Uplifting Paraguay: 5 Tons at a Time

Jaclyn Bouvier (Chemical Engineering), Connor Flanagan (Civil Engineering), Samuel Flibbert (Chemical Engineering), Nicholas Potvin (Electrical Engineering), Scott Olson (Computer Science)

Advisor: Professor Svetlana Nikitina (Humanities and Arts)

Abstract
In the low-income communities of Paraguay, the well systems are not properly designed and many of the water pumps are breaking. The problem comes with removing the water pumps from one hundred and eighty meter deep wells. The current system of removal is highly inefficient, as well as expensive for the community as a whole. As we assessed the problem we took into consideration the conditions that we would be working with, including the elementary educations of the people of Paraguay. It became clear that an important goal of this project would be to allow the people of Paraguay to become more self-sufficient and less dependent on outside help. We worked closely with Paula Burt of the AVINA Foundation at developing the most useful and efficient system of well pump removal. We decided upon a crane system that will be independently standing and will have the ability to be transported on a trailer pulled by a pickup truck. Overall, we are confident that our design will help improve the quality of life for the people of Paraguay.

Project Goals
Create a way to extract pumps from community wells that is:

- Cost-effective
- Energy-efficient
- Convenient
- Composed of available materials

Background

Problem
- Communities in Latin America depend on deep wells as their main source of water
- Removing pumps that need to be repaired or replaced is problematic for communities

Current Solution
- Rope with hook (many for emergencies)
- Hydraulic, crane-mounted trucks
 - Cost $50,000
 - Only 25 trucks for almost 3,000 wells
 - Not energy efficient

Results

<table>
<thead>
<tr>
<th></th>
<th>Truck with Crane</th>
<th>Rope with Hook</th>
<th>Our design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$50,000</td>
<td>$43,044</td>
<td>$7,600</td>
</tr>
<tr>
<td>Efficiency (time)</td>
<td>Time consuming</td>
<td>Time consuming</td>
<td>Reduced time</td>
</tr>
<tr>
<td>Environmental Friendliness</td>
<td>No, truck emits pollutants</td>
<td>Yes, only uses power</td>
<td>Somewhat emits some pollutants</td>
</tr>
<tr>
<td>Reliability</td>
<td>Once present, very reliable</td>
<td>Not very reliable</td>
<td>Unknown</td>
</tr>
<tr>
<td>Safety</td>
<td>Low Risk of injury</td>
<td>High Risk of injury</td>
<td>Low Risk of injury</td>
</tr>
</tbody>
</table>

- 12ft by 6ft by 12ft crane designed in SolidWorks
- Crane can successfully lift five tons which equals the weight of water pumps
- Crane weights close to 7,000 pounds - must be transported on a trailer due to this
- Frame built out of Aluminum 10-60-H12 beams; pulleys, cable, and collection spool built out of steel
- Crane design costs $7,600 to build

Recommendations

Have Future WPI IQP or GPS Group:

- Run more comprehensive tests on our design
- Finalize design
- Create manual for design
- Look into more sustainable fuel sources for pump motor

Acknowledgements

Jaclyn Bouvier
Professor Svetlana Nikitina
Project Advisor
Christopher Tolban
 Mechanical Engineering Major
Paula Burt
AVINA Foundation

References

