Conversion of Carbon Dioxide to Fuels using Dispersed Atomic-Size Catalysts

Satish Kumar Iyemperumal
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-dissertations

Repository Citation

This dissertation is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Doctoral Dissertations (All Dissertations, All Years) by an authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.
Conversion of Carbon Dioxide to Fuels using Dispersed Atomic-Size Catalysts

by

Satish Kumar Iyemperumal

A Dissertation

Submitted to the Faculty of

Worcester Polytechnic Institute

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Chemical Engineering

by

June 2018

APPROVED

Dr. N. Aaron Deskins, Advisor
Chemical Engineering Department, WPI

Dr. Ravindra Datta, Committee Member
Chemical Engineering Department, WPI

Dr. George Kaminski, Committee Member
Chemistry and Biochemistry Department, WPI

Dr. Michael Timko, Committee Member
Chemical Engineering Department, WPI

Dr. Susan Roberts, Head of Department,
Chemical Engineering Department, WPI
Abstract

Record high CO$_2$ emissions in the atmosphere and the need to find alternative energy sources to fossil fuels are major global challenges. Conversion of CO$_2$ into useful fuels like methanol and methane can in principle tackle both these environment and energy concerns. One of the routes to convert CO$_2$ into useful fuels is by using supported metal catalyst. Specifically, metal atoms or clusters (few atoms large in size) supported on oxide materials are promising catalysts. Experiments have successfully converted CO$_2$ to products like methanol, using TiO$_2$ supported Cu atoms or clusters. How this catalyst works and how CO$_2$ conversion could be improved is an area of much research. We used a quantum mechanical tool called density functional theory (DFT) to obtain atomic and electronic level insights in the CO$_2$ reduction processes on TiO$_2$ supported metal atoms and clusters.

We modeled small Cu clusters on TiO$_2$ surface, which are experimentally synthesizable. Our results show that the interfacial sites in TiO$_2$ supported Cu are able to activate CO$_2$ into a bent configuration that can be further reduced. The Cu dimer was found to be the most reactive for CO$_2$ activation but were unstable catalysts. Following Cu, we also identified other potential metal atoms that can activate CO$_2$. Compared to expensive and rare elements like Pt, Au, and Ir, we found several early and mid transition metals to be potentially active catalysts for CO$_2$ reduction. Because the supported metal atom or cluster is a reactive catalyst, under reaction conditions they tend to undergo aggregation and/or oxidation to form larger less active catalysts. We chose Co, Ni, and Cu group elements to study their catalyst stability under oxidizing reaction conditions. Based on the thermodynamics of Cu oxidation and kinetics of O$_2$ dissociation, we found that TiO$_2$ supported Cu atom or a larger Cu tetramer cluster were the likely species observed in experiments. Our work provides valuable atomic-level insights into improving the CO$_2$ reduction activities and predicts potential catalysts for CO$_2$ reduction to valuable fuels.
Acknowledgements

A lot of people were involved directly or indirectly to make the journey of my PhD as smooth as possible. First and foremost I am very grateful to my advisor Prof. N. Aaron Deskins, whose guidance and support was unparalleled. I am also appreciative of Professors Ravindra Datta, George Kaminski, and Michael Timko for serving in my PhD committee and for their valuable suggestions and help. I would like to thank Prof. Gonghu Li and Tom Fenton from University of New Hamshire for the exciting collaborative research discussions. Professor Randy Paffenroth and Matt Wiess shared their data science expertise in one of my projects, which I also acknowledge.

I am grateful to Lida Namin for all her help and stimulating discussions over the course of my PhD. I also acknowledge valuable discussions with Junbo Chen, Thang Pham, Behnam Partopour, Azadeh Zaker, and Alex Maag. I also acknowledge Dr. Spencer Pruitt’s assistance and computational support. Finally and most importantly, I am very grateful to all my family members, who have shown their continued support throughout my life.
Contents

1 Introduction 1

2 Background 4
 2.1 Carbon dioxide conversion 4
 2.2 Heterogeneous catalysis of CO\textsubscript{2} to fuels 5
 2.3 TiO\textsubscript{2} Photocatalysts 8
 2.4 Atomically Dispersed supported metal catalysts for CO\textsubscript{2} reduction 10
 2.5 Reaction conditions and stability of atomically dispersed supported metal catalysts .. 13

3 Theoretical Background 21
 3.1 Schrödinger’s equation 21
 3.2 Density functional theory 23
 3.3 Modeling Solids and Surfaces 28

4 CO\textsubscript{2} Reduction on Dispersed Cu\textsubscript{1}/TiO\textsubscript{2} catalysts 31
 4.1 Introduction .. 31
 4.2 Methodology .. 32
 4.3 Results ... 32
 4.4 Conclusion ... 34
5 CO₂ Reduction on Dispersed Cu₁⁻⁴/TiO₂ catalysts

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>37</td>
</tr>
<tr>
<td>5.2 Methodology</td>
<td>41</td>
</tr>
<tr>
<td>5.3 Results and Discussion</td>
<td>44</td>
</tr>
<tr>
<td>5.3.1 Cu Clusters on Titania</td>
<td>44</td>
</tr>
<tr>
<td>5.3.2 CO₂ adsorption over Cu Clusters and TiO₂</td>
<td>51</td>
</tr>
<tr>
<td>5.3.3 Characterization of Adsorbed CO₂</td>
<td>66</td>
</tr>
<tr>
<td>5.3.4 Oxidation state of Cu Clusters</td>
<td>75</td>
</tr>
<tr>
<td>5.3.5 The Special Case of Cu₂</td>
<td>80</td>
</tr>
<tr>
<td>5.4 Conclusions</td>
<td>81</td>
</tr>
</tbody>
</table>

6 Quantifying Support Interactions and Reactivity Trends of Single Metal Atom Catalysts over TiO₂

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>92</td>
</tr>
<tr>
<td>6.2 Methodology</td>
<td>94</td>
</tr>
<tr>
<td>6.2.1 Adsorption Energies of Metal Atoms</td>
<td>96</td>
</tr>
<tr>
<td>6.2.2 Geometry Analysis of Adsorbed Metal Atoms</td>
<td>101</td>
</tr>
<tr>
<td>6.2.3 Electronic Analysis of Adsorbed Metals</td>
<td>103</td>
</tr>
<tr>
<td>6.2.4 Further Explanation of Metal Atom Adsorption</td>
<td>106</td>
</tr>
<tr>
<td>6.2.5 Effect of DFT Method</td>
<td>108</td>
</tr>
<tr>
<td>6.2.6 CO₂ Activation over Supported Metal Atoms</td>
<td>110</td>
</tr>
<tr>
<td>6.2.7 Post-Transition Metals</td>
<td>116</td>
</tr>
<tr>
<td>6.3 Conclusions</td>
<td>118</td>
</tr>
</tbody>
</table>

7 The Fate of Supported Atomic-Size Catalysts in Reactive Environments

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>127</td>
</tr>
<tr>
<td>7.2 Methodology</td>
<td>130</td>
</tr>
</tbody>
</table>
E Supporting Information - Evaluating Solvent Effects at the Aqueous/Pt(111) Interface 285
List of Figures

2.1 The redox potentials of several molecules, as well as the conduction band minimum and valence band maximum energy levels of TiO₂. Redox potential in parenthesis are given for CO₂ reduction products at pH 7 with reference to normal hydrogen electrode (NHE). The redox potentials are not drawn to scale. Figure adapted from Ref. 12 .. 6

2.2 Schematic of dispersed atomic-size Cu (a,b) and a representative nanoparticle of of 1nm size containing 55 Cu atoms (c,d) deposited on TiO₂. Side view with a ball and stick model (a, c) and top view with periodically repeated space filling model (b,d) of Cu/TiO₂ catalysts. (a,b) represent dispersed atomic-size catalysts showing monomers (M), dimers (D), and trimers (T). Ti, O, and Cu are shown in blue, red, and gold spheres, respectively. 11

3.1 Flow diagram showing the self consistent procedure to obtain the ground state energy from the Kohn-Sham equations. This flow diagram is adapted from Ref. 8 ... 27

3.2 Bulk solid Pt with indicated unit cell in red (a) and the corresponding face centered cubic unit cell without repetition (b). 29
3.3 Demonstration of modeling an isolated water molecule (a) and slab approach of modeling the Pt(111) surface (b) using periodic boundary conditions. The cell is shown using black solid lines. The H$_2$O inside the unit cell is highlighted in yellow.

