
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2012

Resource Location Transparency in Clouds
Khanh-Nhan P. Nguyen
Worcester Polytechnic Institute

Latiff Zaaliembike Seruwagi
Worcester Polytechnic Institute

Linhai Zhu
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Nguyen, K. P., Seruwagi, L. Z., & Zhu, L. (2012). Resource Location Transparency in Clouds. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/432

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/432?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu


 

Project Number: MXC-0360 

Resource Location Transparency in Clouds 

A Major Qualifying Project Report: 

Submitted to the faculty of the 

WORCESTER POLYTECHNIC INSTITUTE 

in partial fulfillment of the requirements for the 

Degree of Bachelor of Science 

by: 

 

Latiff Seruwagi 

 

Linhai Zhu 

 

Khanh-Nhan Nguyen 

 

Date: April 25, 2012 

 

 

Professor Michael J. Ciaraldi, Major Advisor 

Sponsored by Oracle



 i 

 

Abstract 

 

Cloud systems have become a ubiquitous way of harnessing the power of large numbers 

of networked computers. One of the important functionalities of these systems is the ability to 

access a resource seamlessly regardless of where in the cloud it is stored. In this MQP, we 

provide a design that ensures transparency of a resource using a message-oriented cloud system. 

We then created a simple implementation of this design that demonstrates how information is 

transmitted over the cloud. 

 



 

ii 

 

Acknowledgements 

We would like to thank Oracle for sponsoring our project and giving us advice and 

professor Ciaraldi for advising us. 

Special thanks go to Mike Voorhis of the Computer Science department for setting up our 

virtual machine testbed and offering us his expertise. 

 



 

iii 

 

Table of Contents 

 

Abstract ............................................................................................................................................ i 

Acknowledgements ......................................................................................................................... ii 

Table of Contents ........................................................................................................................... iii 

Table of Figures .............................................................................................................................. v 

Executive Summary ........................................................................................................................ 1 

1. Introduction ............................................................................................................................. 4 

1.1. Directions From Oracle .................................................................................................... 4 

1.2. Usefulness of Transparent Clouds.................................................................................... 4 

1.3. Problem statement ............................................................................................................ 5 

1.4. Project Roadmap .............................................................................................................. 5 

1.5. Project members’ responsibilities .................................................................................... 6 

2. Background .............................................................................................................................. 7 

2.1. Distributed Systems.......................................................................................................... 7 

2.2. Resource Transparency .................................................................................................... 7 

2.3. CAP theorem .................................................................................................................... 8 

3. Existing Solutions .................................................................................................................. 10 

3.1. Oracle Coherence ........................................................................................................... 10 

3.2. Peer-to-peer (P2P) File Sharing ..................................................................................... 10 

3.2.1. About P2P ............................................................................................................... 10 

3.2.2. How BitTorrent works ............................................................................................ 11 

3.2.3. What we gathered from P2P ................................................................................... 11 

3.3. Messaging Systems ........................................................................................................ 12 

3.3.1. About messaging systems ....................................................................................... 12 

3.3.2. About Java Messaging Service (JMS) 1.1 .............................................................. 13 

3.3.3. OpenMQ ................................................................................................................. 13 

3.3.4. JMS 2.0 ................................................................................................................... 14 

3.3.5. AMQP ..................................................................................................................... 15 

3.3.6. RabbitMQ ............................................................................................................... 15 

3.3.7. Why we like RabbitMQ .......................................................................................... 15 

3.3.8. Structure of RabbitMQ ........................................................................................... 16 

3.3.9. Usefulness of Messaging Systems .......................................................................... 16 

4. Solution Requirements .......................................................................................................... 18 

4.1. General needs of the solution. ........................................................................................ 18 

5. Dynamic Domain Name System (DDNS) Solution .............................................................. 19 

6. Message-Oriented Middle-ware (MOM) Solution ................................................................ 21 

6.1. Why we chose Message-Oriented Middle-ware ............................................................ 21 



 

iv 

 

6.2. Test bed configuration and setup ................................................................................... 21 

6.3. Evaluation of OpenMQ .................................................................................................. 22 

6.4. Evaluation of RabbitMQ ................................................................................................ 22 

7. Solution Design ..................................................................................................................... 24 

7.1. Solution description........................................................................................................ 24 

7.1.1. Connection data flow .............................................................................................. 24 

7.2. Scenarios, features and limitations ................................................................................. 25 

7.2.1. Multiple clients support .......................................................................................... 25 

7.2.2. Client failures .......................................................................................................... 28 

7.2.3. VirtualServer/VirtualClient failures/redundancy .................................................... 28 

7.2.4. Redundancy on server side ..................................................................................... 30 

7.2.5. Redundancy in the brokers cloud ............................................................................ 31 

7.2.6. Transparency to change in resource location .......................................................... 32 

7.2.7. Multiple services ..................................................................................................... 32 

7.3. Summary: the benefits .................................................................................................... 32 

7.4. The limitations................................................................................................................ 33 

8. Implementation of Message-Oriented Middle-ware Solution ............................................... 34 

9. Testing Results ...................................................................................................................... 36 

10. Conclusions, Future Work, and Recommendations .............................................................. 40 

Works Cited .................................................................................................................................. 41 

 

 



 

v 

 

Table of Figures 

 

Figure 1: Simplified view of message queue architecture ............................................................ 13 

