \frac{6}{8} \]

- The slope is the coefficient of x, or \(\frac{5}{8} \). Type \(\frac{5}{8} \).

161) Problem #PRABC2SR "PRABC2SR - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[y = \frac{9}{9}x + 3 \]
Algebraic Expression:

✓ $\frac{9}{9}$

✗ 9

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order to read the slope from the equation, it must be in the form

$$y = mx + b$$

We must read the number in front of x as the slope.

$$y = \frac{9}{9}x + 3$$

Now you can read the coefficient of x as the slope (m)

✗ 3

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

$$y = mx + b$$

We must read the number in front of x as the slope.

$$y = \frac{9}{9}x + 3$$

Now you can read the coefficient of x as the slope (m)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by 9.

\[
\frac{9y}{9} = \frac{9x + 3}{9}
\]

\[
y = \frac{9}{9}x + \frac{3}{9}
\]

- The slope is the coefficient of \(x \), or \(\frac{9}{9} \). Type \(\frac{9}{9} \).

162) Problem #PRABC2SS "PRABC2SS - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[y = \frac{5}{10}x + 6 \]

Algebraic Expression:

- **✓** 5/10
- **✗** 10

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x \). Remember in order to read the slope from the equation, it must be in the form

\[y = mx + b \]

We must read the number in front of \(x \) as the slope.

\[y = \frac{5}{10}x + 6 \]

Now you can read the coefficient of \(x \) as the slope (\(m \))
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{5}{10}x + 6 \]

Now you can read the coefficient of x as the slope (m).

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

 \[\frac{10y}{10} = \frac{5x + 6}{10} \]

 \[y = \frac{5}{10}x + \frac{6}{10} \]

- The slope is the coefficient of x, or \(\frac{5}{10} \). Type 5/10.

Determine the slope from the following equation:

\[y = \frac{8}{2}x + 2 \]

https://www.assistments.org/build/print/sequence/755585?mode=custom&op_scaf=true&op_hint=true&op_answer_op=true&op_answer=true&op_name=true&o...
Algebraic Expression:

✓ 8/2
✗ 2

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order to read the slope from the equation, it must be in the form $y = mx + b$

We must read the number in front of x as the slope.

$y = \frac{8}{2}x + 2$

Now you can read the coefficient of x as the slope (m)

✗ 2

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

$y = mx + b$

We must read the number in front of x as the slope.

$y = \frac{8}{2}x + 2$

Now you can read the coefficient of x as the slope (m)

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by 2.

\[
2y = 8x + 2 \\
2 = 2
\]

\[
y = \frac{8}{2}x + \frac{2}{2}
\]

The slope is the coefficient of \(x \), or \(\frac{8}{2} \). Type 8/2.

164) Problem #PRABC2SU "PRABC2SU - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[y = \frac{2}{9}x + 8 \]

Algebraic Expression:

- ✔️ 2/9
- ✗ 9

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x \). Remember in order the read the slope from the equation, it must be in the form

\[y = mx + b \]

We must read the number in front of \(x \) as the slope.

\[y = \frac{2}{9}x + 8 \]

Now you can read the coefficient of \(x \) as the slope (\(m \))

https://www.assistments.org/build/print/sequence/755585?mode=custom&op_scaf=true&op_hint=true&op_answer_op=true&op_answer=true&op_name=true&o
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{2}{9}x + 8 \]

Now you can read the coefficient of x as the slope (m)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
\begin{align*}
y &= 2x + 8 \\
9y &= 2x + 8 \\
y &= \frac{2}{9}x + \frac{8}{9}
\end{align*}
\]

- The slope is the coefficient of x, or \(\frac{2}{9} \). Type \(\frac{2}{9} \).
Algebraic Expression:

✓ 4/2

✗ 2

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order the read the slope from the equation, it must be in the form

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{4}{2}x + 3 \]

Now you can read the coefficient of x as the slope (m)

✗ 3

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{4}{2}x + 3 \]

Now you can read the coefficient of x as the slope (m)

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by 2.

\[
\begin{align*}
2y &= 4x + 3 \\
\frac{2y}{2} &= \frac{4x + 3}{2} \\
y &= \frac{4}{2}x + \frac{3}{2}
\end{align*}
\]

The slope is the coefficient of \(x\), or \(\frac{4}{2}\). Type \(\frac{4}{2}\).

166) Problem #PRABC2SW "PRABC2SW - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\(y = \frac{9}{10}x + 6\)

Algebraic Expression:

- ✔️ \(\frac{9}{10}\)
- ✗️ 10

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it **must** be in the form

\[y = mx + b\]

We must read the number in front of \(x\) as the slope.

\[y = \frac{9}{10}x + 6\]

Now you can read the coefficient of \(x\) as the slope (\(m\))
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{9}{10}x + 6 \]

Now you can read the coefficient of x as the slope (m)

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[\frac{10y}{10} = \frac{9x + 6}{10} \]

\[y = \frac{9}{10}x + \frac{6}{10} \]

- The slope is the coefficient of x, or \(\frac{9}{10} \). Type \(\frac{9}{10} \).

167) Problem #PRABC2SX "PRABC2SX - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[y = \frac{9}{4}x + 4 \]
Algebraic Expression:

✓ \(\frac{9}{4} \)

✗ 4

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x \). Remember in order to read the slope from the equation, it **must** be in the form

\[y = mx + b \]

We must read the number in front of \(x \) as the slope.

\[y = \frac{9}{4}x + 4 \]

Now you can read the coefficient of \(x \) as the slope \((m) \)

✗ 4

You just made a very common mistake. You took constant "\(b \)" as the slope when you should have been looking at the number in front of \(x \).

\[y = mx + b \]

We must read the number in front of \(x \) as the slope.

\[y = \frac{9}{4}x + 4 \]

Now you can read the coefficient of \(x \) as the slope \((m) \)

Hints:
- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by 4.

\[4y = 9x + 4\]

\[y = \frac{9}{4}x + 4\]

The slope is the coefficient of \(x\), or \(9/4\). Type \(9/4\).

168) Problem #PRABC2SY "PRABC2SY - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[y = \frac{8}{4}x + 9\]

Algebraic Expression:

- ✔️ \(8/4\)
- ✗️ \(4\)

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it **must** be in the form

\[y=mx+b\]

We must read the number in front of \(x\) as the slope.

\[y = \frac{8}{4}x + 9\]

Now you can read the coefficient of \(x\) as the slope (\(m\))
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{8}{4}x + 9 \]

Now you can read the coefficient of x as the slope (m)

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[A \text{ Number} \quad \text{that is the} \quad \text{slope} \]
\[A \text{ Number} \quad \text{that is the} \quad \text{y-intercept} \]

\[y = m \cdot x + b \]

- To do this, divide each side by 4.

\[4y = 8x + 9 \]
\[4 = 4 \]

\[y = \frac{8}{4}x + \frac{9}{4} \]

- The slope is the coefficient of x, or \(\frac{8}{4} \). Type \(\frac{8}{4} \).
Algebraic Expression:

✓ 5/4

✗ 4

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order to read the slope from the equation, it must be in the form

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{5}{4}x + 2 \]

Now you can read the coefficient of x as the slope (m)

✗ 2

✓ 2

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{5}{4}x + 2 \]

Now you can read the coefficient of x as the slope (m)

Hints:

• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by 4.

\[
\begin{align*}
4y &= 5x + 2 \\
4 &= 4
\end{align*}
\]

\[
y = \frac{5}{4}x + \frac{2}{4}
\]

- The slope is the coefficient of \(x \), or \(\frac{5}{4} \). Type \(\frac{5}{4} \).

170) Problem #PRABC2S2 "PRABC2S2 - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\(y = \frac{5}{2}x + 1 \)

Algebraic Expression:

- ✔️ \(\frac{5}{2} \)
- ✗ 2

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x \). Remember in order the read the slope from the equation, it **must** be in the form

\(y = mx + b \)

We must read the number in front of \(x \) as the slope.

\(y = \frac{5}{2}x + 1 \)

Now you can read the coefficient of \(x \) as the slope (\(m \))
You just made a very common mistake. You took constant “b” as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{5}{2}x + 1 \]

Now you can read the coefficient of x as the slope (m).

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[\begin{align*}
 \text{A Number} & \quad \text{A Number} \\
 \text{that is the} & \quad \text{that is the} \\
 \text{slope} & \quad \text{y-intercept} \\
\end{align*} \]

\[y = mx + b \]

- To do this, divide each side by 2.

\[\begin{align*}
 2y & = 5x + 1 \\
 \frac{2y}{2} & = \frac{5x + 1}{2} \\
 y & = \frac{5}{2}x + \frac{1}{2} \\
\end{align*} \]

The slope is the coefficient of x, or $\frac{5}{2}$. Type $\frac{5}{2}$.
Algebraic Expression:

✓ \(\frac{3}{10} \)

✗ 10

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x \). Remember in order to read the slope from the equation, it must be in the form

\[y = mx + b \]

We must read the number in front of \(x \) as the slope.

\[y = \frac{3}{10} x + 10 \]

Now you can read the coefficient of \(x \) as the slope (\(m \))

✗ 10

You just made a very common mistake. You took constant "\(b \)" as the slope when you should have been looking at the number in front of \(x \).

\[y = mx + b \]

We must read the number in front of \(x \) as the slope.

\[y = \frac{3}{10} x + 10 \]

Now you can read the coefficient of \(x \) as the slope (\(m \))

Hints:

• In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by 10.

\[10y = 3x + 10 \]
\[10 = \]
\[y = 3/10x + 10/10 \]

The slope is the coefficient of x, or \(3/10\). Type \(3/10\).

172) Problem #PRABC2S4 "PRABC2S4 - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\[y = \frac{4}{5}x + 8 \]

Algebraic Expression:

- \(\checkmark\) 4/5
- \(\times\) 5

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order the read the slope from the equation, it must be in the form

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{4}{5}x + 8 \]

Now you can read the coefficient of x as the slope (m)
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{4}{5}x + 8 \]

Now you can read the coefficient of x as the slope (m).

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[\frac{5y}{5} = \frac{4x + 8}{5} \]

\[y = \frac{4}{5}x + \frac{8}{5} \]
- The slope is the coefficient of x, or \(\frac{4}{5} \). Type 4/5.

173) Problem #PRABC2S5 "PRABC2S5 - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[y = \frac{4}{2}x + 5 \]
Algebraic Expression:

✓ 4/2

✗ 2

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order to read the slope from the equation, it must be in the form

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{4}{2}x + 5 \]

Now you can read the coefficient of x as the slope (m)

✗ 5

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{4}{2}x + 5 \]

Now you can read the coefficient of x as the slope (m)

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by 2.

\[
\begin{align*}
2y &= 4x + 5 \\
\frac{2y}{2} &= \frac{4x + 5}{2}
\end{align*}
\]

\[y = \frac{4}{2}x + \frac{5}{2}\]

- The slope is the coefficient of \(x\), or \(\frac{4}{2}\). Type \(\frac{4}{2}\).

☐ 174) Problem #PRABC2S6 "PRABC2S6 - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[y = \frac{4}{5}x + 1\]

Algebraic Expression:

- ✔ 4/5
- ✗ 5

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it **must** be in the form

\[y = mx + b\]

We must read the number in front of \(x\) as the slope.

\[y = \frac{4}{5}x + 1\]

Now you can read the coefficient of \(x\) as the slope (**m**)
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{4}{5}x + 1 \]

Now you can read the coefficient of x as the slope (m)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
\begin{align*}
5y &= 4x + 1 \\
5 &= 5 \\
y &= \frac{4}{5}x + \frac{1}{5}
\end{align*}
\]

- The slope is the coefficient of x, or \(\frac{4}{5} \). Type \(\frac{4}{5} \).

175) Problem #PRABC2S7 "PRABC2S7 - 57937 - Algebra1 Finding Slope From Equation Mastery

Learning 4"

Determine the slope from the following equation:

\[y = -\frac{7}{5}x + 4 \]
Algebraic Expression:

✓ -7/5

✗ 5

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order to read the slope from the equation, it must be in the form

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = -\frac{7}{5}x + 4 \]

Now you can read the coefficient of x as the slope (m)

✗ 1.4

•

Don't forget the negative!

✗ 4

•

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = -\frac{7}{5}x + 4 \]

Now you can read the coefficient of x as the slope (m)

Hints:
In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

$$y = \frac{-7}{5}x + \frac{4}{5}$$

The slope is the coefficient of x, or $-\frac{7}{5}$. Type $-\frac{7}{5}$.

176) Problem #PRABC2S8 "PRABC2S8 - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

$$y = -\frac{4}{5}x + 4$$

Algebraic Expression:

- $\checkmark -\frac{4}{5}$
- $\times \frac{5}{5}$

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order to read the slope from the equation, it **must** be in the form

$$y = mx + b$$

We must read the number in front of x as the slope.

$$y = -\frac{4}{5}x + 4$$

Now you can read the coefficient of x as the slope (m).
Don't forget the negative!

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{-4}{5}x + 4 \]

Now you can read the coefficient of x as the slope (m).

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
\begin{align*}
5y &= -4x + 4 \\
\frac{5y}{5} &= \frac{-4x + 4}{5} \\
y &= \frac{-4}{5}x + \frac{4}{5}
\end{align*}
\]

- The slope is the coefficient of x, or \(-\frac{4}{5}\). Type \(-\frac{4}{5}\).
177) Problem #PRABC2S9 "PRABC2S9 - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:
\[y = -\frac{7}{3}x + 6 \]

Algebraic Expression:

- ✓ -\(\frac{7}{3}\)
- ✗ 3

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order to read the slope from the equation, it **must** be in the form

\[y = mx + b \]

We must read the number in front of \(x\) as the slope.

\[y = -\frac{7}{3}x + 6 \]

Now you can read the coefficient of \(x\) as the slope \((m)\)

- ✗ 2.33333333333333
- ✗ 6

Don't forget the negative!

You just made a very common mistake. You took constant "\(b\)" as the slope when you should have been looking at the number in front of \(x\).

\[y = mx + b \]

We must read the number in front of \(x\) as the slope.

\[y = -\frac{7}{3}x + 6 \]
Now you can read the coefficient of x as the slope (m)

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

$$\frac{3y}{3} = \frac{-7x + 6}{3}$$

$y = -\frac{7}{3}x + \frac{6}{3}$

- The slope is the coefficient of x, or $-\frac{7}{3}$. Type $-\frac{7}{3}$.

178) Problem #PRABC2TA "PRABC2TA - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

$y = -\frac{8}{2}x + 3$

Algebraic Expression:

-8/2

- You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order the read the slope from the equation, it must be in the form

$y = mx + b$

We must read the number in front of x as the slope.
\[y = \frac{-8}{2}x + 3 \]

Now you can read the coefficient of \(x \) as the slope (\(m \))

\[\times \quad 4 \]
- \[\times \quad 3 \]

Don't forget the negative!

You just made a very common mistake. You took constant "\(b \)" as the slope when you should have been looking at the number in front of \(x \).

\[y = mx + b \]

We must read the number in front of \(x \) as the slope.

\[y = -\frac{8}{2}x + 3 \]

Now you can read the coefficient of \(x \) as the slope (\(m \))

Hints:
- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

\[\begin{align*}
A \text{ Number} & \quad \text{that is the slope} \\
A \text{ Number} & \quad \text{that is the y-intercept} \\
\text{Variable} & \quad \text{that is the x-intercept}
\end{align*} \]

\[y = mx + b \]

- To do this, divide each side by 2.

\[\begin{align*}
2y & = -8x + 3 \\
2 & = 2
\end{align*} \]
y = \(-\frac{8}{2}x + \frac{3}{2}\)
- The slope is the coefficient of x, or \(-\frac{8}{2}\). Type -8/2.

179) Problem #PRABC2TB "PRABC2TB - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
y = -\frac{3}{7}x + 10

Algebraic Expression:

- ✔ -\(\frac{3}{7}\)
- ✗ 7

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order the read the slope from the equation, it must be in the form

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = -\frac{3}{7}x + 10 \]

Now you can read the coefficient of x as the slope (m)

- ✗ 0.428571428571429
- ✗ 10

Don't forget the negative!

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.
\[y = -\frac{3}{7}x + 10 \]

Now you can read the coefficient of \(x \) as the slope \((m) \)

Hints:
- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

\[\frac{7y}{7} = \frac{-3x + 10}{7} \]

\[y = -\frac{3}{7}x + \frac{10}{7} \]

- The slope is the coefficient of \(x \), or \(-\frac{3}{7}\). Type \(-\frac{3}{7}\).

180) Problem #PRABC2TC "PRABC2TC - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:
\[y = -\frac{7}{4}x + 7 \]

Algebraic Expression:

- **✓** -\(\frac{7}{4} \)

- **✗** 4

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x \). Remember in order the read the slope from the equation, it **must** be in the form

\[y = mx + b \]
We must read the number in front of \(x \) as the slope.

\[
y = -\frac{7}{4}x + 7
\]

Now you can read the coefficient of \(x \) as the slope (\(m \))

\[
\times \quad 1.75 \\
\times \quad 7
\]

Don't forget the negative!

\[
\times \quad 7
\]

You just made a very common mistake. You took constant "\(b \)" as the slope when you should have been looking at the number in front of \(x \).

\[
y = mx + b
\]

We must read the number in front of \(x \) as the slope.

\[
y = -\frac{7}{4}x + 7
\]

Now you can read the coefficient of \(x \) as the slope (\(m \))

Hints:
- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by 4.

\[4y = -7x + 7 \]
\[y = -\frac{7}{4}x + \frac{7}{4} \]

The slope is the coefficient of x, or \(-\frac{7}{4}\). Type \(-\frac{7}{4}\).

181) Problem #PRABC2TD "PRABC2TD - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:
\[y = -\frac{3}{4}x + 9 \]

Algebraic Expression:

-3/4

4

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order the read the slope from the equation, it must be in the form

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = -\frac{3}{4}x + 9 \]

Now you can read the coefficient of x as the slope (m)

0.75
Don't forget the negative!

\[\boxed{9} \]

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = -\frac{3}{4}x + 9 \]

Now you can read the coefficient of x as the slope \((m)\)

Hints:
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

 \[
 \begin{align*}
 4y &= -3x + 9 \\
 \frac{4y}{4} &= \frac{-3x + 9}{4} \\
 y &= -\frac{3}{4}x + \frac{9}{4}
 \end{align*}
 \]

- The slope is the coefficient of \(x\), or \(-\frac{3}{4}\). Type \(-\frac{3}{4}\).
Learning 4
Determine the slope from the following equation:
\[y = -\frac{4}{8}x + 8 \]

Algebraic Expression:

- [✓] -\(\frac{4}{8}\)
- [✗] 8

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order to read the slope from the equation, it **must** be in the form

\[y = mx + b \]

We must read the number in front of \(x\) as the slope.

\[y = -\frac{4}{8}x + 8 \]

Now you can read the coefficient of \(x\) as the slope (**m**)

- [✗] 0.5

Don't forget the negative!

- [✗] 8

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).

\[y = mx + b \]

We must read the number in front of \(x\) as the slope.

\[y = -\frac{4}{8}x + 8 \]
Now you can read the coefficient of x as the slope (m)

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
y = \frac{-4}{8}x + \frac{8}{8}
\]

- To do this, divide each side by 8.

\[
8y = -4x + 8 \\
8 = 8
\]

\[
y = -\frac{4}{8}x + \frac{8}{8}
\]

183) Problem #PRABC2TF "PRABC2TF - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[y = -\frac{4}{9}x + 1\]

Algebraic Expression:

- $-\frac{4}{9}$
- 9

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order to read the slope from the equation, it must be in the form

\[y = mx + b\]

We must read the number in front of x as the slope.

\[y = -\frac{4}{9}x + 1\]
Now you can read the coefficient of x as the slope (m)

- 0.4444444444444444
 - Don't forget the negative!
- 1

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = -\frac{4}{9}x + 1 \]

Now you can read the coefficient of x as the slope (m)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[y = \frac{-4}{9}x + \frac{1}{9} \]

- To do this, divide each side by 9.

\[9y = -4x + 1 \]
\[9 = 9 \]

\[y = -\frac{4}{9}x + \frac{1}{9} \]
The slope is the coefficient of x, or -4/9. Type -4/9.

184) Problem #PRABC2TG "PRABC2TG - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
y = -7/8x + 10

Algebraic Expression:
✓ -7/8
✗ 8

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order the read the slope from the equation, it must be in the form

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = -7/8x + 10 \]

Now you can read the coefficient of x as the slope (m)

✗ 0.875

Don't forget the negative!

✗ 10

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.
\[y = -\frac{7}{8}x + 10 \]

Now you can read the coefficient of \(x \) as the slope (\(m \))

Hints:
- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

\[
y = \frac{-7}{8}x + \frac{10}{8}
\]

- To do this, divide each side by 8.

\[
8y = -7x + 10 \\
8 = 8
\]

\[y = -\frac{7}{8}x + \frac{10}{8} \]

- The slope is the coefficient of \(x \), or \(-\frac{7}{8}\). Type \(-\frac{7}{8}\).

185) Problem #PRABC2TH "PRABC2TH - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:
\[y = -\frac{4}{2}x + 1 \]

Algebraic Expression:
- \(\checkmark \) \(-\frac{4}{2}\)
- \(\times \) 2

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x \). Remember in order the read the slope from the equation, it must be in the form

\[y = mx + b \]
We must read the number in front of x as the slope.

\[y = \frac{-4}{2}x + 1 \]

Now you can read the coefficient of x as the slope (m)

\[x = 2 \]

Don't forget the negative!

\[x = 1 \]

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = \frac{-4}{2}x + 1 \]

Now you can read the coefficient of x as the slope (m)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[y = \frac{-4}{2}x + 1 \]

- To do this, divide each side by 2.
\[\frac{2x}{2} = \frac{-4x + 1}{2} \]

\[y = \frac{-4}{2x} + \frac{1}{2} \]

- The slope is the coefficient of \(x \), or \(-\frac{4}{2}\). Type \(-\frac{4}{2}\).