4.1 Modeling results for CO$_2$ adsorption on (ac) TiO$_2$ and (d and e) Cu/TiO$_2$. The calculated adsorption energies are (a) 0.25, (b) 0.05, (c) 0.06, (d) 0.23, and (e) 0.25 eV. Color code: Ti (gray), O in TiO$_2$ (red), Cu (dark yellow), O in CO$_2$ (magenta), and C (blue).

4.2 Modeling of CO adsorption on TiO$_2$ and Cu/TiO$_2$. The calculated adsorption energies are (a) 0.36 eV on TiO$_2$ and (b) 1.04 eV on Cu/TiO$_2$.

5.1 TiO$_2$(101) surface supercell with two (2c), three (3c), five (5c), and six (6c) coordinated surface O and Ti atoms indicated.

5.2 Most stable gas phase Cu$_x$ (x=1,2,3,4) clusters. For Cu$_4$, the top and side views of the non-planar structure are shown.

5.3 Most stable adsorption sites for Cu (a), Cu$_2$ (b), Cu$_3$ (c), and two different Cu$_4$ clusters (d,e) on the TiO$_2$ anatase (101) surface. The two Cu$_4$/TiO$_2$ are represented as Cu$_4$(I) (d) and Cu$_4$(II) (e).

5.4 Most stable adsorbed CO$_2$ on TiO$_2$ in linear (a) and bent (b,c) configurations. Both side and top views are shown for the structure in (b). The numbers correspond to the adsorption energies of CO$_2$. The Ti and O atoms of TiO$_2$ are shown as gray and red spheres, while C and O atoms of CO$_2$ are shown as blue and green spheres.

5.5 Stable adsorbed CO$_2$ on Cu/TiO$_2$ in linear (a,b) and bent (c,d,e) configurations. The numbers indicate adsorption energies of the CO$_2$ molecules.
5.6 Several stable adsorbed CO$_2$ on Cu$_x$/TiO$_2$ in linear (a,b) and bent (c,d,e) configurations. The numbers indicate adsorption energies of the CO$_2$ molecules.

5.7 Several stable CO$_2$ adsorption configurations on Cu$_3$/TiO$_2$ in linear (a,b) and bent (c,d,e) configurations. The numbers indicate adsorption energies of the CO$_2$ molecules.

5.8 Several stable adsorbed CO$_2$ on Cu$_4$(I)/TiO$_2$ (the most stable Cu$_4$ structure as shown in Figure 5.3d) in linear (a,b) and bent (c,d,e) configurations. Both side and top views have been shown. The numbers indicate adsorption energies of the CO$_2$ molecules.

5.9 Several stable adsorbed CO$_2$ on Cu$_4$(II)/TiO$_2$ in linear (a,b) and bent (c,d,e) configurations. Both side and top views have been shown. The numbers indicate adsorption energies of the CO$_2$ molecules.

5.10 (a) Adsorption energies (ΔE_{ads}) of the most stable bent and linear CO$_2$ on the different Cu$_x$/TiO$_2$ surfaces. (b) The correlation between adsorption energies of bent CO$_2$ (ΔE_{ads}) on Cu$_x$/TiO$_2$ surfaces, and the C-O bond elongation (for the largest bond) upon adsorption. The solid line is the best linear fit to the data.

5.11 Vibrational frequencies of CO$_2$ for the most stable adsorbed linear and bent CO$_2$ configurations on Cu$_x$/TiO$_2$ surfaces. The vibrational frequencies from top to bottom are the asymmetric stretching, symmetric stretching, bending parallel, and bending perpendicular modes. The dashed line indicates the calculated gas phase CO$_2$ vibrational frequencies.

5.12 Calculated charges using the DDEC6 method of CO$_2$ when adsorbed on Cu$_x$/TiO$_2$.
5.13 Sited-projected density of states (DOS) for linear and bent CO$_2$ adsorbed on Cu$_1$ and Cu$_2$. The left plots show linear CO$_2$ while the right plots show bent CO$_2$. The valence band edge has been set to 0 eV.

6.1 The side (a) and top (b) views of the anatase (101) surface slab used in the present work. In the top view, only the surface atoms are shown for clarity. The labels A, B, C, D, and E indicate the most stable metal adsorption sites. The distinction between Site B and C is shown in Figure 6.2. Blue spheres represent Ti atoms, while red spheres represent O atoms.

6.2 Various adsorption configurations for metal atoms on the TiO$_2$ anatase (101) surface. The adsorbed metal atom is displayed as gold. Shown are top and side views of the surfaces.

6.3 Adsorption energies of transition metal atoms in rows 4 (a), 5 (b), and 6 (c) on TiO$_2$ for the stable adsorption configurations as shown in Figure 6.2.

6.4 Diffusion analysis for metal atoms on TiO$_2$. (a) The energy difference between the two most stable sites is plotted against group number for all the transition metal atoms supported on TiO$_2$. (b) Comparison of the most stable adsorption energy at site A with the difference in adsorption energy between the two most stable sites. This energy difference between the two most stable sites can be used as a proxy for the activation barrier for diffusion as discussed in the Supporting Information.

6.5 Comparison of metal adsorption energies with (a) M-O$_2$c distances and (b) surface fluxionality. Shown are results for the most stable site, or site A.
6.6 Projected density of states of representative early (a, Hf), mid (b, Mn), and late (c, Pd) transition metal atoms adsorbed on TiO\textsubscript{2}. The energies are shifted so that 0 eV is at the bottom of the conduction band. Bands below 0 eV are filled states.

6.7 Comparison of transition metal atom adsorption energies to calculated Bader charges of adsorbed transition metal atoms at Site A.

6.8 Comparison of transition metal atom adsorption energies to M-O (metal-oxygen) bond dissociation energy of gas phase diatomic MO molecules.

6.9 Comparison of four different levels of theory for the adsorption energies of row 4 (a), row 5 (b), and row 6 (c) transition metals. Results are for site A over the TiO\textsubscript{2} surface.

6.10 Adsorption energies of the most stable bent and linear CO\textsubscript{2} on all the metal atom/TiO\textsubscript{2} surfaces.

6.11 Regression models analyzing bent CO\textsubscript{2} adsorption. (a) Bent CO\textsubscript{2} adsorption energies compared to dissociation energies of M-O molecules. (b) Bent CO\textsubscript{2} adsorption energies compared with two predictors, transition metal cohesive energy and workfunction.

7.1 (a) Cu aggregation geometries and corresponding reaction energies (in eV) in the gas-phase and over TiO\textsubscript{2}. (b) Relative energies of clusters of various sizes in gas-phase and on TiO\textsubscript{2}.

7.2 Results for oxidation of Cu clusters. (a) The most stable geometries for oxidized Cu clusters on TiO\textsubscript{2}. The numbers (in eV) are reaction energies for each O addition step. (b) Relative energies of oxidized clusters in gas phase and supported on TiO\textsubscript{2}. The source of O for oxidation was O\textsubscript{2} for gas phase calculations and O\textsubscript{2} adsorbed on TiO\textsubscript{2} for supported cluster calculations.
7.3 The adsorption geometries of the most stable combined aggregation oxidation growth pathway of Cu$_1$/TiO$_2$ (a). Numbers represent the reaction energy in eV. Relative energy of the most stable growth pathway in gas phase (b) and on TiO$_2$ (d). The reference for oxidation steps was O$_2$ adsorbed on TiO$_2$.

7.4 Calculated DDEC6 charges of the Cu atoms for the adsorbed copper/copper oxide clusters. Dotted lines show average Cu charges (+0.36 and +0.85) for reference molecules with formal Cu$^{1+}$ and Cu$^{2+}$ species.

7.5 Calculated formation energies of oxidized supported Cu clusters in the presence of gas phase O$_2$ (at 1 atm) as a function of temperature. Formation energies are found from Equation 7.1 or according to the reaction Cu$_x^*$ + $\frac{y}{2}$ O$_2$ → Cu$_x$O$_y^*$.