Figure 2: This figure demonstrates how the server and client interact with the cloud. The cloud 

stores the resource as a message on a queue. The server sends messages to the cloud and the user 

can get access to those messages by requesting them from the cloud. ......................................... 19 

Figure 3: This figure shows how the location listener, DNS server and middle-ware interact. ... 20 

Figure 4: Shows the relationships between the real client, virtual server, virtual client, cloud and 

real server. The real server and client send messages to each other through the cloud using the 

virtual server and virtual client ..................................................................................................... 24 

Figure 5: Sequence diagram showing the data flow for a single request-response from client.... 25 

Figure 6: Multiple-client support sequence diagram .................................................................... 27 

Figure 7: Sequence diagram for system with redundant virtual clients ........................................ 29 

Figure 8: Virtual client getting first connection request and choosing to connect to server1 ...... 30 

Figure 9: Shows virtual client getting second connection request and choosing to connect to 

server2 ........................................................................................................................................... 31 

Figure 10: Simple model of replicated broker cluster .................................................................. 31 

Figure 11: The interface of the MOM cloud solution ................................................................... 34 

Figure 12: Interaction between a client (browser), cloud, and server (HTTP server). ................. 35 

Figure 13: Connecting to Server using Links ............................................................................... 37 

Figure 14: This screen capture shows the response from the virtual client which it received from 

the Google web server .................................................................................................................. 37 

Figure 15: This capture shows the response that the virtual server received from the cloud ....... 38 

Figure 16: This screen capture shows the links browser rendering the page that it received from 

the virtual server ........................................................................................................................... 38 

Figure 17: This screen capture shows that our implementation supports multiple 

clients/connections and shows the virtual client receiving a request from a second instance Links

....................................................................................................................................................... 39 

Figure 18: This screen capture shows the vm4 network connection being shut down ................. 39 

Figure 19: This screen capture shows the vm4 network being restarted ...................................... 39 

 



 1 

Executive Summary 

Cloud systems have become a widely-used technology for distributed services. Their 

capabilities vary from remote file access and editing to performing complex calculations and 

simulations. The configuration of cloud services is often complex and a resource may be 

provided by multiple load-balanced servers.  Even with such complexity, cloud systems make 

resources seemingly transparent to the client. Because of the cloud’s often dynamic nature, it is 

important that a client is able to access a given service transparently, without relying on a static 

list of resource-providing remote servers. The goal of our project is to achieve resource location 

transparency. Specifically, we will provide a seamless way of maintaining access to a resource 

even when the location of a resource changes. 

We looked at several existing systems whose designs could be useful in solving the 

problem. These were Oracle Coherence, Peer-To-Peer systems in general and message-oriented 

middle-ware.  We also considered dynamic DNS as an initial solution.  Of these systems we 

eventually chose to use message-oriented middle-ware because it could more easily be used to 

implement a resource-transparent design. 

Peer-to-peer systems allow direct connections between hosts in a network. In a peer-to-

peer system every host in the network behaves as both a client and a server. This means that 

every host provides both a service and can use the services of other hosts.  The equality of all 

hosts in the network gives these systems their strength but makes them inappropriate for cloud 

systems which depend on a client-server relationship. Oracle Coherence uses a peer-to-peer 



 

2 

 

system of servers to create clusters that can service a client’s resource requests. However, it is 

built to provide file-related services. 

Our solution is designed to use message-oriented middle-ware (MOM) to send data 

between a client and server. The server provides resources that the client can access. In this sense 

the system consisting of the server and the message-oriented middle-ware behaves as a cloud to 

the client, which can transparently request from it whichever resource it requires. The message-

oriented middle-ware consists of a set of brokers configured in what is called high-availability 

cluster.  A high-availability cluster provides a way of ensuring redundancy in message storage in 

such a way that any broker in the cluster can replace any other in case of broker failure.  

We designed a solution consisting of a virtual client, a virtual server, and an MOM 

cluster. The virtual client maintains a direct connection to a resource. The virtual server 

maintains a direct connection to the client. Both of these programs maintain a connection to the 

MOM cluster and use it to send messages that might have otherwise been sent directly from the 

client to a server that provides the resource. This configuration provides transparency by creating 

a constant intermediary (the cluster) which can be connected to by the virtual server and the 

virtual client. The redundancy in the cluster provides reliable communication. The use of virtual 

servers and clients provides a general framework that can operate with whatever resource that is 

being used. 

We then created a simple implementation of this solution as a proof of concept. The 

implementation was programmed to handle web page requests. It was able to handle multiple 

client requests as well as network interface failures. This basic implementation can be built upon 

to provide for greater flexibility in terms of the resources handled by the virtual client as well as 



 

3 

 

the ability of the virtual client to handle more complicated resource configurations which may 

require balancing connections to different servers.  



 

4 

 

1. Introduction 

1.1. Directions From Oracle 

Oracle’s instruction: “Develop a solution that supports resource location transparency in 

non-static environments like Cloud - an example of this would be a database that is launched on 

a virtual machine on DHCP address - A solution needs to be developed that would support 

mobility of an entity in a dynamic environment such as virtualization in such a way that client 

processes can react to changes in their network location transparently.” 

1.2. Usefulness of Transparent Clouds 

The cloud is often marketed as a general solution to consolidate resources while reducing 

complexity.  With the “cloud” one need not be concerned with some of the specifics of resource 

location and management.  The cloud takes the management work away from the user while still 

providing robust access to resources. Like many other computing concepts, the cloud serves as a 

convenient abstraction that simplifies computer or resource usage. The benefit from this is 

modularization and specialization of tasks; and therefore greater efficiency among individual 

components. 