186) Problem #PRABC2TJ "PRABC2TJ - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\[y = \frac{-7}{5}x + 4 \]

Algebraic Expression:
✅ \(-\frac{7}{5}\)
❌ 5

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x \). Remember in order the read the slope from the equation, it must be in the form

\[y = mx + b \]

We must read the number in front of \(x \) as the slope.

\[y = \frac{-7}{5}x + 4 \]

Now you can read the coefficient of \(x \) as the slope (\(m \))

❌ 1.4

Don't forget the negative!

❌ 4

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x \).

\[y = mx + b \]
We must read the number in front of x as the slope.

$$y = -\frac{7}{5}x + 4$$

Now you can read the coefficient of x as the slope (m).

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[
y = \frac{-7}{5}x + 4/5
\]

- To do this, divide each side by 5.

\[
\begin{align*}
5y &= -7x + 4 \\
5 &= 5
\end{align*}
\]

$$y = -\frac{7}{5}x + \frac{4}{5}$$

- The slope is the coefficient of x, or $-\frac{7}{5}$. Type $-\frac{7}{5}$.

187) Problem #PRABC2TK "PRABC2TK - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

$$y = -\frac{9}{8}x + 3$$

Algebraic Expression:

✓ $-\frac{9}{8}$

✗ 8

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order the read the slope from the equation, it **must** be in the form...
$y = mx + b$

We must read the number in front of x as the slope.

$y = \frac{-9}{8}x + 3$

Now you can read the coefficient of x as the slope (m)

x 1.125

•

Don't forget the negative!

x 3

•

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

$y = mx + b$

We must read the number in front of x as the slope.

$y = \frac{-9}{8}x + 3$

Now you can read the coefficient of x as the slope (m)

Hints:
• In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:
To do this, divide each side by 8.

\[
\begin{align*}
8y &= -9x + 3 \\
8 &= 8
\end{align*}
\]

\[
y = -\frac{9}{8}x + \frac{3}{8}
\]

The slope is the coefficient of x, or \(-\frac{9}{8}\). Type \(-\frac{9}{8}\).

188) Problem #PRABC2TM "PRABC2TM - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:

\[y = -\frac{8}{8}x + 6\]

Algebraic Expression:

- ✔ \(-\frac{8}{8}\)
- ✗ 8

You just made a very common mistake. You took the denominator of the fraction as the slope of x. Remember in order the read the slope from the equation, it must be in the form

\[y = mx + b\]

We must read the number in front of x as the slope.

\[y = -\frac{8}{8}x + 6\]

Now you can read the coefficient of x as the slope (m)

- ✗ 1
Don't forget the negative!

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = -\frac{8}{8}x + 6 \]

Now you can read the coefficient of x as the slope (m)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

 \[
 8y = -8x + 6 \\
 8 = \frac{-8x + 6}{8} \\
 y = -\frac{8}{8}x + \frac{6}{8}
 \]

 - The slope is the coefficient of x, or \(-\frac{8}{8}\). Type \(-8/8\).
Learning 4
Determine the slope from the following equation:
\[y = -\frac{3}{10}x + 1 \]

Algebraic Expression:

- ✔️ -3/10
- ✗️ 10

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x \). Remember in order to read the slope from the equation, it must be in the form

\[y = mx + b \]

We must read the number in front of \(x \) as the slope.

\[y = -\frac{3}{10}x + 1 \]

Now you can read the coefficient of \(x \) as the slope (\(m \))

- ✗️ 0.3
- ✔️ 1

Don't forget the negative!

You just made a very common mistake. You took constant "\(b \)" as the slope when you should have been looking at the number in front of \(x \).

\[y = mx + b \]

We must read the number in front of \(x \) as the slope.

\[y = -\frac{3}{10}x + 1 \]
Now you can read the coefficient of x as the slope \(m \)

Hints:
- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

\[
\begin{align*}
A \text{ Number} & \quad \text{that is the} \quad \text{slope} \\
\downarrow & \quad \downarrow \quad \downarrow \\
y & = m \quad x + b \\
\Downarrow & \quad \Downarrow \quad \Downarrow \\
\text{Variable} & \quad \text{that is the} \quad \text{y-intercept}
\end{align*}
\]

- To do this, divide each side by 10.

\[
\begin{align*}
10y & = -3x + 1 \\
10 & = 10
\end{align*}
\]

\[
y = -\frac{3}{10}x + \frac{1}{10}
\]

- The slope is the coefficient of \(x \), or \(-\frac{3}{10}\). Type \(-\frac{3}{10}\).

190) Problem #PRABC2TP "PRABC2TP - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"

Determine the slope from the following equation:
\(y = -\frac{8}{5}x + 10 \)

Algebraic Expression:

- \(\checkmark \) \(-\frac{8}{5}\)
- \(\times \) 5

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x \). Remember in order to read the slope from the equation, it **must** be in the form

\[y = mx + b \]

We must read the number in front of \(x \) as the slope.

\[y = -\frac{8}{5}x + 10 \]
Now you can read the coefficient of x as the slope (m)

\[1.6 \]

Don't forget the negative!

\[10 \]

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of x.

\[y = mx + b \]

We must read the number in front of x as the slope.

\[y = -\frac{8}{5}x + 10 \]

Now you can read the coefficient of x as the slope (m)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

\[y = \text{A Number that is the slope} \times x + \text{A Number that is the y-intercept} \]

- To do this, divide each side by 5.

\[
\begin{align*}
5y &= -8x + 10 \\
5 &= 5 \\
y &= -\frac{8}{5}x + 10/5
\end{align*}
\]
The slope is the coefficient of \(x \), or \(-\frac{8}{5}\). Type \(-\frac{8}{5}\).

191) Problem #PRABC2TQ "PRABC2TQ - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(y = -\frac{10}{5}x + 4 \)

Algebraic Expression:
- \(\checkmark -\frac{10}{5} \)
- \(\times 5 \)
-

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x \). Remember in order the read the slope from the equation, it **must** be in the form

\[y = mx + b \]

We must read the number in front of \(x \) as the slope.

\[y = -\frac{10}{5}x + 4 \]

Now you can read the coefficient of \(x \) as the slope (\(m \))

- \(\times 2 \)
-

Don't forget the negative!

- \(\times 4 \)
-

You just made a very common mistake. You took constant "\(b \)" as the slope when you should have been looking at the number in front of \(x \).

\[y = mx + b \]

We must read the number in front of \(x \) as the slope.
\[y = -\frac{10}{5}x + 4 \]

Now you can read the coefficient of \(x \) as the slope \((m)\)

Hints:

- In this case, you must first solve for \(y \) so that you can read the slope. You should try to get it into slope-intercept form:

 \[
 y = m \cdot x + b
 \]

- To do this, divide each side by 5.

\[
\frac{5y}{5} = \frac{-10x + 4}{5}
\]

\[y = -\frac{10}{5}x + \frac{4}{5} \]

- The slope is the coefficient of \(x \), or \(-10/5\). Type \(-10/5\).

End of MasterySection "Experiment " [5083754]
End of ChooseConditionSection "Study" [5083738]

192) Problem #PRA8S2F "PRA8S2F - Message"

Congratulations, you have completed the skill builder.

Do your best to solve these last two problems.

Good luck!

Multiple Choice:

✓ OK.

End of LinearSection "Finding Slope from a Linear Equation 8.F.B.4 EX" [5083737]
Dividing Mixed Numbers 6.NS.A.1 EX [1 student]

<table>
<thead>
<tr>
<th>Gaps in procedural fluency observed</th>
<th>Calculation errors (e.g., in long division in last procedural step)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning strategies observed</td>
<td>Notices decimal looks too long, careful and targeted search through own calculations</td>
</tr>
<tr>
<td></td>
<td>Compares instructions in hint with her own calculations</td>
</tr>
<tr>
<td></td>
<td>Reverse division with multiplication to see if answer is correct</td>
</tr>
<tr>
<td>Assessment evidence of learning focal skill</td>
<td>None observed for this skill; student seemed to already know this skill, she just made calculation errors</td>
</tr>
<tr>
<td>Ineffective / inefficient learning processes</td>
<td>Reviews calculations and keeps missing mistake</td>
</tr>
<tr>
<td>SkillBuilder features that could matter</td>
<td>This problem required extensive calculations that were not necessarily directly related to understanding the focal skill of dividing mixed numbers</td>
</tr>
<tr>
<td></td>
<td>Ordering of these problems can be critical. Ordering from more simple to more complex could help with both diagnosing the source of misunderstanding, and provide pedagogical scaffolding to help students build skills by practicing easier to harder problems. [Connect to research on MKT and CGI about selection of appropriate problems]</td>
</tr>
<tr>
<td></td>
<td>Random ordering of problems does not support productive persistence -- does not help students identify the source of their errors systematically.</td>
</tr>
<tr>
<td></td>
<td>Hints do not show actual calculations. Can be difficult to use them to locate errors.</td>
</tr>
<tr>
<td>Ideas for supporting productive persistence</td>
<td>Order problems systematically from more simple to more complex, varying which parts of the procedure need to be addressed</td>
</tr>
<tr>
<td></td>
<td>Could vary hints to highlight key aspects of procedure in a given problem</td>
</tr>
</tbody>
</table>
Appendix 3.2 Comments On Problems

Comments on this Problem

<table>
<thead>
<tr>
<th>General comment:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>General comment: Too big of numbers for a simple problem use some easier numbers to calculate</td>
<td></td>
</tr>
<tr>
<td>General comment: Mr. Grover, I am having some trouble on this so maybe I could stay after and you could help me out a little bit if that is ok?</td>
<td></td>
</tr>
<tr>
<td>General comment: I typed in the right answer and it said it's wrong. Then I typed it again and it said it's right</td>
<td></td>
</tr>
<tr>
<td>I am having difficulty with this problem: This one is really hard!</td>
<td></td>
</tr>
<tr>
<td>General comment: DANGIT! I completely forgot the stupid improper fraction to mixed number. GHAAAH</td>
<td></td>
</tr>
<tr>
<td>General comment: sorry.</td>
<td></td>
</tr>
</tbody>
</table>

Comments on Hints

<table>
<thead>
<tr>
<th>General comment:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>General comment:</td>
<td>i already had that as my equation</td>
</tr>
<tr>
<td>General comment:</td>
<td>I know that</td>
</tr>
<tr>
<td>General comment:</td>
<td>I knew this too!</td>
</tr>
<tr>
<td>General comment:</td>
<td>this is awful and it sucks</td>
</tr>
<tr>
<td>General comment:</td>
<td>Stupid</td>
</tr>
<tr>
<td>General comment:</td>
<td>I knew this too. The numbers are hard though</td>
</tr>
<tr>
<td>General comment:</td>
<td>!!!!!!!!!!!!</td>
</tr>
<tr>
<td>General comment:</td>
<td>this hint doesn't help me a lot</td>
</tr>
<tr>
<td>General comment:</td>
<td>I did this and the simplifying was the hardest part of the problem</td>
</tr>
</tbody>
</table>
“Kind” problems

Simplifying division of mixed numbers problems
Current Issues with PSAV89B

Large numbers make division of mixed numbers overwhelming

Comments on problems suggest that students struggle with the problems as a result of the large numbers used in them
Goals with new “kind” problems

Keep our fractions “kind” by making sure numbers can be multiplied and divided without the use of a calculator

Hand check problems to make sure process for simplification is obvious
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[2 \frac{4}{5} \div \frac{11}{41} \]

Type your answer below:

Submit Answer
Both prime and large. Will be difficult to multiply
Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[2 - \frac{4}{5} \div \frac{1}{2} \]

Type your answer below:
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[\frac{2 - \frac{4}{5}}{\frac{1}{2}} \]

\[2 \times 5 = 10 \]
\[10 + 4 = 14 \]
Reciprocal of 1/2 = 2/1
\[14 \times 2 = 28 \]
\[5 \times 1 = 5 \]
Answer: 5 3/5 = (28/5)
Problem ID: PRAHRGY

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
5 \frac{3}{14} \div \frac{7}{4}
\]

Type your answer below:

Submit Answer

Show hint 1 of 5
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{5}{14} + \frac{7}{4}
\]

Type your answer below:

Submit Answer

100%
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[1 \frac{3}{8} + \frac{7}{4}\]

Type your answer below:

Submit Answer

Show hint 1 of 5
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\begin{align*}
1 & \quad \frac{3}{8} + \frac{7}{4} \\
1 \times 8 &= 8 \\
8 + 3 &= 11 \\
\text{Reciprocal of } \frac{7}{4} &= \frac{4}{7}
\end{align*}
\]
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{8} \div \frac{3}{4} = \frac{1 \times 8}{8 + 3} = \frac{11}{14}
\]

Reciprocal of 7/4 = 4/7

Answer: 11/14
In conclusion

We predict that by ensuring the numbers involved in these problems are easier to multiply and divide by another, students will be more successful in solving these
Problem Set "Division of Mixed Numbers (Kind)" id:[PSA47DY]

☐ Select All
☐ 1) Problem #PRABC6CW "PRABC6CW - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

$$\frac{3}{2} \div \frac{1}{11}$$

Exact Match (case sensitive):

✓ 19 1/4

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

$$\frac{3}{2} \div \frac{1}{11} = \frac{3}{2} \times \frac{11}{1}$$

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

$$\frac{3}{2} \times \frac{11}{1} = \frac{33}{2}$$

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

$$\frac{33}{2} \times \frac{11}{2} = \frac{363}{4}$$

The Mixed Number Representation is seen here:

$$19 \frac{1}{4}$$

Type the answer 19 1/4.

☐ 2) Problem #PRABC6CX "PRABC6CX - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
whole number and the fraction parts. Example: 6 \frac{3}{4}.

\[
\begin{array}{c}
\frac{2}{3} \div \frac{5}{11}
\end{array}
\]

Exact Match (case sensitive):

✓ 5 \frac{2}{15}

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
\frac{2}{3} \div \frac{5}{11} = \frac{2}{3} \times \frac{11}{5}
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
\frac{1}{11} \times \frac{7}{11} = \frac{1}{11} \times \frac{7}{11}
\end{array}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\begin{array}{c}
\frac{2}{3} \times \frac{11}{5} = \frac{7}{3} \times \frac{11}{5} = \frac{77}{15}
\end{array}
\]

The Mixed Number Representation is seen here:

\[
\begin{array}{c}
\frac{2}{5} \frac{2}{15}
\end{array}
\]

Type the answer 5 \frac{2}{15}.

3) Problem #PRABC6CY "PRABC6CY - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 \frac{3}{4}.

\[
\begin{array}{c}
\frac{2}{3} \div \frac{1}{11}
\end{array}
\]

Exact Match (case sensitive):

✓ 25 \frac{2}{3}

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

$$\frac{1}{3} \div \frac{1}{11} = \frac{1}{3} \times \frac{11}{1}$$

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

$$\frac{1}{3} \times \frac{7}{11} = \frac{11}{3} \times \frac{7}{1}$$

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

$$\frac{2}{3} \times \frac{1}{11} = \frac{7}{3} \times \frac{11}{1} = \frac{77}{3}$$

The Mixed Number Representation is seen here:

$$\frac{2}{3}$$

Type the answer 25 2/3.

4) Problem #PRABC6CZ "PRABC6CZ - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

$$\frac{1}{3} \div \frac{1}{2}$$

Exact Match (case sensitive):

✓ 7 0/2

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

$$\frac{1}{3} \div \frac{1}{2} = \frac{1}{3} \times \frac{2}{1}$$

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

$$\frac{3}{1} \times \frac{2}{1} = \frac{7}{2} \times \frac{2}{1}$$
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{1} = \frac{7}{2} \times \frac{2}{1} = \frac{14}{2}
\]

The Mixed Number Representation is seen here:

\[
0 \frac{7}{2}
\]

Type the answer 7 0/2.

5) Problem #PRABC6C2 "PRABC6C2 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{5} \div \frac{1}{3}
\]

Exact Match (case sensitive):

✓ 3 3/5

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{5} \div \frac{1}{3} = \frac{1}{5} \times \frac{3}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{5} \div \frac{1}{3} = \frac{1}{5} \times \frac{3}{1}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{1}{1} \times \frac{3}{3} = \frac{6}{1} \times \frac{3}{3} = 18
\]
The Mixed Number Representation is seen here:

\[\frac{3}{5} \]

Type the answer \(3 \frac{3}{5} \).

6) Problem #PRABC6C3 "PRABC6C3 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{1}{3}
\]

Exact Match (case sensitive):

\[\checkmark 4 \frac{2}{3} \]

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{1}{3} = \frac{1}{2} \cdot \frac{3}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \cdot \frac{3}{1} = \frac{3}{2} \cdot \frac{1}{1}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{2}{3} \cdot \frac{1}{1} = \frac{7}{3} \cdot \frac{2}{1} = \frac{14}{3}
\]

The Mixed Number Representation is seen here:

\[\frac{2}{3} \]

Type the answer \(4 \frac{2}{3} \).

7) Problem #PRABC6C4 "PRABC6C4 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{5}{7}
\]

Exact Match (case sensitive):

✔️ 3 2/25

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \times \frac{1}{7} = \frac{2}{5} \times \frac{7}{5}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{11}{7} = \frac{5}{5} \times \frac{7}{5}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

- Answer should be written in mixed number form.

\[
\frac{2}{5} \times \frac{7}{5} = \frac{11}{5} \times \frac{7}{5} = \frac{77}{25}
\]

The Mixed Number Representation is seen here:

\[
\frac{2}{3} \div \frac{11}{25}
\]

Answer: 3 2/25

8) Problem #PRABC6C5 "PRABC6C5 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{1}{11}
\]

Exact Match (case sensitive):

✔️ 25 2/3
Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{align*}
\frac{1}{1} & \times \frac{11}{3} \\
\frac{2}{11} & = \frac{2}{3} - \frac{1}{11} \\
\end{align*}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{align*}
1 & \times 11 = \frac{7}{11} \\
2 & \times \frac{1}{3} = \frac{7}{11} \times \frac{1}{3} \\
\end{align*}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\begin{align*}
\frac{2}{3} & \times \frac{1}{1} = \frac{7}{3} \times \frac{11}{1} = 77 \\
\end{align*}
\]

The Mixed Number Representation is seen here:

\[
\begin{align*}
\frac{2}{3} & = 25 \frac{2}{3} \\
Type & the answer 25 2/3.
\end{align*}
\]

9) Problem #PRABC6C6 "PRABC6C6 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{align*}
\frac{1}{5} & \div \frac{1}{2} \\
\end{align*}
\]

Exact Match (case sensitive):

✔️ 4 2/5

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{align*}
\frac{1}{1} & \times \frac{1}{2} \\
\frac{2}{1} & = \frac{2}{5} - \frac{1}{11} \\
\end{align*}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{align*}
2 & \times \frac{1}{2} = \frac{11}{2} \times \frac{1}{2} \\
\end{align*}
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\begin{array}{c}
2 & \times \frac{1}{5} & \times \frac{2}{1} = 11 & \times \frac{2}{5} & = \frac{22}{5}
\end{array}
\]

The Mixed Number Representation is seen here:

\[
\frac{2}{5} \div \frac{1}{3} = \frac{4}{5} \div \frac{1}{5}
\]

Type the answer 4 2/5.

10) Problem #PRABC6C7 "PRABC6C7 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{array}{c}
2 & \div \frac{1}{5} & \div \frac{1}{3}
\end{array}
\]

Exact Match (case sensitive):

✓ 6 3/5

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
1 & \times \frac{1}{5} & \times \frac{1}{3} = 2 & \times \frac{1}{5} & \times \frac{1}{3}
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
1 & \times \frac{1}{5} & \times \frac{11}{3} = 2 & \times \frac{1}{5} & \times \frac{11}{3}
\end{array}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\begin{array}{c}
2 & \times \frac{1}{3} & \times \frac{11}{3} = \frac{33}{3}
\end{array}
\]
The Mixed Number Representation is seen here:

$$\frac{6}{5}$$

Type the answer 6 3/5.

11) Problem #PRABC6C8 "PRABC6C8 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

$$\frac{3}{2} \div \frac{1}{3}$$

Exact Match (case sensitive):

✓ 10 1/2

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

$$\frac{1}{3} \div \frac{1}{2} = \frac{1}{3} \times \frac{2}{1}$$

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

$$\frac{3}{2} \times \frac{1}{1} = \frac{3}{2} \times \frac{1}{1}$$

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

- Answer should be written in mixed number form.

$$\frac{3}{2} \times \frac{1}{1} = \frac{3}{2} \times \frac{1}{1} = \frac{21}{2}$$

The Mixed Number Representation is seen here:

$$\frac{10}{2}$$

Type the answer 10 1/2.

12) Problem #PRABC6C9 "PRABC6C9 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[\frac{1}{7} \div \frac{1}{5} \]

Exact Match (case sensitive):

\[5 \frac{5}{7} \]

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{7} \div \frac{1}{5} = \frac{1}{7} \times \frac{5}{1}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{7} \times \frac{5}{1} = \frac{5}{7} \times \frac{5}{1}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

- Answer should be written in mixed number form.

\[
\frac{1}{7} \times \frac{5}{1} = \frac{5}{7}
\]

The Mixed Number Representation is seen here:

\[5 \frac{5}{7} \]

Type the answer 5 \(\frac{5}{7}\).

13) Problem #PRABC6DA "PRABC6DA - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[\frac{2}{5} \div \frac{3}{7} \]

Exact Match (case sensitive):

\[5 \frac{2}{15} \]
Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
 \[
 \frac{2}{5} \div \frac{1}{3} = \frac{2}{5} \times \frac{3}{1}
 \]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
 \[
 \frac{1}{2} \times \frac{7}{5} = \frac{11}{5} \times \frac{7}{3}
 \]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{1}{2} \times \frac{7}{5} = \frac{11}{5} \times \frac{7}{3} = \frac{77}{15}
\]

The Mixed Number Representation is seen here:
\[
\frac{77}{15} = \frac{5}{2} \frac{2}{15}
\]
Type the answer 5 2/15.

 probl

14) Problem #PRABC6DB "PRABC6DB - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{1}{5}
\]

Exact Match (case sensitive):

✓ 7 1/2

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
 \[
 \frac{2}{5} \div \frac{1}{3} = \frac{2}{5} \times \frac{3}{1}
 \]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
 \[
 \frac{1}{2} \times 5 = \frac{3}{5}
 \]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

$$\frac{1}{2} \times \frac{5}{1} = \frac{3}{2} \times \frac{5}{1} = \frac{15}{2}$$

The Mixed Number Representation is seen here:

$$7 \frac{1}{2}$$

Type the answer 7 1/2.