7.6 Relationship between DDEC6 calculated Cu charges and number of nearest oxygen atom bonded to a Cu atom.

7.7 Formation energies of oxidized supported Cu clusters in the presence of various oxidants as a function of temperature. Each curve shows the formation energy of the most stable oxidized cluster after reacting with the indicated oxidant. I.e. Cu$_x^*$ + $\frac{y}{2}$ O$_2$ → Cu$_x$O$_y^*$, Cu$_x$ + yH$_2$O → Cu$_x$O$_y$ + yH$_2$, or Cu$_x$ + yCO$_2$ → Cu$_x$O$_y$ + yCO.

7.8 Free energies of O$_2$ adsorption at 300 K for Cu Clusters with various sizes and number of O atoms.

7.9 Reaction and activation energies for O$_2$ dissociation on supported Cu clusters. The initial states (IS), transition states (TS), and final states (FS) are indicated. Results are for (a) Cu$_1$ (b), Cu$_2$ (c), Cu$_3$, and Cu$_4$. O$_2$ dissociation is negligible on TiO$_2$. For example the reported dissociation barrier over TiO$_2$ assisted by H atoms was 1.78 eV.

xii
7.10 Comparison of the average Cu DDEC6 charges of the most stable Cu clusters on TiO$_2$ in the kinetic and thermodynamic limits. The labels within each bar shows the most stable oxidized cluster under each limit.

7.11 Schematic of the growth pathway of Cu on TiO$_2$ on the basis of kinetics of cluster growth and O$_2$ dissociation.

7.12 Results for adsorption and growth of supported Pt clusters. (a) Geometries showing how cluster growth may occur through Pt addition or oxidation. The numbers are reaction energies in eV for Pt addition (horizontal arrows) and O addition (vertical arrows). (b) Relative energies for different Pt species on the surface. Three reaction pathways are indicated in the graph and correspond to those shown in (a). All reaction paths have similar energies. Adsorbed O$_2$ on TiO$_2$ was used as reference for oxidation steps.

7.13 Reaction energies for the initial oxidation steps of selected transition metal atoms on TiO$_2$. Adsorbed O$_2$ on TiO$_2$ was used as reference for the oxidation steps.

A.0 Effect of different U corrections on the adsorption energies of most stable (as discussed in the main text) bent (a) and linear (b) CO$_2$ adsorption configurations on Cu$_x$/TiO$_2$. Shown are results for pure DFT and DFT with U corrections. For example, U(Ti-10,Cu-5) represents a U correction of 10.0 eV applied to Ti and 5.0 eV applied Cu atoms.

A.1 Sited-projected density of states (DOS) for Cu/TiO$_2$ calculated using U values of 0, 5, and 10 eV (all applied to Ti). The valence band edge for each system has been set to 0 eV in the plots.
A.2 Sited-projected density of states (DOS) for linear and bent CO$_2$ adsorbed on Cu$_x$/TiO$_2$ for a U value of 5 eV applied to Ti. The left plots show linear CO$_2$ while the right plots show bent CO$_2$. The valence band edge for each system has been set to 0 eV in the plots.

A.3 Most stable adsorption sites of CO on Cu$_x$/TiO$_2$ with x=1 (a), 2 (b), 3(c), and 4(d). The numbers above each structure correspond to the adsorption energy of CO for that structure. Color scheme of atoms are the same as in previous Figures.

A.3 Potential energy surface for Cu adsorbed on the TiO$_2$ anatase(101). The contour of the energy surface is shown in the top panel and the corresponding top view of the TiO$_2$ surface is indicated by the black box in the middle panel. The minimum energy pathway is shown in the bottom panel along [010] and [101] directions through sites A/B/C/B/A and A/D/C/B/A respectively. For clarity only the top layer of the TiO$_2$ surface slab is shown. Surface atoms on the top and middle panels are labeled. The contour legend shows the relative energies compared to most stable adsorption site in eV.

A.4 Diffusion barriers for Cu along Path 1 and Path 2 (shown in Figure A.3 over the TiO$_2$ anatase(101) surface.)

B.1 Projected density of states (PDOS) of Cu group (upper panel) and Zn group (lower panel) transition metal atoms supported on TiO$_2$.

B.2 Projected density of states (PDOS) of Cu group transition metal atoms 6 Å above the surface or not interacting with TiO$_2$. Zero eV is set at the conduction band minimum.
B.3 Correlation between the energy difference of the two most stable adsorption sites and calculated diffusion barriers. Results are for eight transition metal adatoms on TiO$_2$. Shown are the (a) largest and (b) smallest barriers as calculated by Alghannam et al.[1] 190

B.4 Projected density of states of all 29 transition metal atom adsorbed on TiO$_2$. Zero eV is set at the conduction band minimum. 191

B.4 Continued: Projected density of states of all 29 transition metal atom adsorbed on TiO$_2$. Zero eV is set at the conduction band minimum. 192

B.5 Bader charges of transition metal atoms adsorbed on TiO$_2$. 193

B.6 Stable adsorption geometries for linear CO$_2$ over M/TiO$_2$ surfaces. 201

B.7 Stable adsorption energies for linear CO$_2$ over M/TiO$_2$ surfaces. 202

B.8 Stable adsorption geometries for bent CO$_2$ over M/TiO$_2$ surfaces. 204

B.9 Adsorption energies for bent CO$_2$ over M/TiO$_2$ surfaces of row 4 (a), row 5 (b), and row 6 (c) transition metal atoms. 205

B.10 Bader charge (number of electrons) of bent and linear CO$_2$ adsorbed over various transition metals in row 4 (a), row 5 (b), and row 6 (c) adsorbed on TiO$_2$. Shown are results for the most stable CO$_2$ geometries. 206

B.11 Adsorption energies of post transition metal atoms adsorbed on TiO$_2$. Different stable adsorption configurations are labeled. Refer to the main text for the geometries. 209

B.12 Bader charges (in e$^-$) of post transition metals with site A adsorption configurations. 210

B.13 Most stable bent and linear CO$_2$ adsorption energy on TiO$_2$ supported post-transition metal atoms. 212

B.14 The stable adsorption energies of different bent CO$_2$ adsorption configurations on post-transition metal atoms on TiO$_2$. 212
B.15 Bader charges (in e−) of the most stable linear and bent CO\textsubscript{2} adsorption sites on post-transition metal atoms on TiO\textsubscript{2}.

C.1 The anatase(101) surface slab used in the present work. The undercoordinated atoms on the surface are labelled as O\textsubscript{2c}, O\textsubscript{3c}, Ti\textsubscript{5c}, and Ti\textsubscript{6c}, where nc refers to n coordinations. Gray and red spheres represent Ti and O atoms.

C.2 Reaction pathways for formation of Cu\textsubscript{x}/Cu\textsubscript{x}O\textsubscript{y} clusters in the gas phase. The numbers indicate reaction energies for each reaction step (in eV). A horizontal reaction is Cu addition, while vertical reactions are O addition (from 1/2 O\textsubscript{2} molecule). Numbers in red show the most favorable pathway. Cu and O atoms are represented in yellow and blue spheres respectively.

C.3 Formation energies of oxidized gas phase Cu clusters in the presence of gas phase O\textsubscript{2} as a function of temperature.

C.4 Reaction pathways for formation of Pt\textsubscript{x}/Pt\textsubscript{x}O\textsubscript{y} clusters in the gas phase. The numbers indicate reaction energies for each reaction step (in eV). A horizontal reaction is Cu addition, while vertical reactions are O addition (from 1/2 O\textsubscript{2} molecule). Numbers in red show the most favorable pathway. Pt and O atoms in Pt\textsubscript{x}O\textsubscript{y} are shown as turquoise and blue spheres respectively.

D.1 Illustration of explicit (left) and implicit (right) solvation models. In this example, CO (shown with a ball and stick model) is surrounded by H\textsubscript{2}O molecules (shown with stick models) in the explicit model. In the implicit model, the water molecules are treated by a continuum (blue background) and the CO is placed in a cavity (shown as the union of larger atomic spheres).

D.2 Pt(111) surface models used in in the current work. The top and side views of the Pt(3x3) periodic surface is shown in (a). Pt\textsubscript{10}, Pt\textsubscript{19}, Pt\textsubscript{35} clusters are shown in (b), (c), (d), respectively. All models were drawn using VESTA-3.
D.3 Calculated adsorption energies in the presence of vacuum (a) and implicit solvation (b) as a function of Pt cluster size. COSMO was used to treat solvation with the NWChem DFT code.

D.4 Adsorption solvation energies for several adsorbates calculated using VASP, JDFTx, and NWChem. The results with NWChem were obtained using Pt$_{35}$ clusters.