For example, in a file-based cloud the users need not know the exact location of the 

requested file.  Requesting from the cloud through what is usually an Application Programming 

Interface would reduce the software complexity as well as the amount of data tracking and 

synchronization.  With traditional file hosting, users would often have their own partitions or 

even servers, which both limits scalability and expansion and leads to unused space and 



 

5 

 

redundant infrastructure.   In contrast to traditional network file systems, clouds eliminate the 

need to remember and update a large list of network shares.  

However, the same cannot be said about resources themselves.  Although cloud systems 

are optimized for lots of moving resource consumers, the same cannot be said about servers 

holding the resources.  Not all cloud systems are designed to withstand the arbitrary loss or 

relocation of servers without interruption of transactions.  That is, although clouds are 

universally adept at linking an end user to the right resource, clouds are not nearly robust at 

handling servers that move or disconnect intentionally or unintentionally without the end user 

noticing. 

Transparency, in this case, is defined as the ability for the cloud to handle both network 

events on the user side as well as the server side seamlessly. 

1.3. Problem statement 

Design a general system where resources can automatically be routed to the right users. 

This system should be capable of handling network interruptions, reconnections, and relocation 

of resources without user maintenance. 

1.4. Project Roadmap 

We planned to gather general information about distributed systems in order to 

understand existing solutions and their handling of resource discovery and routing.  Armed with 

that information we would then create a solution that incorporates useful designs from existing 

solutions as well as our own fixes in order to fulfill the request by Oracle and the problem 

statement. 



 

6 

 

1.5. Project members’ responsibilities 

Linhai Zhu: RabbitMQ setup and evaluation, existing distributed systems research 

Latiff Seruwagi: setup of middle-ware, solution design, concept implementation 

Khanh Nhan Nguyen: sketch the solution design, evaluate and implement the concept 

All: Final report, solution design  



 

7 

 

2. Background 

2.1. Distributed Systems 

A distributed computing system is a network of autonomous computers used for a single 

purpose or goal. The use of these systems is necessitated by the performance limitations of a 

single machine.  And as large-scale computing rose in demand, decentralization became 

indispensable.  However, decentralization raises an entirely new set of issues that need to be 

tackled.  As clusters of computer increase in number and size, management becomes an issue. 

Manual control of each individual computer is both inefficient and impractical given the 

complexity of large systems.  Self-managing systems were created as a response, and are 

providing the prospect of computer clusters that can handle operations independently. 

2.2. Resource Transparency 

An important concept of modern computing is abstraction, where the complex details are 

hidden away leaving behind a clear and simple interface.  One example of this is the Flat 

Memory Model, where memory is offered to the programmer as a single array of bytes while 

hiding the complex paging and caching system.  Even more recently, a new generation of 

garbage-collection languages and environments seek to free the programmer from manual 

memory management and allow them to focus on algorithms. 

In this project, resource transparency is going to abstract away resource locations, 

especially in the case of relocation and reconnection.  This way, the end user or software would 

no longer have to be concerned with keeping track of and updating locations and backup 

locations of all the resources in what could potentially be an extremely large cloud. 



 

8 

 

2.3. CAP theorem 

The CAP theorem, created by Eric Brewer of the University of California at Berkeley, 

describes a limitation of distributed computing systems where a maximum of two out of three 

major desired qualities can exist at the same time.  These qualities are Consistency, Availability, 

and Partition tolerance, hence the acronym “CAP”. 

Consistency in a distributed environment means the consistency of data or state across 

autonomous machines within said environment.  This requires timely synchronization of data 

and states between the machines within the distributed environment. For example, in a large 

cluster of replicated databases, consistency means that any edit in one instance of the database 

would be quickly propagated across all machines.  The term “quickly” isn’t precisely defined, 

but we can assume that the system as a whole manages changes to the resources so that different 

users need not worry about out of date information or colliding updates. 

Availability here is not the constant availability of the resource (although that would be 

desirable as well), but rather the system’s ability to return feedback to any requests. Timely 

feedback is also part of availability since extraordinarily long timeouts are indistinguishable from 

lost messages and waiting indefinitely for a message while keeping a state for all of them is 

inefficient.  Timely responses, then, would be our interpretation of availability, and this is not 

just our opinion.  Time to live of messages or packet communications are common in distributed 

communications. 

Partition tolerance is perhaps the most important aspect of our solution. The term here 

means that a system would be able to tolerate network events and even partial failure without 



 

9 

 

catastrophic breakdown.  This is the most important quality of our solution, where the ability to 

reroute communications in the event of relocation or partial failure is part of Oracle’s explicit 

instruction.  (Sathupadi, 2011) (Seth Gilbert) 

Overall, our solution’s relationship with the CAP theorem will be one of tradeoffs.  

Partition tolerance will be a hard requirement as it is the core of our project while consistency 

and availability are swapped in different areas of the cloud.  Although this will not provide a 

perfect solution, (and according to CAP, it does not exist) we will try to compensate as much as 

possible through the solution design. 

