2014

Attractive Recycling Recycling of Rare Earth Metals

Ying Lu
Worcester Polytechnic Institute

Lacqueline O'Connor
Worcester Polytechnic Institute

Antonios Aimilios Tachiaos
Worcester Polytechnic Institute

Taylor York
Worcester Polytechnic Institute

Follow this and additional works at: http://digitalcommons.wpi.edu/gps-posters

Part of the Architecture Commons, Arts and Humanities Commons, Business Commons,
Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health
Sciences Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
Lu, Ying; O'Connor, Lacqueline; Tachiaos, Antonios Aimilios; and York, Taylor, "Attractive Recycling Recycling of Rare Earth Metals" (2014). Great Problems Seminar Posters (All Posters, All Years). 225.
http://digitalcommons.wpi.edu/gps-posters/225

This Text is brought to you for free and open access by the Great Problems Seminar at DigitalCommons@WPI. It has been accepted for inclusion in Great Problems Seminar Posters (All Posters, All Years) by an authorized administrator of DigitalCommons@WPI. For more information, please contact akgold@wpi.edu.
Abstract

Rare earth magnets (REM) are powerful magnets that are commonly used in household appliances, wind turbines, and other technological processes. A growing shortage of the elements needed in order to make REMs as well as trade disputes between the countries exporting the materials cause fluctuating costs for both manufacturers and consumers. The goal of this project was to investigate ways to increase REM recycling rates in end of life (EOL) products and devise a plan to establish this practice in the United States since there are currently no systems in place. Through research of recycling practices in Europe and Asia, along with research of different magnetic separation processes, we have developed a plan to address this problem. We recommend that the recycling of REMs be integrated into already existing recycling processes with the addition of magnetic resonance damping to separate the magnetic materials from the basic ferrous scrap.\(^2,3,5,6\)

Goals/Objectives

- Investigate existing rare earth magnet recycling processes
- Investigate different ways to separate magnetic materials
- Devise a plan to potentially institute rare earth magnet recycling in the U.S.

Methods

- Researched where rare earth elements are mined and how they are distributed
- Identified countries with REM recycling programs
- Analyzed existing plans for REM recycling in other countries, especially the Oeko-Institut’s plan for Europe
- Determined the unique characteristics of REMs compared to other magnetic/ferrous material and compared different ways to separate magnetic material

Results & Recommendations

- Numerous countries have begun looking into REM recycling, but **only a few countries** (notably Germany, Japan, and China) **actually have systems in place**
- **Magnetic resonance damping** is the best option for separating magnetic materials
- This method uses the **least amount of energy** and causes no **damage** to the REMs or the ferrous material
- Based on a proposal that the Oeko-Institut formed for Europe, we formed a plan to potentially institute REM recycling in the United States (see flow chart)
- A REM recycling system will reduce reliance on exportation and thus reduce trade limitations and cost
- Recycling REMs will create a **no-waste, closed-loop cycle**

Acknowledgements

We would like to thank our project advisor Dhammika Bandara for his assistance with our project, as well as our professors Professor Nikitina and Professor Apelian.

Selected Bibliography