D.5 Adsorption solvation energies calculated using VASP$_{sol}$ for different species classified into five categories based on chemical nature of the adsorbate.

D.6 Correlations between calculated solvation energies and parameters of the relevant molecules. (a) Solvation energies of gas phase molecules compared to calculated (PBE/6-311G**) gas phase dipole moments.$^{[142]}$ Plots (b), (c), and (d) show the solvation energies of adsorbed molecules compared to calculated Bader charges of these adsorbed species. The dashed lines indicate the best linear fits.

D.7 Comparison of adsorption solvation energies ΔE_{solv}^{ads} calculated by the artificial neural network and from our DFT calculations. Shown are data from the testing set. The Bader charge of adsorbed species with no solvent present q, solvation energy of free species $\Delta E_{solv}(X)$, gas-phase dipole moment, and molecular surface area of the free species were used as inputs to the model.
D.8 Potential energy surfaces (left plots) in the presence of implicit water (red lines) and vacuum (black lines), and solvation energies for individual reaction steps (right plots). Each row corresponds to one reaction: (a) and (e) oxygen reduction reaction, (b) and (f) formic acid decomposition, (c) and (g) C–C cleavage of a C₂ organic molecule, and (d) and (h) water gas shift reaction.

The reaction steps i in the right plots correspond to the numbered reactions in the left plots. The energies corresponding to zero eV are described in the text.

D.9 Calculated adsorption solvation energies of different adsorbed species as a function of dielectric constant, characteristic of three different solvents: CCl₄, CH₃CN, and H₂O with dielectric constants 2.2, 38.8, and 78.4 respectively.

E.1 Pt₃₅ cluster model of the Pt(111) surface showing the top, fcc, bridge, and hcp adsorption sites.

E.2 Four ice-bilayers adsorbed on Pt(111) in side (a) and top (b) views. Dotted lines represent the unit cell. Periodic images are shown to visualize the hydrogen bonding network. Pt, O, and H atoms are shown as gray, red, and white spheres, respectively.
List of Tables

5.1 Structural parameters of the most stable adsorbed bent and linear CO$_2$ molecules. The last two columns show distances between CO$_2$ atoms and closest surface atoms (designated M and N). The closest surface atom types are given in parenthesis. 4(I) and 4(II) refer to the two Cu$_4$ clusters in Figure 5.3d,e respectively. 53

5.2 Determination of Cu oxidation state from adsorbed CO vibrational frequencies and DDEC6 charge analysis. Shown are adsorbed CO vibrational frequencies and assigned oxidation state of the Cu atom(s) bonding to the CO. DDEC6 charges are given for each Cu atom in the cluster. The DDEC6 charge analysis is for the bare clusters (no adsorbates present). The bold numbers indicate charges/oxidation states of the same Cu atom(s) from the vibrational analysis. 76

A.1 Effect of TiO$_2$ slab thickness on the adsorption energies (in eV) of a Cu atom, linear CO$_2$, and bent CO$_2$. See main text for geometries. 165

A.2 DDEC6 and Bader charges calculated using CP2K and VASP for bulk and molecular systems. 167

A.3 Continued: DDEC6 and Bader charges calculated using CP2K and VASP for bulk and molecular systems. 168
A.4 Effect of cutoff energy, number of relaxed atoms during frequency calculations \((N_{\text{relaxed}})\) and step size on calculated frequencies. All calculations for adsorbed CO\(_2\) were on pure TiO\(_2\) surfaces, while adsorbed CO were on Cu/TiO\(_2\) surfaces. * indicates the experimentally observed Fermi resonance that shifts the bending frequency to a higher 1271 cm\(^{-1}\) value\(^{10,11}\). This resonance is not correctly described by the DFT calculations.

A.5 Relative energies (in eV) with respect to the most stable spin state. Zero relative energy correspond to most stable spin state.

A.6 DDEC6 charges of linear/bent CO\(_2\) and Cu atoms using the DFT and DFT+U methods. Here, a U correction of 10 eV was applied to the Ti 3d electrons.

A.7 DDEC6 charges (in electrons) for Cu\(^{2+}\) and Cu\(^{1+}\) complexes, as well as CuF/CuF\(_2\) and CuO/CuO\(_2\) (bulk and molecule).

A.8 Continued: DDEC6 charges (in electrons) for Cu\(^{2+}\) and Cu\(^{1+}\) complexes, as well as CuF/CuF\(_2\) and CuO/CuO\(_2\) (bulk and molecule).

B.1 Various descriptors and their values used in the regression and in the Lasso shrinkage models for metal adsorption and CO\(_2\) adsorption. References for the source of the data are given in the column headings.

B.2 Summary of linear regression models for predicting transition metal atom adsorption energies using various descriptors. R\(^2\) values for models with the descriptors are given.

B.1 Continued. Various descriptors and their values used in the Lasso shrinkage model and regression. M refers to the transition metal atom and M/TiO\(_2\) refers to metal atom adsorbed on TiO\(_2\).

B.1 Continued. Various descriptors and their values in the Lasso shrinkage model and regression. M refers to the transition metal atom.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.3</td>
<td>Metal adsorption energies at the PBE level and difference in adsorption energies (compared to PBE) at three other levels of theory (PBE+U, PBE+D3, and PBE+D3+U). Also given are the average differences, standard deviations of the average differences, mean absolute differences (MAD), standard deviations of the absolute differences, and squared correlation coefficients compared to the PBE results.</td>
</tr>
<tr>
<td>B.4</td>
<td>Summary of linear regression models with one descriptor compared to the bent CO$_2$ adsorption energies. R^2 values for the linear regression of various descriptors compared to the adsorption energy of bent CO$_2$ on M/TiO$_2$.</td>
</tr>
<tr>
<td>B.5</td>
<td>Various descriptors and their values used in the regression and in the Lasso shrinkage models for post transition metal atom adsorption. References for the source of the data are given in the column headings.</td>
</tr>
<tr>
<td>B.6</td>
<td>Linear regression using various descriptors to estimate the bent CO$_2$ adsorption energies on TiO$_2$ supported post-transition metal atoms.</td>
</tr>
<tr>
<td>C.1</td>
<td>Adsorption energies of M$_x$O$_y$ clusters on TiO$_2$.</td>
</tr>
<tr>
<td>D.1</td>
<td>Solvation energies $\Delta E_{\text{solv}}(X^)$ in eV for Pt surface with different adsorbates. Values of $\Delta E_{\text{solv}}(^)$ and $\Delta E_{\text{solv}}(X)$ for the different codes are discussed in the text. Scheme D.1 and Equation D.3 provide a description of these different variables.</td>
</tr>
<tr>
<td>E.1</td>
<td>Adsorption energies (in eV) of different species calculated with VASPsol at two cutoff energies.</td>
</tr>
<tr>
<td>E.2</td>
<td>Adsorption energies (in eV) in vacuum and implicit solvation calculated using different k-point meshes with VASP.</td>
</tr>
<tr>
<td>E.3</td>
<td>Total energies (in Hartree) of Pt(111) clusters calculated using the B3LYP and PBE exchange-correlation functionals at different spin states.</td>
</tr>
</tbody>
</table>
E.4 Solvation energies of free adsorbate ($\Delta E_{\text{solv}}(X)$) using three different solvation models

All three solvation models show comparable solvation energies.

E.5 A summary of adsorbate states and properties as calculated in our work

All energies are in eV, except for the calculated Bader charge (q).

xxii
Chapter 1

Introduction

Annual carbon dioxide atmospheric emissions were estimated to reach a new high at 41.6 billion metric tonnes in the year 2017. Such high levels of carbon dioxide in the atmosphere bring risks associated with climate change and eventually human health. Large-scale technologies for carbon capture and storage (CCS) have high costs associated with lowering carbon dioxide concentrations in the environment. Complementary technologies for carbon dioxide utilization, such as catalytic conversion of CO\(_2\), direct utilization (e.g. in the food and beverage industry as a carbonating agent), and enhanced oil recovery can be powerful ways to lower the carbon footprint in our environment. Specifically, catalytic conversion can generate valuable chemicals and fuels, such as methane and methanol, through CO\(_2\) reduction. Suitable catalysts that carry out CO\(_2\) reduction in the presence of sunlight (photocatalysis) can enable processes that are clean, green, and renewable.