  



 

10 

 

3. Existing Solutions 

3.1. Oracle Coherence 

Coherence is Oracle’s proprietary solution for high-availability file management and 

caching.  It is designed as a scalable peer-to-peer system that can tolerate and recover from 

failure as well as changes in the network.  This system can handle the addition and loss of peers 

and take care of data replication automatically. Some additional features include data backup, 

cluster analysis, data querying, and change notification. However, it only handles data and no 

other resources. (Oracle, 2011) In short: it is a file cloud with replication as well as high-

availability features.  Overall, Coherence reflects the solution to the problem proposed, albeit for 

files only. 

Although implementation details aren’t publicly available, it did give us an impression on 

some of Oracle’s offerings in the cloud area as well as what features are likely to be required.  It 

also provided precedence for enterprise cloud solutions that are based on peer-to-peer systems. 

3.2. Peer-to-peer (P2P) File Sharing 

3.2.1. About P2P 

One well-known type of distributed system is Peer-to-Peer (P2P) file sharing, more 

specifically, the BitTorrent protocol.  Although the protocol focuses heavily on P2P file 

transfers, the subject of interest is the method of which the distributed task is accomplished. We 

are interested in how a new computer joins the P2P network and how it handles continuous 

resource transfer in a network with high churn.   



 

11 

 

 

3.2.2. How BitTorrent works 

In a BitTorrent system, there are two major entities: peers and trackers. A peer is simply 

an end user that receives and sends parts of files to other peers. Since most file-sharers are users 

on home networks and generally shut down the file sharing application after downloading a file, 

there is high turnover.  A tracker does not partake in file exchange, and is generally hosted on 

dedicated servers.  Unlike peers, trackers keep track of what peers are currently within the peer-

to-peer network and are updated constantly for consistency. 

Before downloading, a peer must know which trackers are keeping track of the network 

holding the relevant files.  Where the peer gets the tracker address is something that can vary 

greatly and is not relevant here.  However, the tracker is almost always a server that exhibits high 

persistence and availability.  A user can use another tracker in case of tracker failure. A newly 

connected peer can start downloading from any of the active peers in the network. If a 

connection becomes unusable, the peer will simply connect to other computers without user 

intervention, giving the impression of a continuous transfer. A resource can also be relocated in 

this system easily. Upon relocation, its old address will be removed by the tracker once it no 

longer responds and its new address will be added to the list once it comes online again, ready to 

provide data. (Atkinson, 2011) 

3.2.3. What we gathered from P2P 

What makes this system so interesting to us is its ability to manage and distribute a 

resource across a large and extremely dynamic network.  The BitTorrent protocol solves the 



 

12 

 

issue of transient connections by having a single persistent and well-known server manage peer 

membership. And since the tracker can manage the network and resources, a peer only needs to 

be configured with tracker information to handle all future reconnections and relocations 

transparently.  The success of BitTorrent has proven that this multi-tiered system is fully capable 

of transparent resource location and we adopted this model. 

3.3. Messaging Systems 

3.3.1. About messaging systems 

Sometimes referred to as message-oriented middle-ware, messaging systems allow 

processes on different computers to pass messages to each other. Messages here can be either 

pre-defined data structures or opaque collections of bits.  Since they are usually separated from 

resource providers and maintainers, these systems can be part of a larger modular system. 

In the message systems we have encountered, there are two major levels - message 

producers/consumers, and message exchanges/brokers.  Producers and consumers are simply end 

nodes that communicate back and forth with messages. All messages must be sent through a 

broker that routes them through a queue.  For many message systems, the broker provides 

services such as backup, queuing, and subscriptions. (Korhonen) 



 

13 

 

 

Figure 1: Simplified view of message queue architecture 

3.3.2. About Java Messaging Service (JMS) 1.1 

Java Messaging Service (JMS) is a messaging system interface released by Oracle that 

was last updated in 2003. As opposed to a communications specification, JMS only provides a 

list of interfaces and the outcome of using them. Although behavior is defined by JMS, 

implementation is not. Programmers are free to implement JMS however they want as long as 

the interface is functional and adheres to specification. 

3.3.3. OpenMQ 

OpenMQ is Sun’s Java-based, open-source messaging software.  It implements JMS 1.1 

and was last updated around 2008. Although OpenMQ fully implements JMS, the JMS 

specification itself lacks certain features that we deem useful. Most of these features will be in 

JMS 2.0. (Oracle) 



 

14 

 

3.3.4. JMS 2.0 

JMS 2.0 is Oracle’s next proposed JMS specification, as of now it is still in draft after 

initial development, which stated around March 2011.  2.0 aims to update the JMS standard to 

match updated Java Enterprise Edition and to make it useful to the “cloud” as well as making 

various behaviors more standardized.   

A more complete list of potentially relevant features includes: 

 Improved Exception system with clearer descriptions of the errors that occurred. 

o We need this to deal with network interruptions/relocations/dropped messages. 

 Making shared subscriptions easier to use. 

o This is similar to the work queue pattern in RabbitMQ, and can be used to 

delegate messages to a pool of available servers. 

 Other useful features similar to those we saw in RabbitMQ, including. 

o Delivery delay - Specify a minimum timeout before sending the message. 

o Asynchronous ACK - Don’t block in order to wait for acknowledgement, 

resulting in speedier responses and less wasted time. 

o Mandate delivery count – We will know how many times a message has been 

delivered, which is useful for knowing about duplicates. 

o Topic hierarchy - Provides more flexibility than simpler pattern matching in the 

previous JMS. 

o Multiple consumers - This provides a built-in pattern to facilitate broadcasting 

behavior. 

o Batch delivery - messages sent in batches asynchronously. 