15) Problem #PRABC6DC "PRABC6DC - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

$$\frac{1}{7} \div \frac{1}{5}$$

Exact Match (case sensitive):

✓ 5 5/7

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

$$\frac{1}{1} \times \frac{1}{5} = \frac{1}{7} \times \frac{5}{1}$$

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

$$\frac{1}{7} \times \frac{5}{1}$$

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

$$\frac{1}{1} \times \frac{5}{1} = \frac{8}{1} \times \frac{5}{1} = 40$$
The Mixed Number Representation is seen here:

\[
\frac{5}{7}
\]

Type the answer \(5 \frac{5}{7}\).

16) Problem #PRABC6DD "PRABC6DD - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 \(\frac{3}{4}\).

\[
\frac{1}{2} \div \frac{2}{3}
\]

Exact Match (case sensitive):

\(2 \frac{1}{4}\)

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{2}{3} = \frac{1}{2} \times \frac{3}{2}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{3} \times \frac{3}{2} = \frac{1}{3} \times \frac{3}{2}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

- Answer should be written in mixed number form.

\[
\frac{1}{2} \times \frac{3}{2} = \frac{3}{2} \times \frac{3}{2} = \frac{9}{4}
\]

The Mixed Number Representation is seen here:

\[
\frac{1}{4}
\]

Type the answer 2 \(\frac{1}{4}\).

17) Problem #PRABC6DE "PRABC6DE - Final: Dividing Fractions M/M"

https://www.assistments.org/build/print/sequence/779071?mode=debug&op_scaf=false&o... 4/25/2017
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{6}{3} = \frac{1}{3} \quad \text{Exact Match (case sensitive):} \\
\checkmark 4 \frac{5}{18}
\]

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{6}{3} = \frac{1}{2} \times \frac{3}{6}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{7}{11} = \frac{7}{22} \quad \frac{3}{6} \times \frac{11}{3} = \frac{33}{18}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{2}{3} \times \frac{11}{6} = \frac{22}{18} = \frac{77}{54} \quad \frac{7}{3} \times \frac{11}{6} = \frac{77}{18}
\]

The Mixed Number Representation is seen here:

\[
5 \frac{13}{18}
\]

Type the answer 4 5/18.

☐ 18) Problem #PRABC6DF "PRABC6DF - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{1}{5} = \frac{1}{10} \quad \text{Exact Match (case sensitive):} \\
\checkmark 13 \frac{1}{5}
\]
Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{align*}
\frac{1}{5} \div \frac{1}{6} &= \frac{1}{5} \times \frac{6}{1} \\
2 &= \frac{1}{3} \times \frac{6}{1} \\
5 &= \frac{1}{1} \times \frac{6}{1} \\
\end{align*}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{align*}
\frac{1}{6} \times 11 &= \frac{11}{6} \\
2 &= \frac{1}{5} \times \frac{6}{1} \\
5 &= \frac{1}{1} \times \frac{6}{1} \\
\end{align*}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\begin{align*}
\frac{2}{5} \times \frac{1}{6} &= \frac{11}{5} \times \frac{6}{1} \\
66 &= \frac{66}{5} \\
\end{align*}
\]

The Mixed Number Representation is seen here:

\[
\frac{13}{5}
\]

Type the answer 13 \(\frac{1}{5} \).

19) Problem #PRABC6DG "PRABC6DG - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 \(\frac{3}{4} \).

\[
\begin{align*}
\frac{1}{2} \div \frac{5}{3} &= \frac{1}{2} \times \frac{3}{5} \\
\end{align*}
\]

Exact Match (case sensitive):

✔️ 5 2/15

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{align*}
\frac{1}{5} \div \frac{1}{11} &= \frac{1}{5} \times \frac{11}{1} \\
2 &= \frac{1}{11} \times \frac{11}{3} \\
5 &= \frac{1}{3} \times \frac{11}{5} \\
\end{align*}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{align*}
2 \times 1 = 7 \times 11
\end{align*}
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\begin{align*}
2 & \quad \frac{1}{3} \ast \frac{11}{5} = \frac{7}{3} \ast \frac{11}{5} = \frac{77}{15}
\end{align*}
\]

The Mixed Number Representation is seen here:

\[
\begin{align*}
\frac{2}{5} & \quad \frac{2}{15}
\end{align*}
\]

Type the answer 5 2/15.

20) Problem #PRABC6DH "PRABC6DH - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{align*}
\frac{1}{3} & \div \frac{1}{2} \\
\frac{3}{2} & \ast \frac{1}{11}
\end{align*}
\]

Exact Match (case sensitive):

- ✓ 38 1/2

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{align*}
\frac{1}{3} \ast \frac{1}{11} = \frac{1}{2} \ast \frac{1}{11}
\end{align*}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{align*}
\frac{1}{3} & \ast \frac{7}{11} \\
\frac{3}{2} & \ast \frac{1}{2}
\end{align*}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

- Answer should be written in mixed number form.

\[
\begin{align*}
\frac{3}{1} \ast \frac{11}{5} = \frac{7}{1} \ast \frac{11}{5} = \frac{77}{15}
\end{align*}
\]
The Mixed Number Representation is seen here:

\[
\frac{1}{2} \quad \frac{38}{1} \quad \frac{2}{1}
\]

Type the answer 38 \(1/2\).

21) Problem #PRABC6DJ "PRABC6DJ - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 \(3/4\).

\[
\frac{1}{2} \div \frac{4}{5}
\]

Exact Match (case sensitive):

✓ 1 \(7/8\)

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{4}{5} = \frac{1}{2} \times \frac{5}{4}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{5} \times \frac{3}{4} = \frac{3}{20}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{1}{2} \times \frac{5}{4} = \frac{3}{2} \times \frac{5}{4} = \frac{15}{8}
\]

The Mixed Number Representation is seen here:

\[
\frac{7}{1} \quad \frac{1}{8}
\]

Type the answer 1 \(7/8\).

22) Problem #PRABC6DK "PRABC6DK - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{1}{11}
\]

Exact Match (case sensitive):

✓ 16 1/2

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
1 \div \frac{1}{11} = 1 \times \frac{11}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
1 \div \frac{3}{11} = 1 \times \frac{11}{3}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{1}{2} \times \frac{11}{1} = \frac{3}{2} \times \frac{11}{1} = \frac{33}{2}
\]

The Mixed Number Representation is seen here:

\[
16 \frac{1}{2}
\]

Type the answer 16 1/2.

☐ 23) Problem #PRABC6DM "PRABC6DM - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{3}{2} \div \frac{1}{3}
\]

Exact Match (case sensitive):

✓ 10 1/2
Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{3}{1} \div \frac{1}{2} = \frac{3}{1} \times \frac{2}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
1 \frac{1}{2} \times \frac{2}{1} = \frac{3}{2} \times \frac{5}{2}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

\[
\frac{3}{2} \times \frac{3}{1} = \frac{9}{2}
\]

The Mixed Number Representation is seen here:

\[
1 \frac{1}{2}
\]

Type the answer 10 1/2.

□ 24) Problem #PRABC6DN "PRABC6DN - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{2}{5}
\]

Exact Match (case sensitive):

✓ 3 3/4

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{1}{5} = \frac{1}{2} \times \frac{5}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
1 \frac{1}{2} \times 5 = \frac{3}{2} \times 5
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{1}{2} \times \frac{5}{2} = \frac{3}{2} \times \frac{5}{2} = \frac{15}{4}
\]

The Mixed Number Representation is seen here:
\[
3 \frac{3}{4}
\]
Type the answer 3 3/4.

25) Problem #PRABC6DP "PRABC6DP - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{10}{11}
\]

Exact Match (case sensitive):
✔ 2 17/30

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\frac{1}{2} \times \frac{1}{11} = \frac{3}{2} \times \frac{5}{2} = \frac{15}{4}
\]
• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\frac{1}{2} \times \frac{1}{11} = \frac{3}{2} \times \frac{5}{2} = \frac{15}{4}
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{2}{1} \times \frac{11}{11} = \frac{7}{1} \times \frac{11}{10} = \frac{77}{10}
\]
The Mixed Number Representation is seen here:
\[
\begin{array}{c}
2 \\
30
\end{array}
\]
Type the answer \(2 \frac{17}{30}\).

26) Problem #PRABC6DQ "PRABC6DQ - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 \(3/4\).

\[
\begin{array}{c}
\frac{1}{5} \\
\frac{1}{2}
\end{array}
\]

Exact Match (case sensitive):

✓ 22/5

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{c}
1 \\
2
\end{array}
\]
\[
\begin{array}{c}
5 \\
5
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\begin{array}{c}
1 \\
5
\end{array}
\] \(*\) \[
\begin{array}{c}
1 \\
1
\end{array}
\] = \[
\begin{array}{c}
6 \\
5
\end{array}
\] \(*\) \[
\begin{array}{c}
2 \\
1
\end{array}
\] = \[
\begin{array}{c}
12 \\
5
\end{array}
\]

The Mixed Number Representation is seen here:
\[
\begin{array}{c}
2 \\
5
\end{array}
\]
Type the answer 2 \(\frac{2}{5}\).

27) Problem #PRABC6DR "PRABC6DR - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{array}{c}
\frac{1}{2} \\
\frac{5}{8}
\end{array}
\div
\begin{array}{c}
\frac{1}{5}
\end{array}
\]

Exact Match (case sensitive):

✓ 17 3/5

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
1 \\
2
\end{array}
\div
\begin{array}{c}
1 \\
5
\end{array}
= \begin{array}{c}
1 \\
2
\end{array} \times \begin{array}{c}
8 \\
5
\end{array}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
1 \\
\frac{8}{5}
\end{array}
\div
\begin{array}{c}
\frac{11}{5}
\end{array}
= \begin{array}{c}
\frac{8}{5}
\end{array} \times \begin{array}{c}
\frac{1}{5}
\end{array}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

- Answer should be written in mixed number form.

\[
\begin{array}{c}
\frac{1}{2}
\end{array}
\times
\begin{array}{c}
\frac{8}{5}
\end{array}
= \begin{array}{c}
11
\end{array} \times \begin{array}{c}
\frac{8}{5}
\end{array}
= \frac{88}{5}
\]

The Mixed Number Representation is seen here:

\[
\frac{17}{5}
\]

Type the answer 17 3/5.

☐ 28) Problem #PRABC6DS "PRABC6DS - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{array}{c}
\frac{1}{3}
\end{array}
\div
\begin{array}{c}
\frac{1}{11}
\end{array}
\]

Exact Match (case sensitive):

✓ 38 1/2
Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{3}{2} \div \frac{11}{1} = \frac{3}{2} \times \frac{1}{11}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{3}{2} \times \frac{1}{11} = \frac{7}{2} \times \frac{11}{1}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

\[
\frac{3}{2} \times \frac{11}{1} = \frac{77}{2}
\]

The Mixed Number Representation is seen here:

\[
\frac{38}{2}
\]

Type the answer 38 1/2.

☐ 29) Problem #PRABC6DT "PRABC6DT - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{5} \div \frac{1}{4}
\]

Exact Match (case sensitive):

✓ 4 4/5

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{5} \div \frac{1}{4} = \frac{1}{5} \times \frac{4}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
1 \times 4 = 6 \times 4
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\begin{array}{c}
\frac{1}{5} \times \frac{4}{1} = \frac{6}{5} \times \frac{4}{1} = \frac{24}{5}
\end{array}
\]

The Mixed Number Representation is seen here:

\[
\frac{4}{5} \quad \frac{4}{5}
\]

Type the answer \(4 \frac{4}{5}\).

30) Problem #PRABC6DU "PRABC6DU - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{array}{c}
\frac{1}{2} \div \frac{2}{11}
\end{array}
\]

Exact Match (case sensitive):

\(\checkmark 8 \frac{1}{4}\)

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
\frac{1}{2} \div \frac{2}{11} = \frac{1}{2} \times \frac{11}{2}
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
\frac{1}{2} \times \frac{3}{11} = \frac{3}{2} \times \frac{1}{11} = \frac{33}{22}
\end{array}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\begin{array}{c}
\frac{1}{1} \times \frac{11}{2} = \frac{3}{1} \times \frac{11}{2} = 33
\end{array}
\]
The Mixed Number Representation is seen here:

\[
\begin{array}{c}
8 \\
\hline
4
\end{array}
\]

Type the answer 8 1/4.

☐ 31) Problem #PRABC6DV "PRABC6DV - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{3}{1} \div \frac{1}{2}
\]

Exact Match (case sensitive):

✅ 7 0/2

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
1 \\
1 \\
\hline
2 \\
2
\end{array}
\]

\[
3 \div \frac{1}{2} = 3 \times \frac{2}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
1 \\
2 \\
\hline
3 \\
2
\end{array}
\]

\[
\frac{7}{2} \times \frac{2}{1} = \frac{14}{2}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{1} = \frac{7}{2} \times \frac{2}{1} = \frac{14}{2}
\]

The Mixed Number Representation is seen here:

\[
\begin{array}{c}
7 \\
\hline
2
\end{array}
\]

Type the answer 7 0/2.

☐ 32) Problem #PRABC6DW "PRABC6DW - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[\frac{1}{2} \div \frac{5}{11} \]

Exact Match (case sensitive):

✓ 3 3/10

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \times \frac{11}{5} = \frac{1}{2} \times \frac{11}{5}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{11} \times \frac{3}{2} = \frac{1}{11} \times \frac{3}{2}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{11}{5} = \frac{33}{10}
\]

The Mixed Number Representation is seen here:

3 3/10

Type the answer 3 3/10.

33) Problem #PRABC6DX "PRABC6DX - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[\frac{1}{3} \div \frac{3}{11} \]

Exact Match (case sensitive):

✓ 8 5/9
Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{align*}
\frac{1}{3} \div \frac{1}{7} & = \frac{1}{3} \times \frac{7}{1} \\
\frac{2}{11} \div \frac{3}{11} & = \frac{2}{11} \times \frac{11}{3}
\end{align*}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{align*}
\frac{1}{3} \times \frac{1}{7} & = \frac{1}{3} \times \frac{1}{7} \\
\frac{2}{3} \times \frac{7}{3} & = \frac{14}{9}
\end{align*}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\begin{align*}
\frac{2}{3} \times \frac{1}{7} & = \frac{7}{9}
\end{align*}
\]

The Mixed Number Representation is seen here:
\[
\frac{5}{9}
\]

Type the answer 8 5/9.

34) Problem #PRABC6DY "PRABC6DY - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{1}{7}
\]

Exact Match (case sensitive):
✓ 10 1/2

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{align*}
\frac{1}{3} \div \frac{1}{7} & = \frac{1}{3} \times \frac{7}{1} \\
\frac{2}{7} \div \frac{2}{1} & = \frac{2}{7} \times \frac{1}{2}
\end{align*}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{align*}
\frac{1}{1} \times \frac{7}{1} & = \frac{3}{7}
\end{align*}
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

$$\frac{1}{2} \times \frac{7}{1} = \frac{3}{2} \times \frac{7}{1} = \frac{21}{2}$$

The Mixed Number Representation is seen here:

$$10 \frac{1}{2}$$

Type the answer 10 1/2.

☐ 35) Problem #PRABC6DZ "PRABC6DZ - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

$$\frac{1}{1} \div \frac{1}{11}$$

Exact Match (case sensitive):

✓ 16 1/2

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

$$\frac{1}{2} \div \frac{1}{11} = \frac{1}{2} \times \frac{11}{1}$$

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

$$\frac{1}{11} \times \frac{3}{11} = \frac{3}{1} \times \frac{1}{11}$$

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

$$\frac{1}{1} \times \frac{11}{1} = \frac{3}{1} \times \frac{11}{1} = 33$$
36) Problem #PRABC6D2 "PRABC6D2 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[\frac{3\frac{1}{2}}{\frac{1}{2}} \]

Exact Match (case sensitive):

7 0/2

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[\frac{3}{2} \div \frac{1}{2} = \frac{3}{2} \times \frac{2}{1} \]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[\frac{1}{2} \times \frac{2}{1} = \frac{2}{2} \times \frac{1}{1} \]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

\[\frac{3}{2} \times \frac{2}{1} = \frac{14}{2} \]

The Mixed Number Representation is seen here:

0

7

2

Type the answer 7 0/2.

37) Problem #PRABC6D3 "PRABC6D3 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{4}{11}
\]

Exact Match (case sensitive):

✓ 4 1/8

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{4}{11} = \frac{1}{2} \times \frac{11}{4}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{11}{4} = \frac{33}{8}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{1}{2} \times \frac{11}{4} = \frac{33}{8}
\]

The Mixed Number Representation is seen here:

\[
1 \frac{33}{8}
\]

Type the answer 4 1/8.

38) Problem #PRABC6D4 "PRABC6D4 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{3}{2} \div \frac{3}{11}
\]

Exact Match (case sensitive):

✓ 12 5/6
Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
1 & 3 & 1 & 11 \\
3 & \div & = & 3 & \cdot & _ \\
2 & 11 & 2 & 3 \\
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
1 & 11 & 7 & 11 \\
3 & * & = & - & * & _ \\
2 & 3 & 2 & 3 \\
\end{array}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

\[
\begin{array}{c}
3 & 1 & * & 11 \\
2 & 3 \\
\end{array} = \begin{array}{c}
7 & * & 11 \\
2 & 3 \\
\end{array} = \begin{array}{c}
77 \\
6 \\
\end{array}
\]

The Mixed Number Representation is seen here:

\[
\begin{array}{c}
5 \\
12 \\
6 \\
\end{array}
\]

Type the answer 12 5/6.

39) Problem #PRABC6D5 "PRABC6D5 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{array}{c}
2 & 1 \\
5 \\
\end{array} \div \begin{array}{c}
3 \\
7 \\
\end{array}
\]

Exact Match (case sensitive):

✓ 5 2/15

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
1 & 3 & 1 & 7 \\
2 & \div & = & 2 & \cdot & _ \\
5 & 7 & 5 & 3 \\
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
2 \cdot 1 \cdot 7 = 11 \cdot 7
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{2}{5} \times \frac{1}{3} = \frac{11}{5} \times \frac{7}{3} = \frac{77}{15}
\]

The Mixed Number Representation is seen here:

\[
\frac{2}{5} \quad \text{and} \quad \frac{1}{3}
\]

Type the answer 5 2/15.

40) Problem #PRABC6D6 "PRABC6D6 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{5}{7}
\]

Exact Match (case sensitive):

✓ 2 1/10

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{5}{7} = \frac{1}{2} \times \frac{7}{5}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{5} = \frac{3}{10}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{1}{1} \times \frac{7}{2} = \frac{3}{1} \times \frac{7}{5} = 21
\]
The Mixed Number Representation is seen here:
\[
\frac{1}{2} \quad \frac{2}{10}
\]
Type the answer \(2 \frac{1}{10}\).

41) Problem #PRABC6D7 "PRABC6D7 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{2}{1} \div \frac{3}{11} = \frac{2}{3} \times \frac{11}{3}
\]

Exact Match (case sensitive):
✓ 8 5/9

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{2}{3} \div \frac{11}{3} = \frac{2}{3} \times \frac{11}{3}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{3} \times \frac{11}{3} = \frac{1}{3} \times \frac{11}{3}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{2}{3} \times \frac{11}{3} = \frac{2}{3} \times \frac{11}{3} = \frac{7}{3} \times \frac{11}{3} = \frac{77}{9}
\]

The Mixed Number Representation is seen here:
\[
\frac{5}{8} \quad \frac{5}{9}
\]
Type the answer 8 5/9.

42) Problem #PRABC6D8 "PRABC6D8 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{3}{2} \div \frac{1}{3}
\]

Exact Match (case sensitive):

✓ 10 1/2

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{3} \div \frac{1}{2} = \frac{1}{3} \times \frac{2}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{3} \times \frac{7}{2} = \frac{7}{2} \times \frac{2}{1}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{7}{2} = \frac{21}{4}
\]

The Mixed Number Representation is seen here:

10 \frac{1}{2}

Type the answer 10 1/2.
Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{4} \div \frac{1}{5} = \frac{1}{4} \times \frac{5}{1} \\
\frac{2}{5} \times \frac{2}{4}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{4} \times \frac{3}{5} = \frac{1}{4} \times \frac{3}{5} \\
\frac{2}{4} \times \frac{2}{4}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{1}{2} \times \frac{5}{4} = \frac{3}{2} \times \frac{5}{4} = \frac{15}{8}
\]

The Mixed Number Representation is seen here:

\[
1 \frac{7}{8}
\]

Type the answer 1 7/8.