The challenge of CO\(_2\) photoreduction lies in finding a suitable photocatalyst which can convert CO\(_2\) with high yield and selectivity. Recent papers have shown that highly dispersed transition metal atoms or clusters on support materials, such as TiO\(_2\) and Al\(_2\)O\(_3\) can be active catalysts for CO\(_2\) reduction to CO, CH\(_3\)OH, and CH\(_4\). In Chapter we discuss the CO\(_2\) photoreduction activities of highly dispersed monoatomic Cu supported on TiO\(_2\).
We collaborated with the group of Professor Gonghu Li, who performed experiments on Cu/TiO$_2$ photocatalysts, while we modeled such catalysts. Using density functional theory (DFT), a molecular modeling technique, we determined that the interfacial sites between Cu and TiO$_2$ are active sites for activating the CO$_2$ molecule. The activation of the CO$_2$ molecule is one of the early and important steps in the complete CO$_2$ reduction, since activation of CO$_2$ by one electron reduction is an energetically (redox potential CO$_2$+e$^-$ \rightarrow CO$_2^-$ is -1.90 V vs RHE7) very unfavorable. In Chapter 5 we extended our DFT studies to understand CO$_2$ activation on Cu clusters with 1-4 atoms supported on TiO$_2$. We found that over all Cu clusters CO$_2$ was activated. Interestingly, the Cu dimer showed the largest activity for CO$_2$ activation owing to the unstable nature of Cu dimer, indicating a possible very active photocatalyst. In the subsequent Chapter 6 we screened potential photocatalysts for CO$_2$ reduction by modeling metal atoms adsorbed on TiO$_2$. We considered 29 transition metal and 8 post transition metal adatoms supported on TiO$_2$. Of all the catalysts, early transition metals activated CO$_2$ the largest indicating potential new catalysts, and explaining important trends in atomic catalysts.

Often during catalyst synthesis or under reaction conditions, oxidizing agents such as oxygen or water are present. Unless the reaction is controlled to eliminate oxidation reactions, the supported metal catalyst may undergo oxidation. In Chapter 7 we study the role of reaction environment (such as oxygen and water) on the oxidation of TiO$_2$-supported late transition metal catalysts (Co, Ni, and Cu groups in the periodic table). For Cu/TiO$_2$ catalysts, we find that the thermodynamics of the oxidation by molecular oxygen is favorable. However, the availability of oxygen atoms through dissociation of O$_2$ limits the full oxidation of the supported Cu atom/cluster. We find that Cu clusters readily dissociate O$_2$, while lone Cu atoms cannot dissociate O$_2$. The kinetics of O$_2$ dissociation may thus lead to Cu$^{1+}$ not Cu$^{2+}$ being the dominant Cu species. In the final Chapter 8 is a summary of all the findings from the aforementioned projects.
Bibliography

Chapter 2

Background

2.1 Carbon dioxide conversion

Continued increasing levels of CO₂ in the atmosphere have dangerous global implications in terms of climate change and ocean acidification. Annual CO₂ emissions have been estimated to reach 41.6 billion metric tonnes in the year 2017.¹ A major portion of these emissions are from human-based industrial activities that contribute to ever-increasing levels of CO₂ in the atmosphere. Global emissions of CO₂ by burning coal and fossil fuels have reached 36.8 billion metric tonnes in 2017 (or 88.5% of total emissions).¹ The emitted CO₂ resides in any of three carbon sinks, including the atmosphere (45 %), land (30 %), or ocean (25 %). The high CO₂ emissions could result in harmful consequences to the environment and agriculture in terms of poor air and food quality which can have direct implications on human, plant, and animal life.

One of the common strategies to reduce CO₂ levels is through carbon capture and storage (or sequestration). However, current levels of CO₂ production are more than 150 times higher than the sum of current sequestration capacity and CO₂ utilization efforts.² Wilcox and coworkers have also reported several studies indicating the difficulties in carbon capture and
storage technologies. For instance, CO₂ capture from low CO₂ concentration streams (such as air) is energy-intensive, suffers from low purity of the captured CO₂, and is economically expensive when compared to high concentration streams (such as exhaust of coal fired plant). Therefore, other technologies such as catalytic conversion of CO₂ to useful fuels can be valuable for utilizing and removing excess amounts of CO₂.

2.2 Heterogeneous catalysis of CO₂ to fuels

CO₂ reduction is a process of converting CO₂ to products such as CH₃OH and CH₄, often with a suitable source of H (H₂ or H₂O for instance). In the process of CO₂ (O=C=O) reduction to CH₄ or CH₃OH, two C=O bonds need to be cleaved and several C-H, C-O bonds, and O-H bonds need to be formed. Since CO₂ is stable closed-shell molecule, the energy required to cleave the bonds in CO₂ is very large. The other big challenge in CO₂ is to selectively cleave and form necessary bonds during CO₂ reduction such that the selectivity towards the desired products like CH₄ or CH₃OH is high. For instance, once C-O bonds are cleaved in CO₂, C-H, C-O, or O-H bonds may need to be formed to produce CH₄ or CH₃OH. A suitable catalyst which lowers the energetic costs for the reduction reaction and provides selectivity forms the basis for an ideal CO₂ reduction catalyst. Heterogeneous catalysts are especially attractive owing to the ease of separation of heterogeneous catalysts from reaction products (unlike the case of homogeneous catalysis).

Some common routes to reduce CO₂ to valuable chemicals and fuels are through thermal catalysis, electrocatalysis, and photocatalysis. In conventional thermal catalysis, elevated temperatures act as the driving force for the catalytic reactions. The thermal energy provides the energy required to break or form necessary bonds for the reduction of CO₂ to useful fuels. Electrocatalytic conversion of CO₂ to fuels has been also widely studied. Here a set of metal electrodes in contact with a liquid electrolyte forms a cell. An external source of current
drives the CO₂ electrochemical reduction at the surface of metal electrodes. In the case of photocatalysis, photons from sunlight act as the driving force for generating electron-hole pairs in a semiconductor, which participates in the redox chemistry of CO₂ reduction. Photocatalysis has an advantage over thermal catalysis, because typically photocatalysis occurs at room temperatures which eliminates the requirement for external energy sources. CO₂ photocatalysis is also renewable and clean due to the use of sunlight. One of the prototypical and widely used photocatalysts is titanium dioxide (TiO₂), which is used for various applications, such as self-cleaning surfaces, water purification, air purification, and transparent conducting oxides. TiO₂ gained significant attention after Fujishima and Honda reported the electrochemical photolysis of water using TiO₂. TiO₂ is also inexpensive, chemically stable, and non-toxic.

CO₂ reduction using photocatalysts such as TiO₂ is a complicated reaction due to the
possibility of a variety of intermediates and products, depending upon the number of electrons and/or holes that participate in reduction of CO₂. Shown in Equations 2.2 - 2.7 are different possible CO₂ reduction products. Figure 2.1 shows the redox potentials of CO₂ reduction products compared to the corresponding conduction band minimum and valence band maximum energy levels of TiO₂. The redox potential indicates the tendency of a species to be reduced or oxidized. A large negative redox potential indicates a low tendency of the species to be reduced since electrons must have high energy (negative potential) to reduce the molecule. Electrons from a semiconductor may transfer from the conduction band to the appropriate redox potential to reduce the molecule on the semiconductor’s surface. Equation 2.2, the one electron reduction of CO₂ to form a CO₂⁻ anion, has a very high reduction potential of -1.90 V, which is much more negative than the conduction band minimum energy level of several different semiconductors. This indicates that the formation of CO₂⁻ is an energetically unfavorable process since the electron must move energetically uphill from an excited conduction band state to transfer to CO₂. On the contrary however, the other reduction products in Equation 2.3 - 2.7 have reduction potentials in the range of -0.61 V to -0.21 V, which are closer to the conduction band minimum energy level of TiO₂. This shows that the latter products are much easier to form thermodynamically compared to the single electron reduction of CO₂ to CO₂⁻.
\[\text{CO}_2 + e^- \rightarrow \text{CO}_2 \quad (2.1) \]
\[\text{CO}_2 + 2H^+ + 2e^- \rightarrow \text{HCOOH} \quad (2.2) \]
\[\text{CO}_2 + 2H^+ + 2e^- \rightarrow \text{CO} + \text{H}_2\text{O} \quad (2.3) \]
\[\text{CO}_2 + 4H^+ + 4e^- \rightarrow \text{HCHO} + \text{H}_2\text{O} \quad (2.4) \]
\[\text{CO}_2 + 6H^+ + 6e^- \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O} \quad (2.5) \]
\[\text{CO}_2 + 8H^+ + 8e^- \rightarrow \text{CH}_4 + 2\text{H}_2\text{O} \quad (2.6) \]
\[2H^+ + 2e^- \rightarrow \text{H}_2 \quad (2.7) \]