 

15 

 

Note that JMS 2.0 is still JMS, and therefore is more of a specification than a concrete 

implementation or even protocol.  It does not cover aspects such as load balancing, fault 

recovery, and storage and backup of messages. (Deakin, JMS Version 2.0 (Early Draft)) (Deakin, 

What's probably coming in Java Message Service 2.0) (Nigel Deakin) 

3.3.5. AMQP 

Advanced Message Queuing Protocol (AMQP) is a protocol that defines both the 

messaging interface as well as a concrete protocol that all implementations must follow.  Unlike 

JMS, it goes a step further by defining what kind of bit exchanges occur during the actual 

transaction with a “wire protocol”.  The advantage of this is a very high level of inter-

compatibility between messaging implementations. (OASIS) 

3.3.6. RabbitMQ 

RabbitMQ is a messaging system that follows the AMQP protocol.  It is written in Erlang 

and is an open source project sponsored by a collection of companies. 

3.3.7. Why we like RabbitMQ 

In the testbed, we are using RabbitMQ in place of other systems because we felt that it is 

well-documented and easy to use. Like any other message-oriented middle-ware, it can be used 

as an intermediate layer that can be used for resource discovery and requests, freeing the client 

from having to know where each individual resource is. 



 

16 

 

This way, RabbitMQ will act as a service that will package any resource request into the 

appropriate message, send it to the exchange so it can be forwarded to the appropriate resource 

holders, and see if any resource holders have the available resource. 

For large systems, RabbitMQ provide patterns such as Work Queues, High Availability 

Clusters, and reception confirmations for load balancing, transaction acknowledgement, and 

duplication of messages in case of failure on one machine. 

3.3.8. Structure of RabbitMQ 

The messaging model RabbitMQ uses provides Exchanges separate from the message 

Producers and Consumers.  These Exchanges are message hubs where all requests and responses 

are routed and filtered through. In our interpretation of resource transparency, a message is either 

a request for a resource or a response to a request.  Message topics can indicate the type for 

resources needed and the message payload can be used to contain additional data about the 

request.  All Exchanges do their job by filtering and routing messages to the right consumers 

based on Message Topics. Resource holders can opt for messages with topics that indicate 

requests for certain types of resources while ignoring ones that are not relevant. RabbitMQ 

Exchanges also offer high availability clustering for, delivery confirmation, and various built-in 

messaging patterns that give it the flexibility to adapt to various resource properties. (VMware, 

Inc) 

3.3.9. Usefulness of Messaging Systems 

Recommended by Oracle at the beginning of the project, we found that messaging 

systems can dynamic, flexible, and very reliable. It has existing robust implementations such as 



 

17 

 

RabbitMQ, and future versions of JMS 2.0 promise more messaging systems to come. Its 

characteristics, along with many advanced features, make it the best-suited platform for us to 

build our solution on.  



 

18 

 

4. Solution Requirements 

4.1. General needs of the solution. 

From Oracle’s request we derived three aspects of the problem that we should focus on. 

These are resource transparency, scalability, and availability. The core of these is resource 

transparency. We interpreted resource transparency as meaning the ability of the client to 

connect to a resource seamlessly regardless of any problems that occurred with resource 

delivery. At the most basic level it should be able to handle problems arising from a change of 

the network address of the resource-holding server. 

Additionally, the solution needed to be scalable to larger systems so that it can fit any 

purpose. Because we intended to design a general system that could function for whichever 

resources were being serviced, our system should not restrict itself in terms of scale.  Whichever 

system maintained a connection to the resource must be able to handle requests from several 

clients as well as information about several resources. This requirement implies that a solution 

designed for a specific type of resource should be avoided. 

And, lastly, the solution needs to be available enough so that it can actually implement 

resource transparency. The availability condition was crucial since all the solutions we 

considered used some sort of middle-ware. This middle-ware served as a constant server that 

could keep track of the underlying changes in the resource. Therefore if the middle-ware was 

unreliable, the transparency of the resource could not be ensured.   



 

19 

 

5. Dynamic Domain Name System (DDNS) Solution 

We first considered a solution involving a dynamic domain name system (DDNS). In this 

solution we envisioned a broker cluster as the resource to be made transparent. Any server could 

send messages to this cluster to a chosen queue and have its messages stored transparently. A 

client could retrieve these messages by connecting to the broker cluster and requesting messages 

from the server’s assigned queue. 

.  

Figure 2: This figure demonstrates how the server and client interact with the cloud. The cloud 

stores the resource as a message on a queue. The server sends messages to the cloud and the 

user can get access to those messages by requesting them from the cloud. 

In this solution any broker in the cluster could possibly have changed its network 

location. Changes in the network location would be detected through dynamic DNS. A server 

running on the broker machine would detect changes in its location and inform the DNS server 

of them. The middle-ware would detect these changes in the DNS configuration of its brokers 

and update its connection to them. 



 

20 

 

 

Figure 3: This figure shows how the location listener, DNS server and middle-ware interact. 

We abandoned this solution for several reasons. The first was that Oracle preferred a 

more middle-ware oriented solution that did not rely on other services. Secondly, since the 

design required for the brokers themselves to be made transparent, it was necessary that any 

message-oriented middle-ware being used to implement the solution would have to be modified 

to handle clusters in which the brokers could change location. Thirdly, system was not design to 

allow for interactions between the server and the client in real-time. It is also limited in the 

number of possible connection errors it can handle transparently.  And, lastly, it was more 

natural to interpret the servers that were providing a service as the resource to be made 

transparent. 