44) Problem #PRABC6EA "PRABC6EA - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{2} \div \frac{10}{3}
\]

Exact Match (case sensitive):

9/20

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{10}{3} = \frac{1}{2} \times \frac{3}{10}
\]
• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{10} = \frac{3}{2} \times \frac{3}{10}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{2} \times \frac{3}{10} = \frac{9}{20}
\]

☐ 45) Problem #PRABC6E6 "PRABC6E6 - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{3} \div \frac{11}{2}
\]

Exact Match (case sensitive):

✓ 14/33

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{2}{3} \div \frac{11}{2} = \frac{2}{3} \times \frac{2}{11}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{3} \times \frac{2}{11} = \frac{7}{3} \times \frac{2}{11}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{7}{3} \times \frac{2}{11} = \frac{14}{33}
\]

☐ 46) Problem #PRABC6EC "PRABC6EC - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
2 \frac{1}{3} \div \frac{11}{2}
\]

Exact Match (case sensitive):

✓ 14/33

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
2 \frac{1}{3} \div \frac{11}{2} = 2 \frac{1}{3} \times \frac{2}{11}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
2 \frac{1}{3} \times \frac{2}{11} = \frac{7}{3} \times \frac{2}{11}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{7}{3} \times \frac{2}{11} = \frac{14}{33}
\]

☐ 47) Problem #PRABC6ED "PRABC6ED - 222198 - Dividing Fractions(MP)"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{3} \div \frac{5}{2}
\]

Exact Match (case sensitive):

8/15

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{3} \div \frac{5}{2} = \frac{1}{3} \times \frac{2}{5}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{3} \times \frac{2}{5} = \frac{4}{15}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{4}{15}
\]

□ 48) Problem #PRABC6EE "PRABC6EE - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{3} \div \frac{5}{2}
\]

Exact Match (case sensitive):

14/15
Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{align*}
2 \quad \frac{1}{3} & \div \quad \frac{5}{2} = 2 \quad \frac{1}{3} \quad * \quad \frac{2}{5} \\
& \\
\end{align*}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{align*}
2 \quad \frac{1}{3} & \quad * \quad \frac{2}{5} = \frac{7}{3} \quad * \quad \frac{2}{5} \\
& \\
\end{align*}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\begin{align*}
\frac{7}{3} \quad * \quad \frac{2}{5} &= \frac{14}{15} \\
& \\
\end{align*}
\]

49) Problem #PRABC6EF "PRABC6EF - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\begin{align*}
1 \quad \frac{1}{2} & \div \quad \frac{8}{3} \\
& \\
\end{align*}
\]

Exact Match (case sensitive):

9/16

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{align*}
1 \quad \frac{1}{2} & \div \quad \frac{8}{3} = 1 \quad \frac{1}{2} \quad * \quad \frac{3}{8} \\
& \\
\end{align*}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{align*}
\frac{1}{2} \times \frac{3}{8} &= \frac{3}{2} \times \frac{3}{8} \\
\end{align*}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\begin{align*}
\frac{3}{2} \times \frac{3}{8} &= \frac{9}{16}
\end{align*}
\]

☐ 50) Problem #PRABC6EG "PRABC6EG - 222198 - Dividing Fractions(MP)"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\begin{align*}
\frac{1}{2} \div \frac{1}{3} &= \frac{11}{3}
\end{align*}
\]

Exact Match (case sensitive):

✓ 9/22

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{align*}
\frac{1}{2} \div \frac{11}{3} &= \frac{1}{2} \times \frac{3}{11}
\end{align*}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{align*}
\frac{1}{2} \times \frac{3}{11} &= \frac{3}{2} \times \frac{3}{11}
\end{align*}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\begin{align*}
3 \times 3 &= 9
\end{align*}
\]
51) Problem #PRABC6EH "PRABC6EH - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{2} \div \frac{7}{3}
\]

Exact Match (case sensitive):

✓ 9/14

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{7}{3} = \frac{1}{2} \times \frac{3}{7}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{7} = \frac{3}{14}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{2} \times \frac{3}{7} = \frac{9}{14}
\]

52) Problem #PRABC6EJ "PRABC6EJ - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.
\[
\frac{1}{2} \div \frac{1}{3} \\
\frac{1}{2} \div \frac{1}{3} = \frac{1}{2} \times \frac{3}{1}
\]

Exact Match (case sensitive):
✓ 9/22

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{11}{3} = \frac{1}{2} \times \frac{3}{11}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{11} = \frac{3}{2} \times \frac{3}{11}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{2} \times \frac{3}{11} = \frac{9}{22}
\]

☐ 53) Problem #PRABC6EK "PRABC6EK - 222198 - Dividing Fractions(MP)"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{2}{3} \div \frac{3}{2} \\
\frac{2}{3} \div \frac{3}{2} = \frac{2}{3} \times \frac{2}{3}
\]

Exact Match (case sensitive):
✓ 14/9

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{2}{3} \div \frac{3}{2} = \frac{2}{3} \times \frac{2}{3}
\]
• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[\frac{2}{3} \times \frac{1}{2} = \frac{7}{3} \times \frac{2}{3} \]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\[\frac{7}{3} \times \frac{2}{3} = \frac{14}{9} \]

☐ 54) Problem #PRABC6EM "PRABC6EM - 222198 - Dividing Fractions(MP)"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[\frac{3}{2} \div \frac{5}{3} \]

Exact Match (case sensitive):

✓ 21/10

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[\frac{3}{2} \times \frac{5}{3} = \frac{1}{2} \times \frac{3}{5} \]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[\frac{3}{2} \times \frac{3}{5} = \frac{7}{2} \times \frac{3}{5} \]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{7}{2} \times \frac{3}{5} = \frac{21}{10}
\]

☐ 55) Problem #PRABC6EN "PRABC6EN - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{3}{2} \div \frac{5}{3}
\]

Exact Match (case sensitive):

✓ 21/10

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{3}{2} \div \frac{5}{3} = \frac{3}{2} \times \frac{3}{5}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{3}{2} \times \frac{3}{5} = \frac{7}{2} \times \frac{3}{5}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{7}{2} \times \frac{3}{5} = \frac{21}{10}
\]
56) Problem #PRABC6EP "PRABC6EP - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{\frac{1}{3}}{\frac{11}{2}} = \frac{2}{3} \times \frac{2}{11}
\]

Exact Match (case sensitive):

✓ 14/33

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{\frac{1}{3}}{\frac{11}{2}} = \frac{2}{3} \times \frac{2}{11}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{3} \times \frac{2}{11} = \frac{7}{33}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{7}{3} \times \frac{2}{11} = \frac{14}{33}
\]

57) Problem #PRABC6EQ "PRABC6EQ - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{\frac{1}{2}}{\frac{8}{3}} = \frac{1}{2} \times \frac{3}{8}
\]

Exact Match (case sensitive):
Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{8}{3} = \frac{1}{2} \times \frac{3}{8}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{8} = \frac{3}{16} \times \frac{3}{8}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{2} \times \frac{3}{8} = \frac{9}{16}
\]

☐ 58) Problem #PRABC6ER "PRABC6ER - 222198 - Dividing Fractions(MP)"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{2} \div \frac{11}{3}
\]

Exact Match (case sensitive):

9/22

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{11}{3} = \frac{1}{2} \times \frac{3}{11}
\]
• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
1 \frac{1}{2} \\
\times \\
3 \frac{3}{11}
\end{array} = \begin{array}{c}
3 \\
\times \\
2 \\
\times \\
3
\end{array}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\begin{array}{c}
3 \\
\times \\
2
\end{array} \times \begin{array}{c}
9 \\
\times \\
22
\end{array}
\]

59) Problem #PRABC6ES "PRABC6ES - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\begin{array}{c}
1 \\
\div \\
2
\end{array} \div \begin{array}{c}
8 \\
\div \\
5
\end{array}
\]

Exact Match (case sensitive):

✓ 15/16

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
1 \\
\div \\
2
\end{array} \div \begin{array}{c}
8 \\
\div \\
5
\end{array} = \begin{array}{c}
1 \\
\times \\
2
\end{array} \times \begin{array}{c}
5 \\
\times \\
8
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
1 \frac{1}{2} \\
\times \\
5 \frac{5}{8}
\end{array} = \begin{array}{c}
3 \\
\times \\
2 \\
\times \\
5
\end{array}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{2} \times \frac{5}{8} = \frac{15}{16}
\]

60) Problem #PRABC6ET "PRABC6ET - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{2} \div \frac{8}{5}
\]

Exact Match (case sensitive):

✓ 15/16

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{8}{5} = \frac{1}{2} \times \frac{5}{8}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{5}{8} = \frac{3}{2} \times \frac{5}{8}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{2} \times \frac{5}{8} = \frac{15}{16}
\]

61) Problem #PRABC6EU "PRABC6EU - 222198 - Dividing Fractions(MP)"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{2} \div \frac{11}{3}
\]

Exact Match (case sensitive):

✓ 9/22

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{11}{3} = \frac{1}{2} \times \frac{3}{11}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{11} = \frac{3}{22}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{22}
\]

☐ 62) Problem #PRABC6EV "PRABC6EV - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{5}{1}
\]

Exact Match (case sensitive):

✓ 3/10
Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
 \[
 \frac{1}{2} \div \frac{1}{5} = \frac{1}{2} \times \frac{5}{1} = \frac{5}{2}
 \]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
 \[
 \frac{1}{2} \times \frac{3}{5} = \frac{3}{10}
 \]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{5} = \frac{3}{10}
\]

63) Problem #PRABC6EW "PRABC6EW - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{2}{3} \div 5
\]

Exact Match (case sensitive):

✓ 7/15

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
 \[
 \frac{1}{2} \div \frac{1}{5} = \frac{1}{2} \times \frac{5}{1} = \frac{5}{2}
 \]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
 \[
 2 \frac{1}{3} \times 1\frac{1}{5} = \frac{7}{3} \times \frac{6}{5}
 \]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{7}{3} \times \frac{1}{5} = \frac{7}{15}
\]

Problem #PRABC6EX "PRABC6EX - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div 8
\]

Exact Match (case sensitive):

✓ 3/16

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{1}{8} = \frac{1}{2} \times \frac{8}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{1} = \frac{3}{2} \times \frac{1}{8}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{8} = \frac{3}{16}
\]
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

$\frac{1}{2} \div \frac{1}{11}$

Exact Match (case sensitive):

✓ 3/22

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{1} \div \frac{11}{2} = \frac{1}{2} \times \frac{1}{11}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{1} = \frac{3}{2} \times \frac{1}{11}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

- Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{11} = \frac{3}{22}
\]

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

$\frac{1}{1} \div 6$
Exact Match (case sensitive):

✓ 5/24

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{4} \div \frac{1}{6} = \frac{1}{4} \times \frac{6}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{4} \times \frac{1}{6} = \frac{5}{24}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{5}{4} \times \frac{1}{6} = \frac{5}{24}
\]

67) Problem #PRABC6E2 "PRABC6E2 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{8}{1}
\]

Exact Match (case sensitive):

✓ 3/16

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{1}{8} = \frac{1}{2} \times \frac{8}{1}
\]

https://www.assistments.org/build/print/sequence/779071?mode=debug&op_scaf=false&o...
• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{1}{8} = \frac{3}{2} \times \frac{1}{8}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{8} = \frac{3}{16}
\]

68) Problem #PRABC6E3 "PRABC6E3 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{1}{11}
\]

Exact Match (case sensitive):

✓ 3/22

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{1}{11} = \frac{1}{2} \times \frac{1}{11}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{1}{11} = \frac{1}{2} \times \frac{1}{11}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{11} = \frac{3}{22}
\]

□ 69) Problem #PRABC6E4 "PRABC6E4 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div 11
\]

Exact Match (case sensitive):

✓ 3/22

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div 11 = \frac{1}{2} \times \frac{1}{11}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{1} = \frac{1}{2} \times \frac{3}{11}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{11} = \frac{3}{22}
\]

□ 70) Problem #PRABC6E5 "PRABC6E5 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[\frac{1}{2} \div \frac{11}{2} \]

Exact Match (case sensitive):

✓ 3/22

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[\frac{1}{2} \div \frac{11}{2} = \frac{1}{2} \times \frac{2}{11} \]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[\frac{1}{2} \times \frac{3}{1} = \frac{1}{2} \times \frac{3}{11} \]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

\[\frac{3}{2} \times \frac{1}{11} = \frac{3}{22} \]
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{1}{7} = \frac{1}{2} \times \frac{1}{7}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{1}{7} = \frac{3}{2} \times \frac{1}{7}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{7} = \frac{3}{14}
\]

72) Problem #PRABC6E7 "PRABC6E7 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{1}{5}
\]

Exact Match (case sensitive):

✓ 7/15

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{3} \div \frac{1}{5} = \frac{1}{3} \times \frac{1}{5}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{3} \times \frac{1}{5} = \frac{1}{3} \times \frac{7}{5}
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{7}{3} \times \frac{1}{5} = \frac{7}{15}
\]

☐ 73) Problem #PRABC6E8 "PRABC6E8 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{4} \div 4
\]

Exact Match (case sensitive):
✓ 5/16

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{4} \div \frac{1}{4} = \frac{1}{4} \times \frac{1}{4}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{4} \times \frac{5}{4} = \frac{5}{16}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{5}{4} \times \frac{1}{4} = \frac{5}{16}
\]
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{3} \div 1\frac{1}{11}
\]

Exact Match (case sensitive):

✓ 4/33

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{3} \div \frac{1}{11} = \frac{1}{3} \times \frac{11}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{3} \times \frac{4}{1} = \frac{1}{3} \times \frac{11}{11}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{4}{3} \times \frac{1}{11} = \frac{4}{33}
\]
Exact Match (case sensitive):

✓ 3/22

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{align*}
\frac{1}{2} \div \frac{1}{11} &= \frac{1}{2} \times \frac{11}{1} \\
&= \frac{11}{2}
\end{align*}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{align*}
\frac{1}{2} \times \frac{3}{11} &= \frac{3}{22}
\end{align*}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{11} = \frac{3}{22}
\]

76) Problem #PRABC6FB "PRABC6FB - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{align*}
\frac{1}{2} \div 7 &= \\
\frac{1}{2} &= \frac{1}{7}
\end{align*}
\]

Exact Match (case sensitive):

✓ 3/14

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{align*}
\frac{1}{2} \div \frac{1}{7} &= \frac{1}{2} \times \frac{7}{1} \\
&= \frac{7}{2}
\end{align*}
\]
• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{7} = \frac{3}{14}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{7} = \frac{3}{14}
\]
Problem Set "Division of Mixed Numbers (Kind)" id:[PSA47DY]

☐ Select All

☐ 1) Problem #PRABC6CW "PRABC6CW - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{array}{c}
3 \\
2
\end{array}
\div
\begin{array}{c}
2 \\
11
\end{array}
\]

Exact Match (case sensitive):

✔ 19 1/4

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
1 \\
3
\end{array}
\div
\begin{array}{c}
1 \\
2
\end{array}

\begin{array}{c}
11 \\
2
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
1 \\
3
\end{array}
\times
\begin{array}{c}
7 \\
2
\end{array}

\begin{array}{c}
11 \\
2
\end{array}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\begin{array}{c}
3 \\
2
\end{array}
\times
\begin{array}{c}
1 \\
2
\end{array}

\begin{array}{c}
11 \\
2
\end{array}

\begin{array}{c}
7 \\
2
\end{array}
\times
\begin{array}{c}
11 \\
2
\end{array}

\begin{array}{c}
77 \\
4
\end{array}
\]

The Mixed Number Representation is seen here:

\[
19 \frac{1}{4}
\]

Type the answer 19 1/4.

☐ 2) Problem #PRABC6CX "PRABC6CX - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the

\[
\frac{1}{2} \div \frac{5}{3} = \frac{1}{2} \cdot \frac{11}{5}
\]

Exact Match (case sensitive):

✓ 5 2/15

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{5}{11} = \frac{1}{2} \cdot \frac{11}{5}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \cdot \frac{11}{5} = \frac{7}{5}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

\[
\frac{2}{3} \cdot \frac{11}{5} = \frac{77}{15}
\]

The Mixed Number Representation is seen here:

2
5 ————
15

Type the answer 5 2/15.

☐ 3) Problem #PRABC6CY "PRABC6CY - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{1}{3} = \frac{1}{2} \cdot \frac{11}{3}
\]

Exact Match (case sensitive):

✓ 25 2/3

Hints:
When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{1}{3} = \frac{1}{2} \times \frac{3}{1}
\]

Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in mixed number form.

The Mixed Number Representation is seen here:

25 \frac{2}{3}

Type the answer 25 2/3.

4) Problem #PRABC6CZ "PRABC6CZ - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{3} \div \frac{1}{2} = \frac{1}{3} \times \frac{2}{1}
\]

Exact Match (case sensitive):

7 0/2

Hints:

When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{3} \div \frac{1}{2} = \frac{1}{3} \times \frac{2}{1}
\]

Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

3 1 * 2 = 7 * 2

___ ___ ___ ___
Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in mixed number form.

\[
\begin{align*}
\frac{3}{2} \times \frac{1}{1} &= \frac{7}{2} \times \frac{2}{1} = \frac{14}{2}
\end{align*}
\]

The Mixed Number Representation is seen here:

\[
0 \quad \frac{7}{2}
\]

Type the answer \(7 \ 0/2\).

5) Problem #PRABC6C2 "PRABC6C2 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{5} \div \frac{1}{3}
\]

Exact Match (case sensitive):

✓ 3 \ 3/5

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{align*}
\frac{1}{5} & \div \frac{1}{3} \\
& = \frac{1}{5} \times \frac{3}{1}
\end{align*}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{align*}
\frac{1}{5} & \div \frac{1}{3} \\
& = \frac{1}{5} \times \frac{3}{1}
\end{align*}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\begin{align*}
\frac{1}{1} \times \frac{3}{3} &= \frac{6}{6} \times \frac{3}{3} = 18
\end{align*}
\]
The Mixed Number Representation is seen here:

\[
\frac{3}{5}
\]

Type the answer \(3\frac{3}{5}\).

6) Problem #PRABC6C3 "PRABC6C3 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{2}{3} \div \frac{1}{2}
\]

Exact Match (case sensitive):

✓ 4 2/3

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{1}{3} = \frac{1}{2} \times \frac{1}{3}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{2}{3} \times \frac{1}{1} = \frac{2}{3} \times \frac{1}{1}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

- Answer should be written in mixed number form.

\[
\frac{2}{3} \times \frac{1}{1} = \frac{7}{3} \times \frac{2}{1} = \frac{14}{3}
\]

The Mixed Number Representation is seen here:

\[
\frac{2}{3}
\]

Type the answer 4 2/3.

7) Problem #PRABC6C4 "PRABC6C4 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{2}{5} \div \frac{3}{7}
\]

Exact Match (case sensitive):

✓ 3 2/25

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \cdot \frac{5}{7} = \frac{1}{2} \cdot \frac{5}{7}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \cdot \frac{11}{7} = \frac{1}{2} \cdot \frac{11}{7}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{1}{2} \cdot \frac{7}{5} = \frac{11}{5} \cdot \frac{7}{5} = \frac{77}{25}
\]

The Mixed Number Representation is seen here:

\[
2 \frac{2}{25}
\]

Type the answer 3 2/25.

8) Problem #PRABC6C5 "PRABC6C5 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{1}{3}
\]

Exact Match (case sensitive):

✓ 25 2/3
Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{align*}
\frac{2}{3} \div \frac{1}{11} &= \frac{2}{3} \times \frac{11}{1} \\
\end{align*}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{align*}
\frac{2}{3} \times \frac{11}{1} &= \frac{2 \times 11}{3 \times 1} \\
\end{align*}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

\[
\begin{align*}
\frac{2}{3} \times \frac{11}{1} &= \frac{2 \times 11}{3 \times 1} \\
\end{align*}
\]

The Mixed Number Representation is seen here:

\[
\frac{77}{3}
\]

Type the answer 25 2/3.

9) Problem #PRABC6C6 "PRABC6C6 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{2}{5} \div \frac{1}{2}
\]

Exact Match (case sensitive):

✓ 4 2/5

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{align*}
\frac{2}{5} \div \frac{1}{2} &= \frac{2}{5} \times \frac{1}{2} \\
\end{align*}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{align*}
2 \frac{1}{2} \times 2 &= 11 \times 2 \\
\end{align*}
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{2}{5} \times \frac{1}{1} = \frac{11}{5} \times \frac{2}{1} = \frac{22}{5}
\]

The Mixed Number Representation is seen here:
\[
\frac{2}{4} \quad \frac{3}{5}
\]
Type the answer \(4 \frac{2}{5}\).

10) Problem #PRABC6C7 "PRABC6C7 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{2}{1} \div \frac{1}{3}
\]

Exact Match (case sensitive):
✓ 6 3/5

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{2}{5} \div \frac{1}{3} = \frac{2}{5} \times \frac{1}{3} = \frac{6}{15} = \frac{2}{5}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{11}{3} = \frac{11}{6}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{2}{1} \times \frac{3}{3} = \frac{11}{3} \times \frac{3}{3} = 33
\]
The Mixed Number Representation is seen here:
\[
\frac{3}{5}
\]
Type the answer 6 3/5.

11) Problem #PRABC6C8 "PRABC6C8 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{3}{2} \div \frac{1}{3}
\]

Exact Match (case sensitive):

\[
10 \ 1/2
\]

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{3} \times \frac{1}{2} = \frac{3}{1} \times \frac{2}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{3} \times \frac{7}{2} = \frac{3}{1} \times \frac{2}{1}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{1} = \frac{7}{2} \times \frac{3}{1} = \frac{21}{2}
\]

The Mixed Number Representation is seen here:
\[
\frac{1}{2}
\]
Type the answer 10 1/2.

12) Problem #PRABC6C9 "PRABC6C9 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{7} \div \frac{1}{5}
\]

Exact Match (case sensitive):

✓ 5 5/7

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{7} \div \frac{1}{5} = \frac{1}{7} * \frac{5}{1}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{7} \div \frac{1}{5} = \frac{1}{7} * \frac{5}{1}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

- Answer should be written in mixed number form.

\[
\frac{1}{7} \div \frac{1}{5} = \frac{1}{7} * \frac{5}{1} = \frac{40}{7}
\]

The Mixed Number Representation is seen here:

\[
5 \frac{5}{7}
\]

Type the answer 5 5/7.

13) Problem #PRABC6DA "PRABC6DA - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{2}{5} \div \frac{3}{7}
\]

Exact Match (case sensitive):

✓ 5 2/15
Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
 \[
 \frac{1}{2} \div \frac{3}{5} = \frac{1}{2} \times \frac{5}{3}
 \]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
 \[
 2 \frac{1}{5} \times 7 \frac{1}{3} = \frac{11}{5} \times \frac{7}{3}
 \]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{2}{5} \times \frac{11}{5} \times \frac{7}{3} = \frac{11 \times 7}{5 \times 3} = \frac{77}{15}
\]

The Mixed Number Representation is seen here:

\[
2 \frac{11}{15}
\]

Type the answer 5 2/15.