For a complete redox cycle, reduction and oxidation must occur. The other half of the CO\textsubscript{2} reduction catalytic cycle is the oxidation of water by photogenerated holes. Oxidation of water to generate O\textsubscript{2} as per Equation \ref{eq:2.8} is thermodynamically favorable on TiO\textsubscript{2}, since the valence band maximum lies more positive (lower) in energy than the redox potential of water at 0.82 V.\cite{12} Holes tend to move to more negative potentials, or from the semiconductor valence band edges to oxidize water. Although thermodynamically favorable, the requirement of 4 holes per O\textsubscript{2} produced during oxidation of water makes the water oxidation process also challenging,\cite{13} similar to CO\textsubscript{2} reduction process. This dissertation focuses on the CO\textsubscript{2} reduction reaction, rather than both CO\textsubscript{2} reduction and water oxidation.

\[2\text{H}_2\text{O} + 4h^+ \rightarrow \text{O}_2 + 4H^+ \quad (2.8) \]

2.3 TiO\textsubscript{2} Photocatalysts

TiO\textsubscript{2} has three common polymorphs, namely rutile, anatase, and brookite. The popular commercially-used Degussa P25 consists of primarily anatase (70 %) and 30 % rutile.
Anatase is the more stable and typically catalytically active polymorph of TiO$_2$ for nanoparticles below ~ 14 nm. Several aspects, such as polymorph choice, types of exposed surface facets, and defects in TiO$_2$ have been studied for CO$_2$ photoreduction. For instance on pure TiO$_2$-based catalysts low photoreduction and quantum yields (of $\sim 55 \mu$mol/g and 0.31 % respectively) for CO$_2$ reduction to CO, CH$_3$OH, and CH$_4$ have been reported. The CO$_2$ reduction product yields and selectivity control of the products are very low for commercial applications, which underscores the need for more work in this area.

Modifying pristine TiO$_2$ by addition of metal atoms, clusters, or nanoparticles has shown improved catalytic activities for CO$_2$ reduction with relatively high yields and efficiencies compared to pristine TiO$_2$. Several interesting aspects of these oxide-supported metal catalysts could lead to increased CO$_2$ reduction activity. One possible explanation is that the presence of a co-catalyst with the TiO$_2$ (such as Pt, Au, Pd, or Cu) resulting in lowering electron hole recombination. Recombination is a dominant phenomenon in photocatalysis (and photovoltaics), where a photogenerated electron combines with photogenerated hole to generate heat or radiation instead of participating in the catalytic reaction. Thus less recombination can improve the photocatalytic performance. The strong metal-support interactions could also stabilize metal clusters of various sizes on the support which could expose under-coordinated metal atoms, which are also correlated with improved catalytic activities. In the case of CO$_2$ reduction, Cu is one of the most promising and inexpensive cocatalysts on TiO$_2$. Cu/TiO$_2$ has been found to reduce CO$_2$ to CO and methane with similar activity compared to precious metals such as Au or Pt.
2.4 Atomically Dispersed supported metal catalysts for CO$_2$ reduction

Supported metal catalysts are widely used for catalytic applications such as Fischer-tropsch reactions, three-way catalyst for CO oxidation in automobile exhaust, methanol production from syngas, and several other redox reactions. Supported metal particles conventionally span few to hundreds of nanometers in size. These larger nanoparticles contain a large number of atoms, where most of the catalysis occurs on the surface, edge, or corners atoms of these nanoparticles. Most of the bulk atoms within such nanoparticles are not utilized for catalysis, which is inefficient and could waste expensive catalysts. The fraction of active sites in such a nanoparticle is small. The maximum achievable limit of the fraction of active sites becomes one when supported single atoms are used instead of nanoparticles. Depending upon the distribution of single atoms on the support, the catalysts can be termed either atomically dispersed supported metal catalyst (ADSMC) or a single atom catalyst (SAC). An ADSMC consists of monomers along with other larger clusters such as dimers, trimers, clusters, etc. while a SAC contains only monomers on the support (see schematic in Figure 2.2).

ADSMC and SAC are reactive in nature and they tend to aggregate to form larger clusters or nanoparticles. In order to stabilize these atomically dispersed metal atoms, several strategies have been reported in the literature, such as lowering the metal loading, increasing the interactions with the support, or utilizing reactive defect sites such as oxygen vacancies in oxides. Flytzani-Stephanopoulous and coworkers have reported the important role surface oxygen atoms to stabilize atomically dispersed catalysts through metal-oxygen linkages. Although, low metal loading is beneficial to stabilize atomically dispersed catalysts, Liu et al. reported a photochemical approach for increasing the metal loading (from a typical \sim0.5 % to 1.5 %) in Pd$_1$/TiO$_2$ with minimal metal aggregation. Pd1Cl$_2$/TiO$_2$ can be easily prepared by wet chemistry synthesis where a metal precursor (H$_2$PdCl$_4$) reacts with TiO$_2$.

10
Figure 2.2: Schematic of dispersed atomic-size Cu (a,b) and a representative nanoparticle of of 1nm size containing 55 Cu atoms (c,d) deposited on TiO$_2$. Side view with a ball and stick model (a, c) and top view with periodically repeated space filling model (b,d) of Cu/TiO$_2$ catalysts. (a,b) represent dispersed atomic-size catalysts showing monomers (M), dimers (D), and trimers (T). Ti, O, and Cu are shown in blue, red, and gold spheres, respectively.

dispersed in water. Liu et al.38 reported that the Pd$_1$Cl$_2$ \rightarrow Pd$_1$ species formation can easily occur under UV light irradiation.

There are several examples in literature where atomically dispersed supported metal catalysts have demonstrated high catalytic activities for a variety of reactions such as CO oxidation, CO$_2$ reduction, water gas shift, H$_2$ evolution, and dehydrogenation reactions.$^{21,33,34,36,39–45}$ Several techniques have been used to synthesize atomically dispersed supported metal catalysts. (i) Mass/size selected soft-landing of metal clusters. Here, a magnetron sputtering source forms ion clusters from a gas phase metal cluster, which is passed through a mass selection filter and finally deposited on support materials. The technique is called soft-landing as the deposition energy of clusters are <0.2 eV per atom.39 (ii) Leaching of metals from nanoparticles. This technique by Flytzani-Stephanopoulous and coworkers uses cyanide-based solutions to leach out atoms from larger clusters or nanoparticles to form atomically dispersed metal atoms on the support. (iii) Solution deposition of metals. In our previous work we reported on the simple redox chemistry between Sn and Cu (Sn$^{2+}$ +
Cu\(^{2+}\) → Cu + Sn\(^{4+}\)), where the Sn\(^{2+}\) was on a TiO\(_2\) support. The Cu was exchanged with the Sn to produce highly dispersed on TiO\(_2\).\(^{22}\) Other techniques use solutions with metal cations to deposit metals on support. See Refs.\(^{33,46}\) for other synthesis techniques.

CO\(_2\) reduction has been studied by several research groups using atomically dispersed supported metal catalysts. Liu et al.\(^{47}\) showed that Cu\(_4\) clusters on amorphous Al\(_2\)O\(_3\) exhibited high activities for CO\(_2\) reduction to methanol. They attributed the large activity to the presence of metallic Cu species present on the support. Similarly, CO\(_2\) reduction to methanol was reported by them in another work where they studied size dependent CO\(_2\) reduction using Cu\(_n\)/Al\(_2\)O\(_3\) (n=3,4,20) catalysts.\(^{48}\) They found Cu\(_4\) to show the best CO\(_2\) reduction activity. Kwak et al.\(^{45}\) and Matsubu et al.\(^{43}\) have reported the reduction of CO\(_2\) to CO using atomically dispersed Pd on Al\(_2\)O\(_3\) and Rh on TiO\(_2\), respectively. The catalytic effect of interfacial sites or undercoordinated supported metal clusters using theoretical techniques such as density functional theory (DFT) has also been reported for CO\(_2\) activation, dissociation, and hydrogenation on supported metal clusters such as Pt, Ag, Ni, Cu, Cu, Co, and Rh.\(^{48–54}\) Atomically dispersed supported metal catalysts have had a surge of interest in other catalytic reactions such as CO oxidation, hydrogenation, and water gas shift.\(^{33,37,40,41,44,55–57}\) It should be noted that a lot of work focuses on depositing late transition metal atoms on a support. As we will show in Chapter 6, early or mid transition metal atoms (which are also abundant and inexpensive) can also be catalytically active atomically dispersed supported metal catalysts.