  



 

21 

 

6. Message-Oriented Middle-ware (MOM) Solution 

6.1. Why we chose Message-Oriented Middle-ware 

Message-oriented middle-ware was first brought to our attention during a meeting with 

Oracle. After examining its features and design, we felt that incorporating an existing and mature 

communication system into resource transparency would allow us to adapt its features and apply 

it as a general transparency solution without re-inventing the wheel.  

With their various message routing systems, MOMs proved themselves to be flexible 

enough to provide transparency to various kinds of resources, which is critical to a general 

solution.  Since there are already plenty of existing solutions for all kinds of replicated resources, 

the middle-ware would only have to provide a means to re-establish a connection with the 

resource in the cloud.  This approach will relieve complexity from our own product as well as 

provide a channel for established products to be included into our resource-transparent cloud. 

6.2. Test bed configuration and setup  

Our test bed setup was provided and configured by the WPI Computer Science 

Department. The test bed was a group of six KVM virtualized servers running on a single host. 

The host configuration had an Intel Core2Duo clocked at 2.66 GHz, with 8 GB of memory, and 

136 GB of disk space. Each of the vitalized machines was configured with one virtual core, 512 

Mb of ram, and 4 GB of disk space.  Although the host has access to the outside network, the 

virtualized instances were connected via a virtual network on the host and can only be accessed 

from the host alone for security reasons.  The virtual network automatically assigns IPs to each 

of the virtual machines.    



 

22 

 

All machines had up-to-date versions of OpenJDK installed as well as RabbitMQ. 

The low computing power afforded by the setup forced us forgo physical access and 

graphical interfaces and opt for remote terminal access only. The source code used for the testing 

will be included in a separate archive and will be explained further in the evaluation sections. 

 

6.3. Evaluation of OpenMQ  

We first attempted to test Message systems with OpenMQ. We wrote two simple 

programs, one that produces a message and another that receives messages from an OpenMQ 

broker. The broker was setup using OpenMQ utilities. After sending some messages we 

attempted to create a high-availability cluster using OpenMQ. 

OpenMQ uses an MySQL database for storing messages in a high-availability cluster. 

This proved to be quite difficult and OpenMQ’s documentation was not particularly helpful in 

resolving errors that we experienced while configuring the MySQL database. So we looked for 

another system. 

6.4. Evaluation of RabbitMQ 

The second system we evaluated was RabbitMQ, an open source message queuing 

software developed in Erlang.  We found that the installation usage was relatively pleasant 

thanks in part to both the ample documentation available and its inclusion in the official Ubuntu 

repository, although newer versions of the RabbitMQ software package can be found on its 



 

23 

 

official website. Since we are working in Java for this project, we also downloaded the Java 

client, which allowed us to interface with RabbitMQ via Java. 

We found RabbitMQ to be generally more manageable and easier to use. Basic 

messaging patterns were already well-documented on its website and the open-source examples 

made the test bed easy to set up, configure, and test. The overall design of RabbitMQ seems to 

focus on ease of use and deployment, which we appreciated greatly.  The pattern that we found 

to be the most useful is the high-availability cluster, which replicates the state and information of 

a message exchange so that in the event of an exchange failure, others will be able to quickly 

take over and prevent serious data loss. 

  



 

24 

 

7. Solution Design  

7.1. Solution description 

Based on the initial testing with the virtual machines and different message queuing 

frameworks, we decided that the middle-oriented framework is a fairly mature middle ground 

and well-suited to our intention of location transparency. 

The intended design is to build a thin layout over the message-oriented middle-ware to 

support resource location transparency while making use of the existing features of the middle-

ware such as high-availability, scalability and reliability. This overlay layer consists of two main 

interfaces which are VirtualServer and VirtualClient. These will communicate with the real 

client and real resource server, respectively, as if they were their real counterparts. Sitting 

between the two virtual interfaces are the MOM-brokers cloud dynamically managed by the 

middle-ware.  

 

Figure 4: Shows the relationships between the real client, virtual server, virtual client, cloud and 

real server. The real server and client send messages to each other through the cloud using the 

virtual server and virtual client 

7.1.1. Connection data flow 



 

25 

 

Instead of talking directly with the real server, the client will initiate and communicate 

with the VirtualServer via a network socket as if it were the real server. The VirtualServer will, 

in turn, forward the application-layer messages it has received from the client to the broker 

cloud. The messages were then reliably transferred to the VirtualClient through the cloud using 

the middle-ware messaging queues. Finally, the VirtualClient forwards the request and receives 

the response from the real server using a network socket. 

 

Figure 5: Sequence diagram showing the data flow for a single request-response from client 

 

7.2. Scenarios, features and limitations 

7.2.1. Multiple clients support 

If there are multiple clients requesting for the resource at the same time, there should be a 

reliable way to separate or classify messages to/from different clients. Fortunately, this can be 

solved using one of the most notable features of the message-oriented middle-ware: the ability to 

create and destroy queues dynamically. More specifically, every time a client establishes 

a socket connection with the virtual server, two separate queues must be established in the 

middle-ware: one routing the data upstream and the other downstream. Additionally, the virtual 



 

26 

 

client needs to know about the newly established queues (because it is on the other side and have 

not known the new client yet); therefore, a global control queue is also needed for such 

announcements. 