☐ 14) Problem #PRABC6DB "PRABC6DB - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{1}{5}
\]

Exact Match (case sensitive):

✓ 7 1/2

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
 \[
 \frac{1}{2} \div \frac{3}{5} = \frac{1}{2} \times \frac{5}{3}
 \]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
 \[
 1 \times 5 = 3 \times 5
 \]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{1}{2} \times \frac{5}{1} = \frac{3}{2} \times \frac{5}{1} = \frac{15}{2}
\]

The Mixed Number Representation is seen here:

\[
\frac{1}{7} \div \frac{1}{5} = \frac{8}{7} \div \frac{5}{1}
\]

Type the answer 7 1/2.

15) Problem #PRABC6DC "PRABC6DC - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{7} \div \frac{1}{5}
\]

Exact Match (case sensitive):

√ 5 5/7

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{7} \div \frac{1}{5} = \frac{1}{7} \times \frac{5}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{7} \times \frac{5}{1} = \frac{8}{7} \times \frac{5}{1}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
1 \times 5 = 8 \times 5 = 40
\]
7 1 7 1 7

The Mixed Number Representation is seen here:

\[
\frac{5}{7}
\]

Type the answer 5 7/7.

☐ 16) Problem #PRABC6DD "PRABC6DD - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{2}{3}
\]

Exact Match (case sensitive):

✓ 2 1/4

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{2}{3} = \frac{1}{2} \times \frac{3}{2}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{2} = \frac{3}{4}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{1}{2} \times \frac{3}{2} = \frac{3}{4}
\]

The Mixed Number Representation is seen here:

\[
\frac{1}{4}
\]

Type the answer 2 1/4.

☐ 17) Problem #PRABC6DE "PRABC6DE - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{array}{c}
2 \div 3 \\
11
\end{array}
\]

Exact Match (case sensitive):

✓ 4 5/18

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
1 \\
6
\end{array} \div \begin{array}{c}
1 \\
11
\end{array} = \begin{array}{c}
2 \\
3
\end{array} \div \begin{array}{c}
11 \\
3
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
1 \\
11
\end{array} \times \begin{array}{c}
7 \\
11
\end{array} = \begin{array}{c}
2 \\
3
\end{array} \times \begin{array}{c}
11 \\
3
\end{array}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\begin{array}{c}
2 \times \frac{1}{3} \times \frac{11}{6} = \frac{7}{3} \times \frac{11}{6} = \frac{77}{18}
\end{array}
\]

The Mixed Number Representation is seen here:

\[
4 \frac{5}{18}
\]

Type the answer 4 5/18.
Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

$$\frac{1}{5} \div \frac{1}{6} = \frac{1}{5} \times \frac{6}{1}$$

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

$$\frac{2}{5} \times \frac{1}{6} = \frac{2}{5} \times \frac{1}{6}$$

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

$$\frac{2}{5} \times \frac{1}{6} = \frac{2 \times 1}{5 \times 6} = \frac{2}{30}$$

The Mixed Number Representation is seen here:

$$1 \frac{2}{30}$$

Type the answer 13 1/5.

19) Problem #PRABC6DG "PRABC6DG - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

$$\frac{1}{2} \div \frac{5}{3}$$

Exact Match (case sensitive):

✓ 5 2/15

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

$$\frac{1}{5} \div \frac{1}{6} = \frac{1}{5} \times \frac{6}{1}$$

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

$$2 \frac{1}{11} \times 7 \frac{11}{1}$$
3 \div 5 \div 3 \div 5

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{2}{3} \times \frac{1}{5} = \frac{7}{3} \times \frac{11}{5} = \frac{77}{15}
\]

The Mixed Number Representation is seen here:

\[
\frac{2}{5} \frac{2}{15}
\]

Type the answer 5 \frac{2}{15}.

\[\square\] 20) Problem #PRABC6DH "PRABC6DH - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 \frac{3}{4}.

\[
\frac{3}{2} \div \frac{1}{11}
\]

Exact Match (case sensitive):

✓ 38 \frac{1}{2}

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{3} \times \frac{1}{11} = \frac{1}{2} \times \frac{1}{11}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{3} \times \frac{7}{11} = \frac{1}{2} \times \frac{7}{11}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{3}{5} \times \frac{1}{11} = \frac{7}{5} \times \frac{11}{5} = \frac{77}{15}
\]
21) Problem #PRABC6DJ "PRABC6DJ - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{4}{5}
\]

Exact Match (case sensitive):

\(1 \frac{7}{8}\)

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{4}{5} = \frac{1}{2} \times \frac{5}{4}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{5} = \frac{1}{2} \times \frac{3}{5}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{1}{2} \times \frac{5}{4} = \frac{3}{2} \times \frac{5}{4} = \frac{15}{8}
\]

The Mixed Number Representation is seen here:

\(1 \frac{7}{8}\)

Type the answer 1 7/8.

22) Problem #PRABC6DK "PRABC6DK - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{1}{11}
\]

Exact Match (case sensitive):

✓ 16 1/2

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{1}{11} = \frac{1}{2} \times \frac{11}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{11}{1} = \frac{33}{2}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{1}{2} \times \frac{11}{1} = \frac{33}{2}
\]

The Mixed Number Representation is seen here:

\[
16 \frac{1}{2}
\]

Type the answer 16 1/2.

23) Problem #PRABC6DM "PRABC6DM - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{3}{2} \div \frac{1}{3}
\]

Exact Match (case sensitive):

✓ 10 1/2
Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{3}{2} \div \frac{1}{3} = \frac{3}{2} \times \frac{3}{1}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{1} = \frac{3}{2} \times \frac{3}{1}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

- Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{3}{1} = \frac{7}{2} \times \frac{3}{1} = \frac{21}{2}
\]

The Mixed Number Representation is seen here:

\[
\frac{10}{2} \quad \frac{1}{2}
\]

Type the answer 10 1/2.

☐ 24) Problem #PRABC6DN "PRABC6DN - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{2}{5}
\]

Exact Match (case sensitive):

✓ 3 3/4

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{1}{5} = \frac{1}{2} \times \frac{5}{1}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{5}{1} = \frac{3}{2} \times \frac{5}{1}
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{1}{2} \times \frac{5}{2} = \frac{3}{2} \times \frac{5}{2} = \frac{15}{4}
\]

The Mixed Number Representation is seen here:
3
3 ———
4
Type the answer 3 3/4.

25) Problem #PRABC6DP "PRABC6DP - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{2}{3} \div \frac{2}{11}
\]

Exact Match (case sensitive):
✓ 2 17/30

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{1}{11} = \frac{1}{2} \times \frac{11}{1} = \frac{11}{2}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{11} \times \frac{7}{10} = \frac{7}{11} \times \frac{1}{10} = \frac{77}{100}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{2}{3} \div \frac{2}{11} = \frac{7}{3} \times \frac{11}{2} = \frac{77}{6}
\]
The Mixed Number Representation is seen here:

\[
\begin{array}{c}
2 \\
30
\end{array}
\]

Type the answer 2 17/30.

26) Problem #PRABC6DQ "PRABC6DQ - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{5} \div \frac{1}{2}
\]

Exact Match (case sensitive):

\[2 \ 2/5\]

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{5} \div \frac{1}{2} = \frac{1}{5} \times \frac{2}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{5} \times \frac{6}{2} = \frac{6}{5} \times \frac{2}{1}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{1}{5} \times \frac{2}{1} = \frac{6}{5} \times \frac{2}{1} = \frac{12}{5}
\]

The Mixed Number Representation is seen here:

\[
\begin{array}{c}
2 \\
5
\end{array}
\]

Type the answer 2 2/5.

27) Problem #PRABC6DR "PRABC6DR - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{array}{c}
\frac{1}{2} \\
\frac{5}{8}
\end{array}
\div
\begin{array}{c}
\frac{1}{11} \\
\frac{1}{5}
\end{array}
\]

Exact Match (case sensitive):

✓ 17 3/5

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{1}{11} = \frac{1}{2} \times \frac{11}{1}
\]

\[
\frac{5}{8} \div \frac{1}{5} = \frac{5}{8} \times \frac{1}{5}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{8} \div \frac{11}{8} = \frac{1}{8} \times \frac{8}{11}
\]

\[
\frac{5}{1} \div \frac{5}{1} = \frac{5}{1} \times \frac{1}{5}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{2}{1} \times \frac{5}{1} = \frac{11}{1} \times \frac{8}{1} = \frac{88}{5}
\]

The Mixed Number Representation is seen here:

\[
\frac{17}{1} \frac{3}{5}
\]

Type the answer 17 3/5.

☐ 28) Problem #PRABC6DS "PRABC6DS - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{array}{c}
\frac{1}{3} \\
\frac{1}{2}
\end{array}
\div
\begin{array}{c}
\frac{1}{11} \\
\frac{1}{1}
\end{array}
\]

Exact Match (case sensitive):

✓ 38 1/2
Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{3}{12} \div \frac{11}{1} = \frac{3}{12} \times \frac{1}{11}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{3}{12} \times \frac{11}{1} = \frac{3 \times 11}{12 \times 1}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

- Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{11}{1} = \frac{3 \times 11}{2 \times 1} = \frac{33}{2}
\]

The Mixed Number Representation is seen here:

\[
\frac{33}{2}
\]

Type the answer 38 1/2.

29) Problem #PRABC6DT "PRABC6DT - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{5} \div \frac{1}{4}
\]

Exact Match (case sensitive):

✓ 4 4/5

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{5} \div \frac{1}{4} = \frac{1}{5} \times \frac{4}{1}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
1 \times 4 = 6 \times 4
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{1}{5} \times \frac{4}{1} = \frac{6}{5} \times \frac{4}{1} = \frac{24}{5}
\]

The Mixed Number Representation is seen here:
\[
\frac{4}{5}
\]
Type the answer 4 4/5.

30) Problem #PRABC6DU "PRABC6DU - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{11}{2}
\]

Exact Match (case sensitive):

✓ 8 1/4

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \times \frac{1}{11} = \frac{1}{2} \times \frac{1}{11}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{11} \times \frac{3}{11} = \frac{1}{2} \times \frac{2}{2}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{1}{1} \times \frac{11}{11} = \frac{3}{1} \times \frac{11}{11} = 33
\]
The Mixed Number Representation is seen here:

\[
\frac{8}{4}
\]

Type the answer 8 1/4.

31) Problem #PRABC6DV "PRABC6DV - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{3}{2} \div \frac{1}{2}
\]

Exact Match (case sensitive):

✓ 7 0/2

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{3}{2} \div \frac{1}{2} = \frac{3}{2} \cdot \frac{2}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{3}{2} \cdot \frac{2}{1} = \frac{7}{2} \cdot \frac{2}{1}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{3}{2} \cdot \frac{1}{1} = \frac{7}{2} \cdot \frac{2}{1} = \frac{14}{2}
\]

The Mixed Number Representation is seen here:

\[
\frac{7}{2}
\]

Type the answer 7 0/2.

32) Problem #PRABC6DW "PRABC6DW - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{5}{11} = \frac{1}{2} \times \frac{11}{5}
\]

Exact Match (case sensitive):

✔️ 3 3/10

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{5}{11} = \frac{1}{2} \times \frac{11}{5}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{11}{5} = \frac{3}{2} \times \frac{11}{5}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{11}{5} = \frac{33}{10}
\]

The Mixed Number Representation is seen here:

3
3
10

Type the answer 3 3/10.

33) Problem #PRABC6DX "PRABC6DX - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{3} \div \frac{3}{11} = \frac{1}{3} \times \frac{11}{3}
\]

Exact Match (case sensitive):

✔️ 8 5/9
Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
1 & 1 & 11 \\
2 & \times & 2 & \times & 1 \\
3 & 11 & 3 & 3
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
1 & 11 & 7 & 11 \\
2 & \times & \frac{7}{3} & \times & \frac{11}{3}
\end{array}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

\[
\begin{array}{c}
2 & 1 & 11 \\
\times & \frac{7}{3} & \times & \frac{11}{3}
\end{array}
\]

The Mixed Number Representation is seen here:

\[
\frac{77}{9}
\]

Type the answer 8 5/9.

☐ 34) Problem #PRABC6DY "PRABC6DY - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{1}{7}
\]

Exact Match (case sensitive):

✓ 10 1/2

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
1 & 1 & 1 & 17 \\
2 & \times & 2 & \times & 1 \\
7 & 2 & 1
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{1} \times 7 = \frac{3}{7}
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\begin{array}{c}
1 \div 2 \\
1 \ast \frac{7}{1} = \frac{3}{2} \ast \frac{7}{1} = \frac{21}{2}
\end{array}
\]

The Mixed Number Representation is seen here:

\[
\frac{1}{10} \frac{1}{2}
\]

Type the answer 10 1/2.

☐ 35) Problem #PRABC6DZ "PRABC6DZ - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{1} \div \frac{1}{2} = \frac{3}{1} \ast \frac{7}{1} = \frac{21}{2}
\]

Exact Match (case sensitive):

✓ 16 1/2

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
1 \div 2 \\
1 \ast \frac{7}{1} = \frac{3}{2} \ast \frac{7}{1} = \frac{21}{2}
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
1 \div 2 \\
1 \ast \frac{3}{11} = \frac{3}{2} \ast \frac{1}{1} = \frac{33}{2}
\end{array}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\begin{array}{c}
1 \div 2 \\
1 \ast \frac{11}{1} = \frac{3}{1} \ast \frac{11}{1} = \frac{33}{1}
\end{array}
\]
The Mixed Number Representation is seen here:

\[
\begin{array}{c}
16 \\
2
\end{array}
\]

Type the answer 16 1/2.

36) Problem #PRABC6D2 "PRABC6D2 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{array}{c}
3 \\
2
\end{array} \div \begin{array}{c}
1 \\
2
\end{array}
\]

Exact Match (case sensitive):

✓ 7 0/2

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
1 \\
3
\end{array} \div \begin{array}{c}
1 \\
2
\end{array} = \begin{array}{c}
1 \\
3
\end{array} \times \begin{array}{c}
2 \\
1
\end{array}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
1 \\
3
\end{array} \times \begin{array}{c}
2 \\
1
\end{array} = \begin{array}{c}
2 \\
3
\end{array} \times \begin{array}{c}
1 \\
2
\end{array}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

- Answer should be written in mixed number form.

\[
\begin{array}{c}
3 \\
2
\end{array} \times \begin{array}{c}
1 \\
2
\end{array} = \begin{array}{c}
7 \\
2
\end{array} \times \begin{array}{c}
2 \\
1
\end{array} = \begin{array}{c}
14 \\
2
\end{array}
\]

The Mixed Number Representation is seen here:

\[
\begin{array}{c}
0 \\
7
\end{array}
\]

Type the answer 7 0/2.

37) Problem #PRABC6D3 "PRABC6D3 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{4}{11}
\]

Exact Match (case sensitive):

4 1/8

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{4}{11} = \frac{1}{2} \times \frac{11}{4}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
1 \frac{11}{2} \times 3 \frac{11}{4} = \frac{33}{8}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

- Answer should be written in mixed number form.

The Mixed Number Representation is seen here:

\[
1 \frac{1}{2} \times 3 \frac{11}{4} = 3 \frac{11}{4} = 33
\]

Type the answer 4 1/8.

38) Problem #PRABC6D4 "PRABC6D4 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{3}{2} \div \frac{3}{11}
\]

Exact Match (case sensitive):

12 5/6
Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{align*}
1 & \quad 3 & \quad 1 & \quad 11 \\
3 & \quad \div & \quad 2 & \quad 3 = \quad 3 & \quad \ast & \quad 2 & \quad 3
\end{align*}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{align*}
1 & \quad 11 & \quad 7 & \quad 11 \\
3 & \quad \ast & \quad 2 & \quad 3 = \quad 2 & \quad 3 & \quad \ast & \quad 2 & \quad 3
\end{align*}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\begin{align*}
3 & \quad 1 & \quad \ast & \quad 11 & \quad = & \quad 7 & \quad \ast & \quad 11 & \quad = & \quad 77 \\
2 & \quad 3 & \quad & \quad 2 & \quad 3 & \quad & \quad 2 & \quad 3 & \quad & \quad 6
\end{align*}
\]

The Mixed Number Representation is seen here:

\[
\begin{align*}
5 & \quad \frac{1}{15}
\end{align*}
\]

Type the answer 12 5/6.

39) Problem #PRABC6D5 "PRABC6D5 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{align*}
2 & \quad 1 \quad \div \quad 3 \\
5 & \quad 7
\end{align*}
\]

Exact Match (case sensitive):

\[
\begin{align*}
\checkmark & \quad 5 \quad \frac{2}{15}
\end{align*}
\]

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{align*}
1 & \quad 3 & \quad 1 & \quad 7 \\
2 & \quad \div & \quad 5 & \quad 7 = \quad 2 & \quad \ast & \quad 5 & \quad 3
\end{align*}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
2 \quad 1 \quad \ast & \quad 7 = \quad 11 \quad \ast & \quad 7
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{2}{5} \times \frac{1}{3} = \frac{11}{5} \times \frac{7}{3} = \frac{77}{15}
\]

The Mixed Number Representation is seen here:

\[
\frac{2}{5} \text{ } \frac{1}{15}
\]

Type the answer 5 2/15.

40) Problem #PRABC6D6 "PRABC6D6 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{5}{7}
\]

Exact Match (case sensitive):

✓ 2 1/10

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{5}{7} = \frac{1}{2} \times \frac{7}{5}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{7}{5} = \frac{3}{2} \times \frac{7}{5}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{1}{1} \times \frac{7}{1} = \frac{3}{1} \times \frac{7}{1} = \frac{21}{1}
\]
The Mixed Number Representation is seen here:

\[
\begin{array}{c}
1 \\
2 \hspace{1cm} 10 \\
\end{array}
\]

Type the answer 2 1/10.

41) Problem #PRABC6D7 "PRABC6D7 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{array}{c}
2 \hspace{1cm} 1 \\
3 \hspace{1cm} 3 \\
\end{array}
\div
\begin{array}{c}
3 \\
11 \\
\end{array}
\]

Exact Match (case sensitive):

\[
8 \hspace{1cm} 5/9
\]

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
1 \hspace{1cm} 3 \\
2 \hspace{1cm} \hspace{1cm} 1 \hspace{1cm} 11 \\
3 \hspace{1cm} 11 \hspace{1cm} 3 \hspace{1cm} 3 \\
\end{array}
\] 2 \div 3 = 2 \times \frac{11}{3} \div \frac{3}{3}

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
1 \hspace{1cm} 11 \\
2 \hspace{1cm} \hspace{1cm} 7 \hspace{1cm} 11 \\
3 \hspace{1cm} 3 \hspace{1cm} 3 \hspace{1cm} 3 \\
\end{array}
\] 2 \times \frac{11}{3} \div \frac{3}{3} = \frac{77}{9}

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\begin{array}{c}
2 \hspace{1cm} 1 \\
3 \hspace{1cm} 3 \\
\end{array}
\times
\begin{array}{c}
11 \\
3 \hspace{1cm} 3 \\
\end{array}
\]

\[
\begin{array}{c}
7 \hspace{1cm} 11 \\
3 \hspace{1cm} 3 \\
\end{array}
\times
\begin{array}{c}
77 \\
9 \\
\end{array}
\]

The Mixed Number Representation is seen here:

\[
\begin{array}{c}
5 \\
8 \hspace{1cm} \hspace{1cm} 9 \\
\end{array}
\]

Type the answer 8 5/9.

42) Problem #PRABC6D8 "PRABC6D8 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: $6 \frac{3}{4}$.

\[
\frac{\frac{3}{2}}{\frac{1}{3}} = \frac{3}{2} \times \frac{3}{1} = \frac{7}{1} \times \frac{3}{1} = \frac{21}{2}
\]

The Mixed Number Representation is seen here:

\[
10 \frac{1}{2}
\]

Type the answer 10 1/2.

\[
\frac{1}{2} \div \frac{4}{5}
\]

Exact Match (case sensitive):

\[
1 \frac{7}{8}
\]
Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{4}{5} = \frac{1}{2} \times \frac{5}{4}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{4} = \frac{3}{2} \times \frac{5}{4}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

\[
\frac{1}{2} \times \frac{5}{4} = \frac{5}{8}
\]

The Mixed Number Representation is seen here:

\[
\frac{17}{8}
\]

Type the answer 1 7/8.