Theoretical techniques such as DFT are essential for better understanding the metal-support interactions that determine how atomic/cluster species may diffuse and aggregate to form larger nanoparticles (thereby lowering the activity per metal atom). Alghannam et al. studied the diffusion of metal atoms on TiO\(_2\) surface.\(^{58}\) They reported that the activation barrier for adatoms in this order: Au < Ag < Cu < Pt < Rh < Ni < Co < Fe. These results suggest that the late transition metal adatoms can diffuse over the TiO\(_2\) surface more than
the earlier transition metal atoms. Several other papers report the growth mechanisms from single atom catalysts to metallic clusters of larger sizes on TiO$_2$ anatase(101).59-68 For instance, strong adsorption energies of Ag$_n$ and Pt$_n$ were reported for $n > 3$ and 1 respectively, which was reported to result in less tendency of these clusters to sinter and form larger clusters (range of n studied was ≤ 8).59

2.5 Reaction conditions and stability of atomically dispersed supported metal catalysts

Atomically dispersed supported metal catalysts have high chemical potential69 such that there is a large tendency of these atomic-size species to aggregate or react with molecules under reaction/synthesis conditions. Typical synthesis and/or reaction conditions of atomically dispersed supported metal catalysts often result in oxidized metal species on support due to the presence of O$_2$ or H$_2$O. Depending upon the reaction environment the atomically dispersed supported metal catalysts may also undergo reduction due to the presence/treatment with H$_2$ as has been shown previously for supported metal nanoparticles47 and supported metal clusters.47 Several authors showed that depending upon the reaction conditions and reaction environment, both metallic and oxidized states of atomically dispersed species can exist and be responsible for high catalytic activity.22,33,41,43,47,70

Oxidized atomically dispersed supported Pt catalysts have been reported to be more active than metallic species for CO oxidation.33,41,57 Oxidized silver trimers on alumina were also reported to be catalytically active for propylene epoxidation.71 Single Pt atoms at high loading (1 wt%) were reported to be stabilized by Pt-O bonds in a square planar geometry on a phosphomolybdic acid modified carbon support.72 Such a Pt-O geometry resulted in Pt being positively charged and exhibited good activity for nitrobenzene and cyclohexanone hydrogenation. In contrast, for CO$_2$ reduction the active state of Cu tetramer supported
on alumina was reported to be a metallic state.\cite{17} Based on these studies and also other literature work by the groups of Stefan Vajda, Flytzani-Stephanopolous, Abhaya Datye, Phillip Christopher, Scott Anderson, Gonghu Li and others, different reaction synthesis techniques, operating reaction conditions, size of supported atom/cluster, type of support material, and the catalytic reaction under investigation can all contribute to the active site being either metallic or oxidized. With the potential high activity of atomically dispersed supported metal catalysts for various catalytic reactions, it is quite important to understand the role of oxidation state of adsorbed metal atoms or clusters on stability and reactivity.

Bibliography

Chapter 3

Theoretical Background

3.1 Schrödinger’s equation

The interactions between atomic and sub-atomic particles as well as other corresponding phenomena can be explained by the laws of quantum mechanics. The fundamental equation governing quantum mechanics was put forward in 1926 by Erwin Schrödinger. It consists of the Hamiltonian operator \hat{H}, electronic wavefunction ψ, and the energy E corresponding to the system described in the Hamiltonian (equation 3.1). The Schrödinger equation is an eigenproblem, where E is the eigenvalue and ψ_i is the eigenvector. The wavefunction, ψ_i, is a function that describes the system of study and in principle can be used to derive properties of the system. For describing atoms, molecules, and solids, \hat{H} consists of the potential and kinetic energy contributions of electrons and nuclei (equation 3.2). The \hat{H} thus contains, in order, the kinetic energy of electrons, kinetic energy of nuclei, the potential energy of all electrons interacting with nuclei, the potential energy of all nuclear-nuclear interactions, and the potential energy corresponding to all electron-electron interaction. Here i,j runs over n electron system, while k and l runs over M nuclei system. This equation is reduced to a relatively simpler equation 3.3 using the Born-Oppenheimer approximation. This approxi-
mation is based on the fact that the electronic mass is much lighter (by at least 1800 times) than the mass of a proton or neutron in a nucleus. This allows the simplification of the Hamiltonian, \(\hat{H} \), to only consider the electronic interactions and electronic kinetic energy, while the nuclei are kept fixed during the solution of Schrödinger’s equation in Equation 3.3. Note that application of Born-Oppenheimer approximation results in the second term in Equation 3.3 consisting of only the kinetic energy of electrons, electron-electron interactions, and electron-nuclear interactions.

\[
\hat{H} \psi = E \psi
\]

\[
\left[-\sum_i^n \frac{\hbar^2}{2m} \nabla_i^2 - \sum_k^M \frac{\hbar^2}{2M_k} \nabla_k^2 - \sum_i^n \sum_k^M V(r_{ik}) + \sum_k^M \sum_{l \neq k} V(r_k, r_l) + \sum_{i=1}^n \sum_{j \neq i} V(r_i, r_j) \right] \psi = E \psi
\]

Equation 3.3 is an eigenvalue problem, where the eigenvector is the wavefunction \(\psi \) and eigenvalue is the ground state energy of the system. Here, the solution of the wavefunction is calculated, which can become computationally challenging for multi-electron system. For instance, a \(\text{H}_2 \) molecule contains two electrons such that \(\psi \) is a six dimensional function (three coordinates, xyz, for each electron). Another simple molecule such as \(\text{CO}_2 \), has a \(\psi \) that is now a function of 66 variables (three variables for each electron). Thus, solving Schrödinger’s equation for a large molecule or collection of smaller molecules (~100 atom) becomes a computationally formidable task. Another important challenge in calculating the ground state of a multi-electron system is that the electrons are correlated. Electron correlation is due to the fact that when one electron moves spatially, all the other electrons can potentially change their spatial coordinates too (thereby changing the potential felt by
the first electron that moved). Since electrons are correlated, the solution of the Schrödinger equation of any electron is influenced by solution of Schrödinger equation of other electrons. This is called the many body problem, and since the exact form of such electron correlation is difficult to solve, solution of Equation 3.3 becomes computationally impractical for large systems.

3.2 Density functional theory

The electron density, or probability of an electron being a certain place in space, is related to the wavefunction by equation 3.4. The electron density is a function of the spatial coordinates, x, y, and z. Thomas-Fermi, in 1927, showed that the energy of a system can be obtained as a functional of electron density alone. A functional is a mathematical quantity that produces a scalar value (energy) from a given function (electron density). In the present context, the energy is a functional of the electron density, $E[n(r)]$, and the electron density is a function of spatial coordinates. Thus, for a given electron density functional, the energy of a system (a scalar value) can be calculated. This paved way for the modern, so called density functional theory (DFT). In 1964, Walter Kohn and Pierre Hohenberg proved two important theorems:

Theorem 1: The ground state energy from Schrödinger’s equation is a unique functional of the electron density.