 

 



 

27 

 

 

Figure 6: Multiple-client support sequence diagram 



 

28 

 

7.2.2. Client failures 

There is no feasible solution for this scenario. Since a failure on the client-side means that 

they will not be able to receive responses from the server at all, it would be meaningless to build 

tolerance for it. When the client goes down, it should just try to set up the new connection with 

the system when it recovers. 

7.2.3. VirtualServer/VirtualClient failures/redundancy 

As the diagram demonstrated, the VirtualServer and VirtualClient are decoupled and not 

directly connected with each other but through the messaging queues instead. This implies that 

we can simply have multiple redundant VirtualServers or VirtualClients on each side so that 

failure of a single machine would not bring the whole system down. 

On the other side, the real clients and servers are connecting with the virtual interfaces 

using socket connections, so a failure on a virtual server/client might be noticeable. However, 

this issue can be fixed by setting a single domain name for all redundant servers/clients in such a 

way that the next time the real client/server attempts to connect to the domain it would be paired 

with the next working redundant virtual server/client. 



 

29 

 

 

Figure 7: Sequence diagram for system with redundant virtual clients 



 

30 

 

7.2.4. Redundancy on server side 

Redundancy on the server side is achieved by allowing the virtual client to be configured 

with the possibility of adding multiple servers. The default behavior of the virtual client is to 

instantiate a connection to a single server each time it receives a request for a connection from 

the cloud. With redundancy this is changed so that virtual client can forge a connection to any 

one of a list of servers depending on such factors as load-balancing or whether or not a server is 

running. 

 

Figure 8: Virtual client getting first connection request and choosing to connect to server1 



 

31 

 

 

Figure 9: Shows virtual client getting second connection request and choosing to connect to 

server2 

7.2.5. Redundancy in the brokers cloud 

The middle-ware cloud already has some redundancy features built-in such as high-

availability cluster, replicated brokers, and seamless synchronization. Also, recent versions of the 

different middle-ware systems include the ability to add/remove brokers dynamically at run time. 

 

Figure 10: Simple model of replicated broker cluster 



 

32 

 

7.2.6. Transparency to change in resource location 

Whenever there is a resource location change event, it can be split into two separate 

events: the removal of the old resource server from the system, and the introduction of the new 

one. As servers can be added and removed dynamically very easily as discussed in section 7.2.4 

above, there should be no difficulty at all moving the server around, although there might be 

some minor glitch during the transition (some connections might be lost and the client needs to 

reconnect to get to the new resource server).The virtual client would have to maintain the 

connection it has to the cloud and reset it if it is disconnected. It detects changes to the server 

configuration and recreates the connections to the server depending on the type of change in the 

server configuration.  

From the client point of view, it never talks with the real server, nor knows the location 

of the real resource. When the resource changes its location, the virtual client will route the 

client’s request to the new destination automatically. 

7.2.7. Multiple services 

Different services such as HTTP, DNS, database, and file servers can be virtually hosted 

on the same virtual server by having the server connect to a different port depending on the type 

of message it received from the virtual client for establishing a new connection. Their message 

queues share the same middle-ware cloud and are differentiated by using different queue base 

names. 

7.3. Summary: the benefits 



 

33 

 

Failure-tolerance: As previously described, this method does offer a significant level of 

redundancy and failure tolerance thanks to the decoupling nature of the underlying middle-ware. 

Redundancy machines can be set up easily on both the client and server side, as well as in the 

brokers cloud. 

Scalability: Load-balancing can be achieved in the system using redundancy machines. 

Also, the configuration is dynamic, so that machines can be added/removed if necessary on the 

fly, with no interruption of service. 

Resource location transparency: In this approach, the entity that the real client 

communicates with is the virtual server; therefore, any location change from the real server is 

transparent to the client. The client also needs to know only the location of the virtual server to 

use different services as discussed above, therefore the real locations of different resources are 

well hidden behind the middle-ware, which also contributes to the location transparency concept. 

7.4. The limitations 

There might be some overhead in the data flow, as we are introducing additional layers in 

the middle to achieve transparency. In order words, if looking into the CAP theorem, we are 

actually trading availability of resource (longer response time) for better partition tolerance. 

 

  



 

34 

 

8. Implementation of Message-Oriented Middle-ware 

Solution  

We programmed a simple implementation of the concept of our solution. Our main goal 

for it was to test whether it is a feasible approach, and to make sure that it does not have any 

significant limitations that we may have overlooked. 

 
 

Figure 11: The interface of the MOM cloud solution 

We have set up one virtual server and one virtual client connected by the middle cloud run by 

RabbitMQ. Although the solution may work with different services, during the scope of this project, 

we decided to test the system with the HTTP protocol by emulate a remote webserver (like 

google.com) on the virtual server. 

The program has two main routines, one that implements VirtualClient and another that 

implements VirtualServer. A VirtualServer listens on a port specified by the user and when 

connected to by a browser establishes a connection to the http server by sending a message to a 



 

35 

 

VirtualClient through a RabbitMQCloud instance. Replies for the http server are sent to a 

VirtualClient and a VirtualClient sends them to the cloud. Replies from the http client are sent to a 

VirtualServer which then sends them to cloud. 

 

Figure 12: Interaction between a client (browser), cloud, and server (HTTP server). 

The implementation handles the connections to the HTTP server and the client by 

using the SocketConnection class. The getMessage and sendMessage functions in this 

class are used to send and receive messages from the connections maintained by both a 

VirtualClient and a VirtualServer. 