44) Problem #PRABC6EA "PRABC6EA - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{2} \div \frac{10}{3}
\]

Exact Match (case sensitive):

9/20

HINTS:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{10}{3} = \frac{1}{2} \times \frac{3}{10}
\]
• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{10} = \frac{3}{2} \times \frac{3}{10}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{2} \times \frac{3}{10} = \frac{9}{20}
\]

☐ 45) Problem #PRABC6EB "PRABC6EB - 222198 - Dividing Fractions(MP)"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{2}{3} \div \frac{11}{2}
\]

Exact Match (case sensitive):

✓ 14/33

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{2}{3} \div \frac{11}{2} = 2 \times \frac{1}{3} \times \frac{2}{11}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{2}{3} \times \frac{2}{11} = \frac{7}{3} \times \frac{2}{11}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{7}{3} \times \frac{2}{11} = \frac{14}{33}
\]

☐ 46) Problem #PRABC6EC "PRABC6EC - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{2}{3} \div \frac{11}{2}
\]

Exact Match (case sensitive):

14/33

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{2}{3} \div \frac{11}{2} = \frac{2}{3} \times \frac{2}{11}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{2}{3} \times \frac{2}{11} = \frac{7}{3} \times \frac{2}{11}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{7}{3} \times \frac{2}{11} = \frac{14}{33}
\]

☐ 47) Problem #PRABC6ED "PRABC6ED - 222198 - Dividing Fractions(MP)"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{3} \div \frac{5}{2}
\]

Exact Match (case sensitive):

✓ 8/15

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{3} \div \frac{5}{2} = \frac{1}{3} \times \frac{2}{5}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{3} \times \frac{2}{5} = \frac{4}{15}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{4}{15}
\]

☐ 48) Problem #PRABC6EE "PRABC6EE - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{3} \div \frac{5}{2}
\]

Exact Match (case sensitive):

✓ 14/15
Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{2}{3} \div \frac{5}{2} = \frac{2}{3} \times \frac{2}{5}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{2\frac{1}{2}}{3} \times \frac{2}{5} = \frac{7}{3} \times \frac{2}{5}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{7}{3} \times \frac{2}{5} = \frac{14}{15}
\]

☐ 49) Problem #PRABC6EF "PRABC6EF - 222198 - Dividing Fractions(MP)"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{2} \div \frac{8}{3}
\]

Exact Match (case sensitive):

✓ 9/16

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{8}{3} = \frac{1}{2} \times \frac{3}{8}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\frac{1}{2} \times \frac{3}{8} = \frac{3}{2} \times \frac{3}{8}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{2} \times \frac{3}{8} = \frac{9}{16}
\]

50	Problem #PRABC6EG "PRABC6EG - 222198 - Dividing Fractions(MP)"
	Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
	If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.
	\[\frac{1}{2} \div \frac{11}{3} \]

Exact Match (case sensitive):

✓ 9/22

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{11}{3} = \frac{1}{2} \times \frac{3}{11}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{11} = \frac{3}{2} \times \frac{3}{11}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
3 \times 3 = 9
\]
51) Problem #PRABC6EH "PRABC6EH - 222198 - Dividing Fractions(MP)"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{2} \div \frac{7}{3}
\]

Exact Match (case sensitive):

\[
\frac{9}{14}
\]

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{7}{3} = \frac{1}{2} \times \frac{3}{7}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{7} = \frac{3}{2} \times \frac{3}{7}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{2} \times \frac{3}{7} = \frac{9}{14}
\]

52) Problem #PRABC6EJ "PRABC6EJ - 222198 - Dividing Fractions(MP)"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.
Exact Match (case sensitive):

9/22

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{11}{3} = \frac{1}{2} \times \frac{3}{11}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{11} = \frac{3}{22}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{2} \times \frac{3}{11} = \frac{9}{22}
\]

53) Problem #PRABC6EK "PRABC6EK - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{2} \div \frac{3}{2} = \frac{1}{2} \times \frac{2}{3}
\]

Exact Match (case sensitive):

14/9

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{2}{1} \div \frac{3}{2} = \frac{2}{1} \times \frac{2}{3}
\]
• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{2}{3} \times \frac{2}{3} = \frac{7}{3} \times \frac{2}{3}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{7}{3} \times \frac{2}{3} = \frac{14}{9}
\]

54) Problem #PRABC6EM "PRABC6EM - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{3} \div \frac{5}{2}
\]

Exact Match (case sensitive):

✓ 21/10

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{3}{2} \div \frac{5}{3} = \frac{3}{2} \times \frac{3}{5}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{3} \times \frac{3}{5} = \frac{7}{2} \times \frac{3}{5}
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\[
\frac{7}{2} \times \frac{3}{5} = \frac{21}{10}
\]

☐ 55) Problem #PRABC6EN "PRABC6EN - 222198 - Dividing Fractions(MP)"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{3}{2} \div \frac{5}{3} = \frac{9}{10}
\]

Exact Match (case sensitive):

✓ 21/10

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{3}{2} \div \frac{5}{3} = \frac{3}{2} \times \frac{3}{5}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{3}{2} \times \frac{3}{5} = \frac{7}{2} \times \frac{3}{5}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\[
\frac{7}{2} \times \frac{3}{5} = \frac{21}{10}
\]
56) Problem #PRABC6EP "PRABC6EP - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\begin{array}{c}
2 \frac{1}{3} \\
\div \\
\frac{11}{2}
\end{array}
\]

Exact Match (case sensitive):

14/33

Hints:

- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
2 \frac{1}{3} \\
\div \\
\frac{11}{2}
\end{array}
= 2 \frac{1}{3} \times \frac{2}{11}
\]

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
2 \frac{1}{3} \\
\times \\
\frac{2}{11}
\end{array}
= \frac{7}{3} \times \frac{2}{11}
\]

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{7}{3} \times \frac{2}{11} = \frac{14}{33}
\]

57) Problem #PRABC6EQ "PRABC6EQ - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\begin{array}{c}
1 \frac{1}{2} \\
\div \\
\frac{8}{3}
\end{array}
\]

Exact Match (case sensitive):
Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{8}{3} = \frac{1}{2} \times \frac{3}{8}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{8} = \frac{3}{2} \times \frac{3}{8}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{2} \times \frac{3}{8} = \frac{9}{16}
\]

58) Problem #PRABC6ER "PRABC6ER - 222198 - Dividing Fractions(MP)"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{2} \div \frac{11}{3}
\]

Exact Match (case sensitive):

9/22

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{11}{3} = \frac{1}{2} \times \frac{3}{11}
\]
• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
1 \frac{1}{2} * \frac{3}{11} = \frac{3}{2} * \frac{3}{11}
\end{array}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{2} * \frac{9}{11} = \frac{27}{22}
\]

59) Problem #PRABC6ES "PRABC6ES - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{2} \div \frac{8}{5}
\]

Exact Match (case sensitive):

✓ 15/16

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
1 \frac{1}{2} \div \frac{8}{5} = 1 \frac{1}{2} * \frac{5}{8}
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
1 \frac{1}{2} * \frac{5}{8} = \frac{3}{2} * \frac{5}{8}
\end{array}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{2} \times \frac{5}{8} = \frac{15}{16}
\]

60) Problem #PRABC6ET "PRABC6ET - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{2} \div \frac{8}{5} = \frac{15}{16}
\]

Exact Match (case sensitive):
✓ 15/16

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{8}{5} = \frac{1}{2} \times \frac{5}{8}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{5}{8} = \frac{3}{2} \times \frac{5}{8}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{2} \times \frac{5}{8} = \frac{15}{16}
\]

61) Problem #PRABC6EU "PRABC6EU - 222198 - Dividing Fractions(MP)"

https://www.assistments.org/build/print/sequence/779071?mode=debug&op_scaf=false&op_scaf_javascript=false
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

\[
\frac{1}{2} \div \frac{11}{3}
\]

Exact Match (case sensitive):

\[
\frac{9}{22}
\]

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{11}{3} = \frac{1}{2} \times \frac{3}{11}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{11} = \frac{3}{22}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.

\[
\frac{3}{2} \times \frac{3}{11} = \frac{9}{22}
\]

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{ccc}
1 & 1 & 1 \\
2 & 5 & = & 1 & * & - \\
3 & 5 & & & & \\
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{ccc}
1 & 1 & 3 & 1 \\
2 & 5 & = & * & - & * \\
3 & 5 & = & & & \\
\end{array}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{5} = \frac{3}{10}
\]

63) Problem #PRABC6EW "PRABC6EW - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{array}{ccc}
1 & & \\
2 & 5 & = \\
3 & & \\
\end{array}
\]

Exact Match (case sensitive):

✓ 7/15

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{ccc}
1 & 1 & 1 \\
2 & 5 & = & 2 & * & - \\
3 & 5 & & & & \\
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{ccc}
2 & 1 & 1 \\
3 & 5 & = & 7 & * & 1 \\
3 & 5 & & & & \\
\end{array}
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{7}{3} \times \frac{1}{5} = \frac{7}{15}
\]

64) Problem #PRABC6EX "PRABC6EX - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
1\frac{1}{2} \div 8 = \frac{3}{16}
\]

Exact Match (case sensitive):

✓ 3/16

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{1}{8} = \frac{1}{2} \times \frac{1}{8} = \frac{1}{16}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{8} = \frac{3}{16}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{8} = \frac{3}{16}
\]
65) Problem #PRABC6EY "PRABC6EY - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{array}{c}
\frac{1}{2} \\
\frac{1}{11}
\end{array}
\]

Exact Match (case sensitive):

✓ 3/22

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{c}
1 \\
\frac{1}{11} = \frac{1}{\frac{1}{2} \times \frac{1}{11}}
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{c}
1 \\
\frac{1}{3} \\
\frac{3}{1} = \frac{1}{\frac{1}{2} \times \frac{1}{11}}
\end{array}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\begin{array}{c}
3 \\
\frac{1}{2} \\
1 \\
11 \\
22
\end{array}
\]

66) Problem #PRABC6EZ "PRABC6EZ - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{array}{c}
1 \\
\frac{1}{6}
\end{array}
\]

https://www.assistments.org/build/print/sequence/779071?mode=debug&op_scaf=false&o... 4/25/2017
Exact Match (case sensitive):

✓ 5/24

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{1} \div \frac{6}{4} = \frac{1}{4} \times \frac{1}{6}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{1} \times \frac{5}{1} = \frac{1}{4} \times \frac{6}{6}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{5}{4} \times \frac{1}{6} = \frac{5}{24}
\]

67) Problem #PRABC6E2 "PRABC6E2 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div 8
\]

Exact Match (case sensitive):

✓ 3/16

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{1} \div \frac{8}{2} = \frac{1}{2} \times \frac{1}{8}
\]
• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{1}{8} = \frac{3}{16}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{8} = \frac{3}{16}
\]

□ 68) Problem #PRABC6E3 "PRABC6E3 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{1}{11} = \frac{3}{22}
\]

Exact Match (case sensitive):
✓ 3/22

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \times 11 = \frac{1}{2} \times \frac{1}{11}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{1}{11} = \frac{3}{16}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\begin{array}{ccc}
 3 & \times & 1 \\
 2 & & 11 \\
\end{array}
\]

\[
\frac{3}{22}
\]

□ 69) Problem #PRABC6E4 "PRABC6E4 - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\begin{array}{cccc}
 1 & \div & 11 \\
 2 & & & \\
\end{array}
\]

Exact Match (case sensitive):

✓ 3/22

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\begin{array}{cccc}
 1 & \times & 11 \\
 2 & & & 11 \\
\end{array}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\begin{array}{cccc}
 1 & \times & 3 & 1 \\
 2 & & 11 & 11 \\
\end{array}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\begin{array}{ccc}
 3 & \times & 1 \\
 2 & & 11 \\
\end{array}
\]

\[
\frac{3}{22}
\]

□ 70) Problem #PRABC6E5 "PRABC6E5 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{1}{11} = \frac{3}{22}
\]

Exact Match (case sensitive):

✅ 3/22

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{1}{11} = \frac{1}{2} \times \frac{11}{1} = \frac{1 \times 11}{2 \times 1} = \frac{11}{2}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{11} = \frac{1 \times 3}{2 \times 11} = \frac{3}{22}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

\[
\frac{3}{2} \times \frac{1}{11} = \frac{3}{22}
\]
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{1}{7} = \frac{1}{2} \times \frac{7}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{1} = \frac{1}{2} \times \frac{7}{3}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

\[
\frac{3}{2} \times \frac{1}{7} = \frac{3}{14}
\]

72) Problem #PRABC6E7 "PRABC6E7 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div \frac{5}{3}
\]

Exact Match (case sensitive):

✓ 7/15

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{3} \div \frac{5}{3} = \frac{1}{3} \times \frac{3}{5}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{3} \times \frac{7}{1} = \frac{1}{3} \times \frac{7}{3}
\]
• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{7}{3} \times \frac{1}{5} = \frac{7}{15}
\]

☐ 73) Problem #PRABC6E8 "PRABC6E8 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{4} \div 4
\]

Exact Match (case sensitive):
✓ 5/16

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{4} \times \frac{1}{4} = \frac{1}{16}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{4} \times \frac{5}{4} = \frac{5}{16}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
• Answer should be written in mixed number form.

\[
\frac{5}{4} \times \frac{1}{4} = \frac{5}{16}
\]
74) Problem #PRABC6E9 "PRABC6E9 - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{3} \div \frac{1}{11}
\]

Exact Match (case sensitive):

\[\frac{4}{33}\]

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{3} \div \frac{1}{11} = \frac{1}{3} \times \frac{11}{1}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{1} \times \frac{4}{1} = \frac{1}{3} \times \frac{11}{1}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{4}{33}
\]

75) Problem #PRABC6FA "PRABC6FA - Final: Dividing Fractions M/M"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{1} \div \frac{1}{11}
\]
Exact Match (case sensitive):

✓ 3/22

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{11}{1} = \frac{1}{2} \times \frac{1}{11}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{1} = \frac{1}{2} \times \frac{3}{11}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{11} = \frac{3}{22}
\]

76) Problem #PRABC6FB "PRABC6FB - Final: Dividing Fractions M/M"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

\[
\frac{1}{2} \div 7
\]

Exact Match (case sensitive):

✓ 3/14

Hints:

• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{1}{2} \div \frac{7}{1} = \frac{1}{2} \times \frac{1}{7}
\]
• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{1}{2} \times \frac{3}{7} = \frac{3}{14}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

• Answer should be written in mixed number form.

\[
\frac{3}{2} \times \frac{1}{7} = \frac{3}{14}
\]
Select All

Problem #1015227 "PRABDCQJ - mixed number by mixed number"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.

$$1 \frac{1}{5} \div 2 \frac{1}{4}$$

Exact Fraction:

8/15

Hints:

• The first step is to change the mixed numbers to improper fractions

$$1 \frac{1}{5} \div 2 \frac{1}{4} = \frac{6}{5} \times \frac{9}{4}$$

• When dividing fractions, you need to flip second fraction and create a multiplication problem, as shown below:

$$\frac{6}{5} \times \frac{4}{9}$$

Notice the numerator of the first fraction and denominator of the second fraction have a common divisor. This can be used to simplify both

$$\frac{2 \times 6}{5 \times 3} \times \frac{4}{9} = \frac{2}{5} \times \frac{4}{3}$$

• Multiply the numerator by numerator and denominator by denominator

$$\frac{2}{5} \times \frac{4}{3} = \frac{8}{15}$$
Select All
Problem #1015356 "PRABDCUQ - Unkind"
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 5 1/4.

\[
\begin{array}{c}
3 \\ 44 \\
\hline
8 \\
11
\end{array}
\]

Exact Match (case sensitive):

\[\checkmark \text{5 19/32}\]

Hints:
• When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

\[
\frac{3}{4} \div \frac{8}{11} = \frac{3}{4} \times \frac{11}{8}
\]

• Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\[
\frac{3}{4} \times \frac{11}{8} = \frac{179}{44} \times \frac{1}{8}
\]

• Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.

• Reduction of Fractions:

\[
\frac{179}{44} \times \frac{1}{8} = \frac{179}{44} \div 4 \times \frac{1}{8}
\]

• Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form.

\[
\frac{179}{44} \times \frac{1}{8} = \frac{179}{32}
\]

The Mixed Number Representation is seen here:

\[5 \frac{19}{32}\]

Type the answer 5 19/32.
UNIANOVA ProblemCount BY Condition
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES(OVERALL)
/EMMEANS=TABLES(Condition) COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ HOMOGENEITY DESCRIPTIVE PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=Condition.

Univariate Analysis of Variance

Notes

<table>
<thead>
<tr>
<th>Output Created</th>
<th>04-MAY-2017 22:42:14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>Active Dataset</td>
<td>DataSet4</td>
</tr>
<tr>
<td>Filter</td>
<td><none></td>
</tr>
<tr>
<td>Weight</td>
<td><none></td>
</tr>
<tr>
<td>Split File</td>
<td><none></td>
</tr>
<tr>
<td>N of Rows in Working Data File</td>
<td>1093</td>
</tr>
<tr>
<td>Missing Value Handling</td>
<td></td>
</tr>
<tr>
<td>Definition of Missing</td>
<td>User-defined missing values are treated as missing.</td>
</tr>
<tr>
<td>Cases Used</td>
<td>Statistics are based on all cases with valid data for all variables in the model.</td>
</tr>
</tbody>
</table>
UNIANOVA ProblemCount BY Condition
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES(OVERALL)
/EMMEANS=TABLES(Condition)
COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ
HOMOGENEITY DESCRIPTIVE
PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=Condition.

Between-Subjects Factors

<table>
<thead>
<tr>
<th>Condition</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>277</td>
</tr>
<tr>
<td>HO</td>
<td>284</td>
</tr>
<tr>
<td>WE-T</td>
<td>249</td>
</tr>
<tr>
<td>WE-V</td>
<td>280</td>
</tr>
</tbody>
</table>

Descriptive Statistics

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>9.751</td>
<td>7.4512</td>
<td>277</td>
</tr>
<tr>
<td>HO</td>
<td>9.655</td>
<td>7.9855</td>
<td>284</td>
</tr>
<tr>
<td>WE-T</td>
<td>15.289</td>
<td>11.6226</td>
<td>249</td>
</tr>
<tr>
<td>WE-V</td>
<td>16.579</td>
<td>12.8197</td>
<td>280</td>
</tr>
<tr>
<td>Total</td>
<td>12.745</td>
<td>10.6555</td>
<td>1090</td>
</tr>
</tbody>
</table>

Levene's Test of Equality of Error Variances
Dependent Variable: Problem Count

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>10921.650</td>
<td>3</td>
<td>3640.550</td>
<td>35.074</td>
<td>.000</td>
<td>.088</td>
</tr>
<tr>
<td>Intercept</td>
<td>178614.483</td>
<td>1</td>
<td>178614.483</td>
<td>1720.807</td>
<td>.000</td>
<td>.613</td>
</tr>
<tr>
<td>Condition</td>
<td>10921.650</td>
<td>3</td>
<td>3640.550</td>
<td>35.074</td>
<td>.000</td>
<td>.088</td>
</tr>
<tr>
<td>Error</td>
<td>112723.448</td>
<td>1086</td>
<td>103.797</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>300698.000</td>
<td>1090</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>123645.097</td>
<td>1089</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tests of Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Noncent. Parameter</th>
<th>Observed Power^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>105.221</td>
<td>1.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>1720.807</td>
<td>1.000</td>
</tr>
<tr>
<td>Condition</td>
<td>105.221</td>
<td>1.000</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B</th>
<th>Std. Error</th>
<th>t</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. a

a. Design: Intercept + Condition

a. R Squared = .088 (Adjusted R Squared = .086)

b. Computed using alpha = .05
Parameter Estimates

Dependent Variable: Problem Count

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Partial Eta Squared</th>
<th>Noncent. Parameter</th>
<th>Observed Power<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>.406</td>
<td>27.229</td>
<td>1.000</td>
</tr>
<tr>
<td>[Condition=CO]</td>
<td>.054</td>
<td>7.908</td>
<td>1.000</td>
</tr>
<tr>
<td>[Condition=HO]</td>
<td>.057</td>
<td>8.069</td>
<td>1.000</td>
</tr>
<tr>
<td>[Condition=WE-T]</td>
<td>.002</td>
<td>1.453</td>
<td>.306</td>
</tr>
<tr>
<td>[Condition=WE-V]</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

^a This parameter is set to zero because it is redundant.

^b Computed using alpha = .05

Estimated Marginal Means

1. Grand Mean

Dependent Variable: Problem Count

<table>
<thead>
<tr>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>95% Confidence Interval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>12.818</td>
<td>.309</td>
<td>12.212</td>
</tr>
</tbody>
</table>

2. Condition

Estimates
Dependent Variable: Problem Count

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>9.751</td>
<td>.612</td>
<td>8.550 - 10.952</td>
</tr>
<tr>
<td>HO</td>
<td>9.655</td>
<td>.605</td>
<td>8.469 - 10.841</td>
</tr>
<tr>
<td>WE-T</td>
<td>15.289</td>
<td>.646</td>
<td>14.022 - 16.556</td>
</tr>
<tr>
<td>WE-V</td>
<td>16.579</td>
<td>.609</td>
<td>15.384 - 17.773</td>
</tr>
</tbody>
</table>

Pairwise Comparisons

Based on estimated marginal means

* The mean difference is significant at the .05 level.

b. Adjustment for multiple comparisons: Bonferroni.

Univariate Tests

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>10921.650</td>
<td>3</td>
<td>3640.550</td>
<td>35.074</td>
<td>.000</td>
<td>.088</td>
</tr>
</tbody>
</table>
Univariate Tests

Dependent Variable: Problem Count

<table>
<thead>
<tr>
<th>Contrast</th>
<th>Noncent. Parameter</th>
<th>Observed Power<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>105.221</td>
<td>1.000</td>
</tr>
</tbody>
</table>

The F tests the effect of Condition. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

^a Computed using alpha = .05

Post Hoc Tests

Condition

Multiple Comparisons

Dependent Variable: Problem Count

<table>
<thead>
<tr>
<th>(I) Condition</th>
<th>(J) Condition</th>
<th>Mean Difference</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>CO</td>
<td>HO</td>
<td>.096</td>
<td>.8603</td>
<td>1.000</td>
<td>-.2178</td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>-5.538<sup>*</sup></td>
<td>.8897</td>
<td>.000</td>
<td>-7.890</td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>-6.828<sup>*</sup></td>
<td>.8634</td>
<td>.000</td>
<td>-9.110</td>
</tr>
<tr>
<td>HO</td>
<td>CO</td>
<td>-.096</td>
<td>.8603</td>
<td>1.000</td>
<td>-2.370</td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>-5.634<sup>*</sup></td>
<td>.8845</td>
<td>.000</td>
<td>-7.972</td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>-6.924<sup>*</sup></td>
<td>.8580</td>
<td>.000</td>
<td>-9.191</td>
</tr>
<tr>
<td>WE-T</td>
<td>CO</td>
<td>5.538<sup>*</sup></td>
<td>.8897</td>
<td>.000</td>
<td>3.187</td>
</tr>
<tr>
<td></td>
<td>HO</td>
<td>5.634<sup>*</sup></td>
<td>.8845</td>
<td>.000</td>
<td>3.296</td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>-1.289</td>
<td>.8874</td>
<td>.879</td>
<td>-3.635</td>
</tr>
</tbody>
</table>
Based on observed means.

The error term is Mean Square(Error) = 103.797.

* The mean difference is significant at the .05 level.

UNIANOVA AveCO BY Condition
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES(overall)
/EMMEANS=TABLES(Condition) COMPARISON ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ HOMOGENEITY DESCRIPTIVE PARAMETER
/CRIERIA=ALPHA(.05)
/DESIGN=Condition.

Univariate Analysis of Variance

Output Created

Input
Active Dataset
<none>

Filter
<none>

Weight
<none>

Split File
<none>

N of Rows in Working Data File
1093

Missing Value Handling
Definition of Missing
User-defined missing values are treated as missing.

Cases Used
Statistics are based on all cases with valid data for all variables in the model.
UNIANOVA AveCO BY Condition
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE

/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES(OVERALL)
/EMMEANS=TABLES(Condition)
COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ
HOMOGENEITY DESCRIPTIVE
PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=Condition.

Between-Subjects Factors

<table>
<thead>
<tr>
<th>Condition</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>265</td>
</tr>
<tr>
<td>HO</td>
<td>273</td>
</tr>
<tr>
<td>WE-T</td>
<td>238</td>
</tr>
<tr>
<td>WE-V</td>
<td>266</td>
</tr>
</tbody>
</table>

Descriptive Statistics

Dependent Variable: AveCO

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>.6825</td>
<td>.24378</td>
<td>265</td>
</tr>
<tr>
<td>HO</td>
<td>.6735</td>
<td>.24858</td>
<td>273</td>
</tr>
<tr>
<td>WE-T</td>
<td>.6325</td>
<td>.24573</td>
<td>238</td>
</tr>
<tr>
<td>WE-V</td>
<td>.6630</td>
<td>.22871</td>
<td>266</td>
</tr>
<tr>
<td>Total</td>
<td>.6637</td>
<td>.24211</td>
<td>1042</td>
</tr>
</tbody>
</table>

Levene's Test of Equality of Error Variances

Dependent Variable: AveCO
Tests the null hypothesis that the error variance of the dependent variable is equal across groups.\(^a\)

a. Design: Intercept + Condition

Tests of Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>(0.35^a)</td>
<td>3</td>
<td>0.117</td>
<td>2.003</td>
<td>0.112</td>
<td>0.006</td>
</tr>
<tr>
<td>Intercept</td>
<td>456.584</td>
<td>1</td>
<td>456.584</td>
<td>7811.617</td>
<td>0.000</td>
<td>0.883</td>
</tr>
<tr>
<td>Condition</td>
<td>(0.351)</td>
<td>3</td>
<td>0.117</td>
<td>2.003</td>
<td>0.112</td>
<td>0.006</td>
</tr>
<tr>
<td>Error</td>
<td>60.670</td>
<td>1038</td>
<td>0.058</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>520.073</td>
<td>1042</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>61.022</td>
<td>1041</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(a. R^2 = 0.006, \text{ Adjusted } R^2 = 0.003\)

b. Computed using alpha = 0.05

Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B</th>
<th>Std. Error</th>
<th>t</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.663</td>
<td>0.015</td>
<td>44.728</td>
<td>0.000</td>
<td>0.634 - 0.692</td>
</tr>
</tbody>
</table>
Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Partial Eta Squared</th>
<th>Noncent. Parameter</th>
<th>Observed Power b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>.658</td>
<td>44.728</td>
<td>1.000</td>
</tr>
<tr>
<td>[Condition=CO]</td>
<td>.001</td>
<td>.926</td>
<td>.152</td>
</tr>
<tr>
<td>[Condition=HO]</td>
<td>.000</td>
<td>.502</td>
<td>.079</td>
</tr>
<tr>
<td>[Condition=WE-T]</td>
<td>.002</td>
<td>1.415</td>
<td>.293</td>
</tr>
<tr>
<td>[Condition=WE-V]</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

a. This parameter is set to zero because it is redundant.
b. Computed using alpha = .05

Estimated Marginal Means

1. Grand Mean

<table>
<thead>
<tr>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>.663</td>
<td>.007</td>
<td>.648 - .678</td>
</tr>
</tbody>
</table>

2. Condition

Estimates

<table>
<thead>
<tr>
<th>Dependent Variable: AveCO</th>
<th>AveCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Std. Error</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>.663</td>
<td>.007</td>
</tr>
<tr>
<td>Condition</td>
<td>Mean</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>CO</td>
<td>.682</td>
</tr>
<tr>
<td>HO</td>
<td>.673</td>
</tr>
<tr>
<td>WE-T</td>
<td>.632</td>
</tr>
<tr>
<td>WE-V</td>
<td>.663</td>
</tr>
</tbody>
</table>

Pairwise Comparisons

Dependent Variable: AveCO

<table>
<thead>
<tr>
<th>(I) Condition</th>
<th>(J) Condition</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>HO</td>
<td>.009</td>
<td>.021</td>
<td>1.00</td>
<td>- .046</td>
<td>.064</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.050</td>
<td>.022</td>
<td>.125</td>
<td>- .007</td>
<td>.107</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.019</td>
<td>.021</td>
<td>1.00</td>
<td>- .036</td>
<td>.075</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>CO</td>
<td>-.009</td>
<td>.021</td>
<td>1.00</td>
<td>- .064</td>
<td>.046</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.041</td>
<td>.021</td>
<td>.337</td>
<td>- .016</td>
<td>.098</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.010</td>
<td>.021</td>
<td>1.00</td>
<td>- .045</td>
<td>.066</td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>CO</td>
<td>-.050</td>
<td>.022</td>
<td>.125</td>
<td>- .107</td>
<td>.007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HO</td>
<td>-.041</td>
<td>.021</td>
<td>.337</td>
<td>- .098</td>
<td>.016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>-.031</td>
<td>.022</td>
<td>.944</td>
<td>- .088</td>
<td>.026</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td>CO</td>
<td>-.019</td>
<td>.021</td>
<td>1.00</td>
<td>- .075</td>
<td>.036</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HO</td>
<td>-.010</td>
<td>.021</td>
<td>1.00</td>
<td>- .066</td>
<td>.045</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.031</td>
<td>.022</td>
<td>.944</td>
<td>- .026</td>
<td>.088</td>
<td></td>
</tr>
</tbody>
</table>

Based on estimated marginal means

a. Adjustment for multiple comparisons: Bonferroni.

Univariate Tests

Dependent Variable: AveCO

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>.351</td>
<td>3</td>
<td>.117</td>
<td>2.003</td>
<td>.112</td>
<td>.006</td>
</tr>
<tr>
<td>Error</td>
<td>60.670</td>
<td>1038</td>
<td>.058</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Univariate Tests

<table>
<thead>
<tr>
<th>Contrast</th>
<th>Noncent. Parameter</th>
<th>Observed Power<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>6.010</td>
<td>.517</td>
</tr>
</tbody>
</table>

The F tests the effect of Condition. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

^a Computed using alpha = .05

Post Hoc Tests

Condition

Multiple Comparisons

<table>
<thead>
<tr>
<th>(I) Condition</th>
<th>(J) Condition</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
</tr>
<tr>
<td>CO</td>
<td>HO</td>
<td>.0090</td>
<td>.02085</td>
<td>1.000</td>
<td>-.0461</td>
<td>.0641</td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.0500</td>
<td>.02159</td>
<td>.125</td>
<td>-.0071</td>
<td>.1070</td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.0194</td>
<td>.02098</td>
<td>1.000</td>
<td>-.0360</td>
<td>.0749</td>
</tr>
<tr>
<td>HO</td>
<td>CO</td>
<td>-.0090</td>
<td>.02085</td>
<td>1.000</td>
<td>-.0641</td>
<td>.0461</td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.0410</td>
<td>.02144</td>
<td>.337</td>
<td>-.0157</td>
<td>.0977</td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.0105</td>
<td>.02083</td>
<td>1.000</td>
<td>-.0446</td>
<td>.0655</td>
</tr>
<tr>
<td>WE-T</td>
<td>CO</td>
<td>-.0500</td>
<td>.02159</td>
<td>.125</td>
<td>-.1070</td>
<td>.0071</td>
</tr>
<tr>
<td></td>
<td>HO</td>
<td>-.0410</td>
<td>.02144</td>
<td>.337</td>
<td>-.0977</td>
<td>.0157</td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>-.0305</td>
<td>.02157</td>
<td>.944</td>
<td>-.0876</td>
<td>.0265</td>
</tr>
<tr>
<td>WE-V</td>
<td>CO</td>
<td>-.0194</td>
<td>.02098</td>
<td>1.000</td>
<td>-.0749</td>
<td>.0360</td>
</tr>
<tr>
<td></td>
<td>HO</td>
<td>-.0105</td>
<td>.02083</td>
<td>1.000</td>
<td>-.0655</td>
<td>.0446</td>
</tr>
</tbody>
</table>
Based on observed means.
The error term is Mean Square(Error) = .058.

UNIANOVA AveFA BY Condition
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES(OVERALL)
/EMMEANS=TABLES(Condition) COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ HOMOGENEITY DESCRIPTIVE PARAMETER
/Criteria=ALPHA(.05)
/DESIGN=Condition.

Univariate Analysis of Variance

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Created</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>Active Dataset</td>
<td>DataSet4</td>
</tr>
<tr>
<td>Filter</td>
<td><none></td>
</tr>
<tr>
<td>Weight</td>
<td><none></td>
</tr>
<tr>
<td>Split File</td>
<td><none></td>
</tr>
<tr>
<td>N of Rows in Working Data File</td>
<td>1093</td>
</tr>
<tr>
<td>Missing Value Handling</td>
<td></td>
</tr>
<tr>
<td>Definition of Missing</td>
<td>User-defined missing values are treated as missing.</td>
</tr>
<tr>
<td>Cases Used</td>
<td>Statistics are based on all cases with valid data for all variables in the model.</td>
</tr>
</tbody>
</table>
UNIANOVA AveFA BY Condition
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES(OVERALL)
/EMMEANS=TABLES(Condition)
COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ
HOMOGENEITY DESCRIPTIVE
PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=Condition.

Between-Subjects Factors

<table>
<thead>
<tr>
<th>Condition</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>265</td>
</tr>
<tr>
<td>HO</td>
<td>273</td>
</tr>
<tr>
<td>WE-T</td>
<td>238</td>
</tr>
<tr>
<td>WE-V</td>
<td>266</td>
</tr>
</tbody>
</table>

Descriptive Statistics

Dependent Variable: AveFA

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>.011980933</td>
<td>.0558725143949</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>.034603491</td>
<td>.1363762810764</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>349</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>.072198956</td>
<td>.1642492006083</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>660</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td>.063624901</td>
<td>.1568133177442</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>791</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.044845754</td>
<td>.1364426212766</td>
<td>1042</td>
</tr>
<tr>
<td></td>
<td>647</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>
Levene's Test of Equality of Error Variances

<table>
<thead>
<tr>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.491</td>
<td>3</td>
<td>1038</td>
<td>.000</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.\(^a\)

\(a. \) Design: Intercept + Condition

Tests of Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>.587(^a)</td>
<td>3</td>
<td>.196</td>
<td>10.802</td>
<td>.000</td>
<td>.030</td>
</tr>
<tr>
<td>Intercept</td>
<td>2.161</td>
<td>1</td>
<td>2.161</td>
<td>119.353</td>
<td>.000</td>
<td>.103</td>
</tr>
<tr>
<td>Condition</td>
<td>.587</td>
<td>3</td>
<td>.196</td>
<td>10.802</td>
<td>.000</td>
<td>.030</td>
</tr>
<tr>
<td>Error</td>
<td>18.793</td>
<td>1038</td>
<td>.018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>21.475</td>
<td>1042</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>19.380</td>
<td>1041</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(a. \) R Squared = .030 (Adjusted R Squared = .027)

Tests of Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Noncent. Parameter</th>
<th>Observed Power(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>32.407</td>
<td>.999</td>
</tr>
<tr>
<td>Intercept</td>
<td>119.353</td>
<td>1.000</td>
</tr>
<tr>
<td>Condition</td>
<td>32.407</td>
<td>.999</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(b. \) Computed using alpha = .05

Parameter Estimates
Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Partial Eta Squared</th>
<th>Noncent. Parameter</th>
<th>Observed Power(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>.054</td>
<td>7.712</td>
<td>1.000</td>
</tr>
<tr>
<td>[Condition=CO]</td>
<td>.018</td>
<td>4.422</td>
<td>0.993</td>
</tr>
<tr>
<td>[Condition=HO]</td>
<td>.006</td>
<td>2.503</td>
<td>0.706</td>
</tr>
<tr>
<td>[Condition=WE-T]</td>
<td>.000</td>
<td>.714</td>
<td>0.110</td>
</tr>
<tr>
<td>[Condition=WE-V]</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

\(^a\) This parameter is set to zero because it is redundant.

\(^b\) Computed using alpha = .05

Estimated Marginal Means

1. Grand Mean

<table>
<thead>
<tr>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>.046</td>
<td>.004</td>
<td>.037 - .054</td>
</tr>
</tbody>
</table>

2. Condition
Estimates

Dependent Variable: AveFA

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>.012</td>
<td>.008</td>
<td>-.004</td>
<td>.028</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>.035</td>
<td>.008</td>
<td>.019</td>
<td>.051</td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>.072</td>
<td>.009</td>
<td>.055</td>
<td>.089</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td>.064</td>
<td>.008</td>
<td>.047</td>
<td>.080</td>
<td></td>
</tr>
</tbody>
</table>

Pairwise Comparisons

Dependent Variable: AveFA

<table>
<thead>
<tr>
<th>(I) Condition</th>
<th>(J) Condition</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig. b</th>
<th>95% Confidence Interval for Difference b</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>HO</td>
<td>-.023</td>
<td>.012</td>
<td>.309</td>
<td>-.053</td>
<td>.008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>-.060*</td>
<td>.012</td>
<td>.000</td>
<td>-.092</td>
<td>-.028</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>-.052*</td>
<td>.012</td>
<td>.000</td>
<td>-.083</td>
<td>-.021</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>CO</td>
<td>.023</td>
<td>.012</td>
<td>.309</td>
<td>-.008</td>
<td>.053</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>-.038*</td>
<td>.012</td>
<td>.010</td>
<td>-.069</td>
<td>-.006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>-.029</td>
<td>.012</td>
<td>.075</td>
<td>-.060</td>
<td>.002</td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>CO</td>
<td>.060*</td>
<td>.012</td>
<td>.000</td>
<td>.028</td>
<td>.092</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HO</td>
<td>.038*</td>
<td>.012</td>
<td>.010</td>
<td>.006</td>
<td>.069</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.009</td>
<td>.012</td>
<td>1.000</td>
<td>-.023</td>
<td>.040</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td>CO</td>
<td>.052</td>
<td>.012</td>
<td>.000</td>
<td>.021</td>
<td>.083</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HO</td>
<td>.029</td>
<td>.012</td>
<td>.075</td>
<td>-.002</td>
<td>.060</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>-.009</td>
<td>.012</td>
<td>1.000</td>
<td>-.040</td>
<td>.023</td>
<td></td>
</tr>
</tbody>
</table>

Based on estimated marginal means

* The mean difference is significant at the .05 level.

b. Adjustment for multiple comparisons: Bonferroni.

Univariate Tests

Dependent Variable: AveFA
<table>
<thead>
<tr>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>.587</td>
<td>3</td>
<td>.196</td>
<td>10.802</td>
<td>.000</td>
</tr>
<tr>
<td>Error</td>
<td>18.793</td>
<td>1038</td>
<td>.018</td>
<td></td>
<td>.030</td>
</tr>
</tbody>
</table>

Univariate Tests

Dependent Variable: AveFA

<table>
<thead>
<tr>
<th>Noncent. Parameter</th>
<th>Observed Power^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>32.407</td>
</tr>
<tr>
<td>Error</td>
<td></td>
</tr>
</tbody>
</table>

The F tests the effect of Condition. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a. Computed using alpha = .05

Post Hoc Tests

Condition

Multiple Comparisons

Dependent Variable: AveFA

<table>
<thead>
<tr>
<th>(I) Condition</th>
<th>(J) Condition</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>HO</td>
<td>-.022622558743</td>
<td>.011603465777</td>
<td>.309</td>
<td>-.053294284839</td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>-.060218022878</td>
<td>.012016373680</td>
<td>.000</td>
<td>-.091981198577</td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>-.051643968728</td>
<td>.011678427086</td>
<td>.000</td>
<td>-.082513841896</td>
</tr>
</tbody>
</table>

Bonferroni
<table>
<thead>
<tr>
<th>(I) Condition</th>
<th>(J) Condition</th>
<th>95% Confidence Interval</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO</td>
<td>CO</td>
<td>0.022622558743</td>
<td>0.011603465777</td>
</tr>
<tr>
<td>WE-T</td>
<td>-.037595464135</td>
<td>0.011932776224</td>
<td>0.008049167353484</td>
</tr>
<tr>
<td>WE-V</td>
<td>-.029021409985</td>
<td>0.011592392817</td>
<td>0.008049167353484</td>
</tr>
<tr>
<td>WE-T</td>
<td>CO</td>
<td>0.060218022878</td>
<td>0.012016373680</td>
</tr>
<tr>
<td>WE-V</td>
<td>CO</td>
<td>0.051643968728</td>
<td>0.011678427086</td>
</tr>
<tr>
<td>WE-V</td>
<td>CO</td>
<td>0.029021409985</td>
<td>0.011592392817</td>
</tr>
<tr>
<td>WE-V</td>
<td>-.008574054149</td>
<td>0.012005681555</td>
<td>0.008049167353484</td>
</tr>
<tr>
<td>WE-V</td>
<td>CO</td>
<td>0.053294284839669</td>
<td>0.011678427086</td>
</tr>
<tr>
<td>WE-V</td>
<td>CO</td>
<td>0.029021409985</td>
<td>0.011592392817</td>
</tr>
<tr>
<td>WE-V</td>
<td>-.008574054149</td>
<td>0.012005681555</td>
<td>0.006053263644384</td>
</tr>
</tbody>
</table>

Based on observed means.

The error term is Mean Square(Error) = .018.
* The mean difference is significant at the .05 level.

UNIANOVA AveHint BY Condition
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES(OVERALL)
/EMMEANS=TABLES(Condition) COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ HOMOGENEITY DESCRIPTIVE PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=Condition.

Univariate Analysis of Variance

<table>
<thead>
<tr>
<th>Notes</th>
<th>04-MAY-2017 22:42:15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Created</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td>Active Dataset</td>
</tr>
<tr>
<td></td>
<td>Filter</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
</tr>
<tr>
<td></td>
<td>Split File</td>
</tr>
<tr>
<td>Missing Value Handling</td>
<td>N of Rows in Working Data File</td>
</tr>
<tr>
<td></td>
<td>Definition of Missing</td>
</tr>
<tr>
<td></td>
<td>Cases Used</td>
</tr>
</tbody>
</table>
Syntax
UNIANOVA AveHint BY Condition
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES(OVERALL)
/EMMEANS=TABLES(Condition)
COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ HOMOGENEITY DESCRIPTIVE PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=Condition.

Resources
Processor Time 00:00:00.09
Elapsed Time 00:00:00.10

Between-Subjects Factors

<table>
<thead>
<tr>
<th>Condition</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>277</td>
</tr>
<tr>
<td>HO</td>
<td>284</td>
</tr>
<tr>
<td>WE-T</td>
<td>249</td>
</tr>
<tr>
<td>WE-V</td>
<td>280</td>
</tr>
</tbody>
</table>

Descriptive Statistics
Dependent Variable: AveHint

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>.169997631820</td>
<td>.2041605895183</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>969</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>.384238951548</td>
<td>.4948404797490</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>398</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>.072959486852</td>
<td>.1124603823502</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>554</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td>.056757954727</td>
<td>.0950881972224</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>416</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.174561785141</td>
<td>.3111172177931</td>
<td>1090</td>
</tr>
<tr>
<td></td>
<td>390</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>
Levene’s Test of Equality of Error Variances

Levene’s Test of Equality of Error Variances

Dependent Variable: AveHint

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>254.387</td>
<td>3</td>
<td>1086</td>
<td>.000</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. *a*

a. Design: Intercept + Condition

Tests of Between-Subjects Effects

Tests of Between-Subjects Effects

Dependent Variable: AveHint

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>18.948*</td>
<td>3</td>
<td>6.316</td>
<td>79.332</td>
<td>.000</td>
<td>.180</td>
</tr>
<tr>
<td>Intercept</td>
<td>31.782</td>
<td>1</td>
<td>31.782</td>
<td>399.204</td>
<td>.000</td>
<td>.269</td>
</tr>
<tr>
<td>Condition</td>
<td>18.948</td>
<td>3</td>
<td>6.316</td>
<td>79.332</td>
<td>.000</td>
<td>.180</td>
</tr>
<tr>
<td>Error</td>
<td>86.461</td>
<td>1086</td>
<td>.080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>138.623</td>
<td>1090</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>105.409</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tests of Between-Subjects Effects

Tests of Between-Subjects Effects

Dependent Variable: AveHint

<table>
<thead>
<tr>
<th>Source</th>
<th>Noncent. Parameter</th>
<th>Observed Power*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>237.997</td>
<td>1.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>399.204</td>
<td>1.000</td>
</tr>
<tr>
<td>Condition</td>
<td>237.997</td>
<td>1.000</td>
</tr>
<tr>
<td>Error</td>
<td>237.997</td>
<td>1.000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R Squared = .180 (Adjusted R Squared = .177)

b. Computed using alpha = .05
Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B</th>
<th>Std. Error</th>
<th>t</th>
<th>Sig.</th>
<th>Noncent. Parameter</th>
<th>Observed Power^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>.057</td>
<td>.017</td>
<td>3.366</td>
<td>.001</td>
<td>3.366</td>
<td>.920</td>
</tr>
<tr>
<td>[Condition=CO]</td>
<td>.113</td>
<td>.024</td>
<td>4.736</td>
<td>.000</td>
<td>4.736</td>
<td>.997</td>
</tr>
<tr>
<td>[Condition=HO]</td>
<td>.327</td>
<td>.024</td>
<td>13.781</td>
<td>.000</td>
<td>13.781</td>
<td>1.000</td>
</tr>
<tr>
<td>[Condition=WE-T]</td>
<td>.016</td>
<td>.025</td>
<td>.659</td>
<td>.510</td>
<td>.659</td>
<td>.101</td>
</tr>
<tr>
<td>[Condition=WE-V]</td>
<td>0^a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. This parameter is set to zero because it is redundant.
b. Computed using alpha = .05