 

  



 

36 

 

9. Testing Results 

The package was packaged as a zip file, which includes the source files and several 

RabbitMQ jar files that need to be included in the classpath when compiling or running the 

implementation. The zip file also contains scripts required to compile and run the 

implementation. 

In this test the virtual server was set to listen on port 80 in order to get requests from a 

browser that was run locally on the machine. The RabbitMQ cloud was a simple setup involving 

only one broker. In order to simplify the testing the virtual server, virtual client, the RabbitMQ 

middle-ware and the RabbitMQ broker were all run on the same machine. After running both the 

virtual server and client we ran the browser. We used the Links web browser to connect to the 

virtual server. The command used to do this can be seen in Figure 13-16. 

 



 

37 

 

  

Figure 13: Connecting to Server using Links 

 

.  
 

Figure 14: This screen capture shows the response from the virtual client which it received from 

the Google web server 



 

38 

 

 

 
 

Figure 15: This capture shows the response that the virtual server received from the cloud 

 

 
 

Figure 16: This screen capture shows the links browser rendering the page that it received from 

the virtual server 



 

39 

 

 
Also, it should be noted that opening up a web page like google.com in a browser would 

initiate multiple connections to the server. Therefore this experiment also demonstrated that our 

implementation works in a multiple-client with multiple connections environment. (See figure 

17) 

 
 

Figure 17: This screen capture shows that our implementation supports multiple 

clients/connections and shows the virtual client receiving a request from a second instance Links 

Lastly, we also integrated a transparency feature in such a way that, whenever a network 

broker lost a connection with the MOM-cloud, it would automatically attempt to reconnect shortly 

after and restore the initial connection state. The feature was implemented using the shutdown 

protocol provided by RabbitMQ, which was an advanced feature not supported yet by the current 

release of OpenMQ (1.0). 

To test this feature, vm1 was set up as the VirtualServer and vm4 as VirtualClient. vm4 

network card was then shut down for 10 seconds. After the restart and reconnection of vm4, vm1 

could still be able to serve the content of the webpage as if nothing had happened. (See figure 18-19) 

 
Figure 18: This screen capture shows the vm4 network connection being shut down 

 

 
Figure 19: This screen capture shows the vm4 network being restarted 

  



 

40 

 

10. Conclusions, Future Work, and Recommendations 

Our solution consisted mainly in creating a design that can be implemented fully later by 

another group. We tested some of the features of this design but some features are yet to be 

tested. Some future work might include using redundancy on the server side by building in load-

balancing. Handling resource transparency in this context would require running a local service 

on each server machine that sends the virtual server information about location changes. Another 

interesting extension of our work would be using a different messaging system. RabbitMQ has 

the flexibility we needed to create a dynamic high-availability cluster, but Oracle is developing a 

new version of OpenMQ which will provide the same flexibility with ease of use.  Modifying 

our implementation to function with OpenMQ would be an affirmation of generality of our 

design.  

Further investigations can be made on designing an effective way of handling timing 

between cloud messages and the virtual objects (virtual server and client). During some tests 

with our basic implementation we experienced problems with delivering requests over the cloud. 

These problems were due to problems in timing requests between the virtual objects and their 

connections to the real objects with their connections to the cloud. 

 

 

  



 

41 

 

Works Cited 

Atkinson, A. (2011, 4 25). What is BitTorrent's architecture? Retrieved 4 21, 2012, from Quora: 

http://www.quora.com/What-is-BitTorrents-architecture 

Deakin, N. (n.d.). JMS Version 2.0 (Early Draft). Retrieved 4 21, 2012, from 

http://download.oracle.com/otn-pub/jcp/jms-2_0-edr-spec/jms-2_0-edr-

spec.pdf?AuthParam=1335390883_f7bfe901fd7818474026ec33cf71b4a9 

Deakin, N. (n.d.). What's probably coming in Java Message Service 2.0. Retrieved 4 21, 2012, 

from http://java.net/projects/jms-spec/downloads/download/javaone2011-jms20.pdf 

Nigel Deakin, C. S. (n.d.). JSR 343: What's Coming in Java Message Service 2.0. Retrieved 4 

21, 2012, from http://java.net/downloads/jms-spec/javaone2011-jms20.pdf 

OASIS. (n.d.). Developer FAQ's. Retrieved 4 21, 2012, from AMQP: 

http://www.amqp.org/resources/developer-faqs 

Oracle. (2011). ORACLE COHERENCE 3.7. 

Oracle. (n.d.). Open Message Queue. Retrieved 4 21, 2012, from Java.net: 

http://mq.java.net/overview.html 

Sathupadi, K. (2011, 8 18). A plain english introduction to CAP Theorem. Retrieved 4 21, 2012, 

from http://ksat.me/a-plain-english-introduction-to-cap-theorem/ 

Seth Gilbert, N. L. (n.d.). Brewer’s Conjecture and the Feasibility of Consistent, Available, 

Partition-Tolerant Web Services.  

VMware, Inc. (n.d.). RabbitMQ - Documentation. Retrieved 4 21, 2012, from RabbitMQ: 

http://www.rabbitmq.com/documentation.html 

 


	Worcester Polytechnic Institute
	Digital WPI
	April 2012

	Resource Location Transparency in Clouds
	Khanh-Nhan P. Nguyen
	Latiff Zaaliembike Seruwagi
	Linhai Zhu
	Repository Citation


	tmp.1535548689.pdf.ot2Ef