Estimated Marginal Means

1. Grand Mean

<table>
<thead>
<tr>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>.171</td>
<td>.009</td>
<td>.154</td>
</tr>
</tbody>
</table>

2. Condition
Estimates

Dependent Variable: AveHint

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>.170</td>
<td>.017</td>
<td>.137</td>
<td>.203</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>.384</td>
<td>.017</td>
<td>.351</td>
<td>.417</td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>.073</td>
<td>.018</td>
<td>.038</td>
<td>.108</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td>.057</td>
<td>.017</td>
<td>.024</td>
<td>.090</td>
<td></td>
</tr>
</tbody>
</table>

Pairwise Comparisons

Dependent Variable: AveHint

<table>
<thead>
<tr>
<th>(I) Condition</th>
<th>(J) Condition</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig. (^b)</th>
<th>95% Confidence Interval for Difference (^b)</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>HO</td>
<td>-.214(^\ast)</td>
<td>.024</td>
<td>.000</td>
<td>-.277</td>
<td>-.151</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.097(^\ast)</td>
<td>.025</td>
<td>.001</td>
<td>.032</td>
<td>.162</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.113(^\ast)</td>
<td>.024</td>
<td>.000</td>
<td>.050</td>
<td>.176</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>CO</td>
<td>.214(^\ast)</td>
<td>.024</td>
<td>.000</td>
<td>.151</td>
<td>.277</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.311(^\ast)</td>
<td>.024</td>
<td>.000</td>
<td>.247</td>
<td>.376</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.327(^\ast)</td>
<td>.024</td>
<td>.000</td>
<td>.265</td>
<td>.390</td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>CO</td>
<td>-.097(^\ast)</td>
<td>.025</td>
<td>.001</td>
<td>-.162</td>
<td>-.032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HO</td>
<td>-.311(^\ast)</td>
<td>.024</td>
<td>.000</td>
<td>-.376</td>
<td>-.247</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.016</td>
<td>.025</td>
<td>1.000</td>
<td>-.049</td>
<td>.081</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td>CO</td>
<td>-.113(^\ast)</td>
<td>.024</td>
<td>.000</td>
<td>-.176</td>
<td>-.050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HO</td>
<td>-.327(^\ast)</td>
<td>.024</td>
<td>.000</td>
<td>-.390</td>
<td>-.265</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>-.016</td>
<td>.025</td>
<td>1.000</td>
<td>-.081</td>
<td>.049</td>
<td></td>
</tr>
</tbody>
</table>

Based on estimated marginal means

* The mean difference is significant at the .05 level.

b. Adjustment for multiple comparisons: Bonferroni.
Univariate Tests

Dependent Variable: AveHint

<table>
<thead>
<tr>
<th></th>
<th>Noncent. Parameter</th>
<th>Observed Powera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>237.997</td>
<td>1.000</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The F tests the effect of Condition. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a. Computed using alpha = .05

Post Hoc Tests

Condition

Multiple Comparisons

<table>
<thead>
<tr>
<th>(I) Condition</th>
<th>(J) Condition</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>Lower Bound</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>HO</td>
<td>-.214241319727</td>
<td>.023827408366</td>
<td>.000</td>
<td>-.277219547741</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.097038144968</td>
<td>.024640399562</td>
<td>.01</td>
<td>.031911099753</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.113239677093</td>
<td>.023911296754</td>
<td>.000</td>
<td>.050039723664</td>
<td>078</td>
</tr>
<tr>
<td>(I) Condition</td>
<td>(J) Condition</td>
<td>95% Confidence Interval</td>
<td>Upper Bound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>HO</td>
<td>(-.113239677093)</td>
<td>(-.277219547741)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>(.023911296754)</td>
<td>(.2330093585)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>(.023762700717)</td>
<td>(.2330093585)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>CO</td>
<td>(-.311279464695)</td>
<td>(-.5273339674)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>(.024496226720)</td>
<td>(.2390032162)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>(.023762700717)</td>
<td>(.2330093585)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>CO</td>
<td>(.327480996820)</td>
<td>(.5436853559)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HO</td>
<td>(.311279464695)</td>
<td>(.5273339674)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>(.023762700717)</td>
<td>(.2330093585)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on observed means.

The error term is Mean Square(Error) = .080.
The mean difference is significant at the .05 level.

UNIANOVA AveBoHint BY Condition
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES(OVERALL)
/EMMEANS=TABLES(Condition) COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ HOMOGENEITY DESCRIPTIVE PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=Condition.

Univariate Analysis of Variance

<table>
<thead>
<tr>
<th>Output Created</th>
<th>Comments</th>
<th>04-MAY-2017 22:42:15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Dataset</td>
<td></td>
<td>DataSet4</td>
</tr>
<tr>
<td>Filter</td>
<td></td>
<td><none></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td><none></td>
</tr>
<tr>
<td>Split File</td>
<td></td>
<td><none></td>
</tr>
<tr>
<td>N of Rows in Working Data File</td>
<td>1093</td>
<td></td>
</tr>
<tr>
<td>Missing Value Handling</td>
<td>Definition of Missing</td>
<td>User-defined missing values are treated as missing.</td>
</tr>
<tr>
<td></td>
<td>Cases Used</td>
<td>Statistics are based on all cases with valid data for all variables in the model.</td>
</tr>
</tbody>
</table>
UNIANOVA AveBoHint BY Condition
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES(OVERALL)
/EMMEANS=TABLES(Condition)
COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ
HOMOGENEITY DESCRIPTIVE
PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=Condition.

Between-Subjects Factors

<table>
<thead>
<tr>
<th>Condition</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>277</td>
</tr>
<tr>
<td>HO</td>
<td>284</td>
</tr>
<tr>
<td>WE-T</td>
<td>249</td>
</tr>
<tr>
<td>WE-V</td>
<td>280</td>
</tr>
</tbody>
</table>

Descriptive Statistics

Dependent Variable: AveBoHint

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>.169997631820</td>
<td>.2041605895183</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>.969</td>
<td>.20</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>.111698167567</td>
<td>.1768990646310</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>.001</td>
<td>.54</td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>.072959486852</td>
<td>.1124603823502</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>.554</td>
<td>.61</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td>.056757954727</td>
<td>.0950881972224</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>.416</td>
<td>.87</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.103551158856</td>
<td>.1606553813420</td>
<td>1090</td>
</tr>
<tr>
<td></td>
<td>.329</td>
<td>.27</td>
<td></td>
</tr>
</tbody>
</table>
Levene's Test of Equality of Error Variances

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df1</th>
<th>df2</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>2.088a</td>
<td>3</td>
<td>1086</td>
<td>.696</td>
<td>29.049</td>
<td>.000</td>
<td>.074</td>
</tr>
<tr>
<td>Intercept</td>
<td>11.500</td>
<td>1</td>
<td>1</td>
<td>11.500</td>
<td>479.977</td>
<td>.000</td>
<td>.307</td>
</tr>
<tr>
<td>Condition</td>
<td>2.088</td>
<td>3</td>
<td>1</td>
<td>.696</td>
<td>29.049</td>
<td>.000</td>
<td>.074</td>
</tr>
<tr>
<td>Error</td>
<td>26.019</td>
<td>1086</td>
<td></td>
<td>.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39.795</td>
<td>1090</td>
<td></td>
<td>.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>28.107</td>
<td>1089</td>
<td></td>
<td>.024</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.a

a. Design: Intercept + Condition

Tests of Between-Subjects Effects

<table>
<thead>
<tr>
<th>Source</th>
<th>Noncent. Parameter</th>
<th>Observed Powerb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>87.148</td>
<td>1.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>479.977</td>
<td>1.000</td>
</tr>
<tr>
<td>Condition</td>
<td>87.148</td>
<td>1.000</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R Squared = .074 (Adjusted R Squared = .072)

b. Computed using alpha = .05

Parameter Estimates
Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>B</th>
<th>Std. Error</th>
<th>t</th>
<th>Sig.</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>.057</td>
<td>.009</td>
<td>6.136</td>
<td>.000</td>
<td>.039</td>
<td>.075</td>
</tr>
<tr>
<td>[Condition=CO]</td>
<td>.113</td>
<td>.013</td>
<td>8.633</td>
<td>.000</td>
<td>.088</td>
<td>.139</td>
</tr>
<tr>
<td>[Condition=HO]</td>
<td>.055</td>
<td>.013</td>
<td>4.215</td>
<td>.000</td>
<td>.029</td>
<td>.081</td>
</tr>
<tr>
<td>[Condition=WE-V]</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter is set to zero because it is redundant.

a. Computed using alpha = .05

Estimated Marginal Means

1. Grand Mean

<table>
<thead>
<tr>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>.103</td>
<td>.005</td>
<td>.094 - .112</td>
</tr>
</tbody>
</table>

2. Condition
Estimates

Dependent Variable: AveBoHint

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>.170</td>
<td>.009</td>
<td>.152</td>
<td>.188</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>.112</td>
<td>.009</td>
<td>.094</td>
<td>.130</td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>.073</td>
<td>.010</td>
<td>.054</td>
<td>.092</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td>.057</td>
<td>.009</td>
<td>.039</td>
<td>.075</td>
<td></td>
</tr>
</tbody>
</table>

Pairwise Comparisons

Dependent Variable: AveBoHint

<table>
<thead>
<tr>
<th>(I) Condition</th>
<th>(J) Condition</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval for Difference</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>HO</td>
<td>.058 *</td>
<td>.013</td>
<td>.000</td>
<td>.024</td>
<td>.093</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.097 *</td>
<td>.014</td>
<td>.000</td>
<td>.061</td>
<td>.133</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.113 *</td>
<td>.013</td>
<td>.000</td>
<td>.079</td>
<td>.148</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>CO</td>
<td>-.058 *</td>
<td>.013</td>
<td>.000</td>
<td>-.093</td>
<td>-.024</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.039 *</td>
<td>.013</td>
<td>.024</td>
<td>.003</td>
<td>.074</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.055 *</td>
<td>.013</td>
<td>.000</td>
<td>.020</td>
<td>.089</td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>CO</td>
<td>-.097 *</td>
<td>.014</td>
<td>.000</td>
<td>-.133</td>
<td>-.061</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td></td>
<td>-.039 *</td>
<td>.013</td>
<td>.024</td>
<td>-.074</td>
<td>-.003</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td></td>
<td>.016</td>
<td>.013</td>
<td>1.000</td>
<td>-.019</td>
<td>.052</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td>CO</td>
<td>-.113 *</td>
<td>.013</td>
<td>.000</td>
<td>-.148</td>
<td>-.079</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HO</td>
<td>-.055 *</td>
<td>.013</td>
<td>.000</td>
<td>-.089</td>
<td>-.020</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>-.016</td>
<td>.013</td>
<td>1.000</td>
<td>-.052</td>
<td>.019</td>
<td></td>
</tr>
</tbody>
</table>

Based on estimated marginal means

* The mean difference is significant at the .05 level.

b. Adjustment for multiple comparisons: Bonferroni.

Univariate Tests

Dependent Variable: AveBoHint
Univariate Tests

Dependent Variable: AveBoHint

<table>
<thead>
<tr>
<th>Contrast</th>
<th>Noncent. Parameter</th>
<th>Observed Powera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>87.148</td>
<td>1.000</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The F tests the effect of Condition. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a. Computed using alpha = .05

Post Hoc Tests

Condition

Multiple Comparisons

Dependent Variable: AveBoHint

Bonferroni

<table>
<thead>
<tr>
<th>(I) Condition</th>
<th>(J) Condition</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>HO</td>
<td>.058299464253</td>
<td>.013071193462</td>
<td>.000</td>
<td>.023750990090</td>
</tr>
<tr>
<td></td>
<td></td>
<td>967.967</td>
<td>733</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td></td>
<td>.097038144968</td>
<td>.013517182596</td>
<td>.000</td>
<td>.061310876833</td>
</tr>
<tr>
<td></td>
<td></td>
<td>415.415</td>
<td>451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td></td>
<td>.113239677093</td>
<td>.013117212791</td>
<td>.000</td>
<td>.078569569231</td>
</tr>
<tr>
<td></td>
<td></td>
<td>553.553</td>
<td>892</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiple Comparisons

Dependent Variable: AveBoHint
Bonferroni

<table>
<thead>
<tr>
<th>(I) Condition</th>
<th>(J) Condition</th>
<th>95% Confidence Interval</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>HO</td>
<td>.092847938417</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.132765413103</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.14790784955148</td>
<td>0.00</td>
</tr>
<tr>
<td>HO</td>
<td>CO</td>
<td>-.023750990090856</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.07425690590607</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.089394864355705</td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>CO</td>
<td>-.061310876833107</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HO</td>
<td>-.003220455528288</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.051838081235710</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td>CO</td>
<td>-.078569569231958</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HO</td>
<td>-.020485561323466</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.019435016985434</td>
<td></td>
</tr>
</tbody>
</table>

Based on observed means.
The error term is Mean Square(Error) = .024.
The mean difference is significant at the .05 level.

UNIANOVA AveAttempt BY Condition
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES(OVERALL)
/EMMEANS=TABLES(Condition) COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ HOMOGENEITY DESCRIPTIVE PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=Condition.

Univariate Analysis of Variance

<table>
<thead>
<tr>
<th>Notes</th>
<th>04-MAY-2017 22:42:15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Created</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>Active Dataset</td>
<td>DataSet4</td>
</tr>
<tr>
<td>Filter</td>
<td><none></td>
</tr>
<tr>
<td>Weight</td>
<td><none></td>
</tr>
<tr>
<td>Split File</td>
<td><none></td>
</tr>
<tr>
<td>N of Rows in Working Data File</td>
<td>1093</td>
</tr>
<tr>
<td>Missing Value Handling</td>
<td></td>
</tr>
<tr>
<td>Definition of Missing</td>
<td>User-defined missing values are treated as missing.</td>
</tr>
<tr>
<td>Cases Used</td>
<td>Statistics are based on all cases with valid data for all variables in the model.</td>
</tr>
</tbody>
</table>
Syntax

```
UNIANOVA AveAttempt BY Condition
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES(OVERALL)
/EMMEANS=TABLES(Condition)
COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ
HOMOGENEITY DESCRIPTIVE
PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=Condition.
```

Resources

<table>
<thead>
<tr>
<th>Resources</th>
<th>Processor Time</th>
<th>Elapsed Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00:00:00.08</td>
<td>00:00:00.10</td>
</tr>
</tbody>
</table>

Between-Subjects Factors

<table>
<thead>
<tr>
<th>Condition</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>277</td>
</tr>
<tr>
<td>HO</td>
<td>284</td>
</tr>
<tr>
<td>WE-T</td>
<td>249</td>
</tr>
<tr>
<td>WE-V</td>
<td>280</td>
</tr>
</tbody>
</table>

Descriptive Statistics

Dependent Variable: AveAttempt

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>1.75022844192</td>
<td>.8501767423729</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>2997</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>2.08916009195</td>
<td>1.887675158612</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>4793</td>
<td>797</td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>1.27425532391</td>
<td>.5343923178828</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>7292</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td>1.18035639539</td>
<td>.4217341610437</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>8137</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.58341661549</td>
<td>1.164990279244</td>
<td>1090</td>
</tr>
<tr>
<td></td>
<td>9739</td>
<td>547</td>
<td></td>
</tr>
</tbody>
</table>
Levene's Test of Equality of Error Variances

Dependent Variable: AveAttempt

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>correct</td>
<td>30.478</td>
<td>3</td>
<td>1086</td>
<td>.000</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. a

a. Design: Intercept + Condition

Tests of Between-Subjects Effects

Dependent Variable: AveAttempt

<table>
<thead>
<tr>
<th>Source</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>149.636 a</td>
<td>3</td>
<td>49.879</td>
<td>40.778</td>
<td>.000</td>
<td>.101</td>
</tr>
<tr>
<td>Intercept</td>
<td>2691.431</td>
<td>1</td>
<td>2691.431</td>
<td>2200.382</td>
<td>.000</td>
<td>.670</td>
</tr>
<tr>
<td>Condition</td>
<td>149.636</td>
<td>3</td>
<td>49.879</td>
<td>40.778</td>
<td>.000</td>
<td>.101</td>
</tr>
<tr>
<td>Error</td>
<td>1328.357</td>
<td>1086</td>
<td>1.223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4210.850</td>
<td>1090</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>1477.993</td>
<td>1089</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tests of Between-Subjects Effects

Dependent Variable: AveAttempt

<table>
<thead>
<tr>
<th>Source</th>
<th>Noncent. Parameter</th>
<th>Observed Power b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>122.335</td>
<td>1.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>2200.382</td>
<td>1.000</td>
</tr>
<tr>
<td>Condition</td>
<td>122.335</td>
<td>1.000</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R Squared = .101 (Adjusted R Squared = .099)
b. Computed using alpha = .05

Parameter Estimates
Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Partial Eta Squared</th>
<th>Noncent. Parameter</th>
<th>Observed Power^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>.227</td>
<td>17.859</td>
<td>1.000</td>
</tr>
<tr>
<td>[Condition=CO]</td>
<td>.033</td>
<td>6.080</td>
<td>1.000</td>
</tr>
<tr>
<td>[Condition=HO]</td>
<td>.081</td>
<td>9.757</td>
<td>1.000</td>
</tr>
<tr>
<td>[Condition=WE-T]</td>
<td>.001</td>
<td>.975</td>
<td>.164</td>
</tr>
<tr>
<td>[Condition=WE-V]</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

a. This parameter is set to zero because it is redundant.

b. Computed using alpha = .05

Estimated Marginal Means

1. **Grand Mean**

Dependent Variable: AveAttempt

<table>
<thead>
<tr>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.574</td>
<td>.034</td>
<td>1.508 - 1.639</td>
</tr>
</tbody>
</table>

2. **Condition**
Estimates

Dependent Variable: AveAttempt

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>1.750</td>
<td>.066</td>
<td>1.620</td>
<td>1.881</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>2.089</td>
<td>.066</td>
<td>1.960</td>
<td>2.218</td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>1.274</td>
<td>.066</td>
<td>1.137</td>
<td>1.412</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td>1.180</td>
<td>.066</td>
<td>1.051</td>
<td>1.310</td>
<td></td>
</tr>
</tbody>
</table>

Pairwise Comparisons

Dependent Variable: AveAttempt

<table>
<thead>
<tr>
<th>(I) Condition</th>
<th>(J) Condition</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig. b</th>
<th>95% Confidence Interval for Difference b</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>HO</td>
<td>-.339</td>
<td>.093</td>
<td>.002</td>
<td>-.586</td>
<td>-.092</td>
<td>.586</td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.476</td>
<td>.097</td>
<td>.000</td>
<td>.221</td>
<td>.731</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.570</td>
<td>.094</td>
<td>.000</td>
<td>.322</td>
<td>.818</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>CO</td>
<td>.339</td>
<td>.093</td>
<td>.002</td>
<td>.092</td>
<td>.586</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.815</td>
<td>.096</td>
<td>.000</td>
<td>.561</td>
<td>1.069</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.909</td>
<td>.093</td>
<td>.000</td>
<td>.663</td>
<td>1.155</td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>CO</td>
<td>-.476</td>
<td>.097</td>
<td>.000</td>
<td>-.731</td>
<td>-.221</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td></td>
<td>-.815</td>
<td>.096</td>
<td>.000</td>
<td>-1.069</td>
<td>-.561</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>.094</td>
<td>.096</td>
<td>1.000</td>
<td>-.161</td>
<td>.349</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td>CO</td>
<td>-.570</td>
<td>.094</td>
<td>.000</td>
<td>-.818</td>
<td>-.322</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td></td>
<td>-.909</td>
<td>.093</td>
<td>.000</td>
<td>-1.155</td>
<td>-.663</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>-.094</td>
<td>.096</td>
<td>1.000</td>
<td>-.349</td>
<td>.161</td>
<td></td>
</tr>
</tbody>
</table>

Based on estimated marginal means

* The mean difference is significant at the .05 level.

b. Adjustment for multiple comparisons: Bonferroni.

Univariate Tests

Dependent Variable: AveAttempt
Univariate Tests

Dependent Variable: AveAttempt

<table>
<thead>
<tr>
<th></th>
<th>Noncent. Parameter</th>
<th>Observed Powera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>122.335</td>
<td>1.000</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The F tests the effect of Condition. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

a. Computed using alpha = .05

Post Hoc Tests

Condition

Multiple Comparisons

Dependent Variable: AveAttempt

<table>
<thead>
<tr>
<th>(I) Condition</th>
<th>(J) Condition</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
<th>Lower Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>HO</td>
<td>-.338931650031</td>
<td>.093395276935</td>
<td>.002</td>
<td>-.585784725948</td>
<td>424</td>
<td>424</td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>.475973118005</td>
<td>.096581923876</td>
<td>.000</td>
<td>.220697414897</td>
<td>650</td>
<td>650</td>
</tr>
<tr>
<td>WE-V</td>
<td></td>
<td>.569872046524</td>
<td>.093724090674</td>
<td>.000</td>
<td>.322149882947</td>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>
Multiple Comparisons

Dependent Variable: AveAttempt

Bonferroni

<table>
<thead>
<tr>
<th>(I) Condition</th>
<th>(J) Condition</th>
<th>95% Confidence Interval</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>HO</td>
<td>-0.092078574115169</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>0.73124882113760</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>0.817594210102609</td>
<td></td>
</tr>
<tr>
<td>HO</td>
<td>CO</td>
<td>-0.817594210102609</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>1.068686833691345</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>1.154986398178564</td>
<td></td>
</tr>
<tr>
<td>WE-T</td>
<td>CO</td>
<td>-0.220697414897650</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HO</td>
<td>-0.561122702383657</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-V</td>
<td>0.348526433093332</td>
<td></td>
</tr>
<tr>
<td>WE-V</td>
<td>CO</td>
<td>-0.322149882947111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HO</td>
<td>-0.66262094934749</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WE-T</td>
<td>0.160728576055023</td>
<td></td>
</tr>
</tbody>
</table>

Based on observed means.

The error term is Mean Square(Error) = 1.223.
* The mean difference is significant at the .05 level.