Theorem 2: The electron density that minimizes the energy of the overall functional is
the true electron density corresponding to the full solution of the Schrödinger equation.

\[
n(r) = \int \psi \psi^* \, dr \tag{3.4}
\]

\[
\hat{h} \psi_i = \varepsilon_i \psi_i \tag{3.5}
\]

\[
\left[-\frac{\hbar^2}{2m} \nabla^2 + V(r) + V_H + V_{XC} \right] \psi_i = \varepsilon_i \psi_i \tag{3.6}
\]

\[
V_{\text{eff}} = V(r) + V_H + V_{xc} \tag{3.7}
\]

\[
E = \sum_i \varepsilon_i \quad \psi = \prod_i \psi_i \tag{3.8}
\]

Although theorem 1 said that there exists a unique functional of the electron density, the true functional was still unknown. A year later Walter Kohn and Liu Sham reported approximations for this true functional and the governing self consistent equations for DFT or Kohn-Sham equations (equation 3.6) to find the ground state energy of a system. The functional was approximated as the sum of a kinetic energy functional of non-interacting electrons, a functional of the electron-electron interactions, a functional of the electron-nuclei interactions, and an exchange correlation functional. The exchange and correlation functional captures the corrections to the approximations made in the energy functional (explained further in the next paragraph). Finding the true exchange correlation functional is the greatest challenge with DFT, as the exact form of the exchange correlation interactions is not known. Improving exchange correlation functionals is an active area of research (see Reference 3 for their performance over the past few decades). Overall, the Kohn-Sham equations are solved for the energy and wavefunction of each electron (rather than all the electrons as in Schrödinger’s equation). The overall energy of the system and the wavefunction is then given by the sum of energy of each electron and Hartree product respectively (see Equation 3.8).

The terms in the Kohn-Sham equations (Equation 3.6) are the kinetic energy, electron-
nuclei potential, Hartree potential (electron-electron interactions), and exchange correlation potential. The kinetic energy of the electrons are approximated by the kinetic energy functional of non-interacting electrons. Because in a realistic system electrons are interacting, the correction to this non-interacting kinetic energy of electrons is accounted for in the exchange correlation potential. The electron-nuclei potential is an attractive Coulombic potential represented as the sum of electron-nuclei interactions. The Hartree potential accounts for the repulsive Coulombic electron-electron interactions. The last term takes into account the neglected interactions (or corrections) of all the previous terms in the form of electron exchange and electron correlation interactions. Physically, the electron exchange (or Pauli repulsion) describes the energy associated with two electrons occupying the same spatial site with degenerate electron energy levels. This is a consequence of the Pauli exclusion principle that up spin and down spin electrons are distinguishable. Note that in DFT, the exchange potential is approximated using the homogeneous electron gas model. The exchange interactions are incorrectly modeled as the homogeneous electron gas model results in the exchange interactions also including spurious correlation effects. In order to model the exchange interactions correctly, exchange interactions are typically modeled using exact exchange such as the Hartree-Fock exchange. The electron correlation effects are due to the fact that when one electron moves spatially, all the other electrons can potentially change their spatial coordinates too. DFT does not describe this connection (or correlation) between electrons because it describes all the electrons by mean field potentials that change iteratively in response to other electrons.

The exchange correlation functional is key to density functional theory because it is the correction term that determines the accuracy of the method. Popular exchange correlation functionals such as local density approximation (LDA) and generalized gradient approximations (GGA), including the popular Perdew-Burke-Ernzerhof (PBE) functional, exist that approximate the exchange correlation interactions. In the LDA, the electron density at
a specified position (a small volume of in the unit cell) is assumed to be a function only of the electron position (Equation 3.9). This approximation can sometimes work well as the electron density in systems like solid materials can be a slowly varying function of the spatial coordinates. The exchange and correlation interactions ($E_{XC} = E_X + E_C$) are described by the homogeneous electron gas model. The homogeneous electron gas model includes non-interacting electrons moving in an average constant potential and coulomb repulsion between the electrons. The exchange energy (E_X) for a homogeneous electron gas has a simple analytical form that depends on electron density n as $n^{3/4}$. For the correlation energy (E_C), numerical techniques such as those reported by Ceperley and Alder [7] using Monte Carlo methods for a ground state solution of electrons are used to calculate the energy. In the case of the GGA, the exchange correlation energy also includes the gradient of the electron density as shown in Equation 3.10. This gives for instance improved predictions of binding energies of atoms and molecules in solids comparable to experimental values. More details about exchange correlation functionals can be found in Chapter 8 in Ref[8] and Chapter 3 in Ref[9].

\[
E_{\text{LDA}}^{\text{XC}} = \int n(r)\varepsilon_{\text{XC}}[n(r)] \, d^3r \tag{3.9}
\]

\[
E_{\text{GGA}}^{\text{XC}} = \int n(r)\varepsilon_{\text{XC}}[n(r), \nabla n] \, d^3r \tag{3.10}
\]

Hohenberg-Kohn’s second theorem showed that the true electron density results in a minimum of the overall energy functional. However, both the true electron density and the effective potential V_{eff} (sum of electron-ion, hartree, and exchange correlation potentials as shown in Equation 3.7) depend on each other. Therefore, in practice the minimization procedure to find the ground state energy involves an initial electron density guess followed by search for a self-consistent solution of the electron density and effective potential (Figure 3.1).
After the initial guess of the electron density, an V_{eff} is constructed, which enters the KS equations. The solution of the KS equations gives the eigenvectors (wavefunctions) and eigenvalues (energies) for all the electrons in the system. Based on Equation 3.4, the wavefunctions obtained from KS solution generates a new electron density. This new electron density is now used for the second (and subsequent) iterations to ultimately find the ground state energy of the system.

Solving the DFT equations involves computer, numerical solutions, rather than analytical solutions. To do so a form or mathematical equation must be assumed for the wavefunctions. The wavefunctions are commonly described in terms of localized Gaussian basis sets or by periodic plane wave basis sets. The Gaussian basis sets are a common choice when working with computational chemistry based problems where the task is to describe a non-periodic molecular system. In contrast, plane waves are well suited for describing solid materials (materials with periodic unit cells), which require periodic properties. Typical localized Gaussian functions are of the form $\exp(-x^2)$, while periodic basis sets are of the
form \(\exp(i\mathbf{x}) = \cos(x) + i\sin(x) \) (\(i \) represents the imaginary unit). Detailed information on this can be found in Chapter 1 in Ref.10

Chemical bonding and reactions involve primarily the valence electrons of the atoms. Therefore, solving the KS equations for the core electrons is not chemically meaningful and at the same time can make computations impractical due to solving the KS equation for too many electrons. For instance, a 100-atom supercell of Pt (78 electrons per atom) would require solving the set of KS equations for 7800 electrons. In contrast, pseudopotentials can reduce the number to 1000, where the 68 core electrons are replaced by pseudopotentials.10 This has led to the widespread use of pseudopotentials, where the core electrons’ influence is mimicked by a pre-calculated potential derived in an atomic environment. This potential is then suitably combined with the valence electrons to describe the complete potential interactions in an atom. Several flavors of pseudopotentials exist such as norm-conserving, ultrasoft, and projector augmented wave pseudopotentials.10,12

3.3 Modeling Solids and Surfaces

Computational chemistry packages (such as NWChem13) are commonly used to model isolated molecular systems using localized Gaussian type basis sets. To model solids however, using a plane wave basis set is the most common approach. A plane wave basis set can be represented by a periodic function like \(Ae^{-iBx} \), while a Gaussian type basis set takes the form \(Ce^{-Dx^2} \). In these functions \(x \) is the spatial coordinate, while the constants \(A \) and \(C \) are determined by solving the KS equation. Constants \(B \) and \(D \) are pre-determined before the simulation. The solid (for instance bulk Pt in Figure 3.2) is simply described by a repeating cell of the material. This demonstrates the concept of periodic boundary conditions. The plane waves are used to describe the electron wavefunctions only in the cell. However due to periodic boundary conditions, an extended 3-dimensional bulk solid is modeled, since any
solution within the cell is repeated in infinite directions.

Periodic boundary conditions also allow one to model isolated molecules and 2-dimensional surfaces. This is shown in Figure 3.3. Because the electron density of isolated molecules approach zero far from the molecule, a large unit cell with well separated periodic images of this molecule represents an isolated molecule that can be described by plane waves. In the case of modeling surfaces, the surface normal direction of the cell is well separated by vacuum to avoid interactions between periodic images. This approach is the slab approach as the surface is described by infinite periodic 2-dimensional slabs, while the surface normal direction contains vacuum.
Bibliography

Chapter 4

CO$_2$ Reduction on Dispersed
Cu$_1$/TiO$_2$ catalysts

4.1 Introduction

Atomically dispersed supported metal catalysts form a new class of highly active and efficient catalysts.$^{[2]}$ Vajda and coworkers have shown that Cu based size-selective clusters deposited on support have shown good photocatalytic activity for CO$_2$ reduction to form methanol.$^{[3,4]}$ One of the important and energetically unfavorable reaction step in CO$_2$ reduction is the CO$_2$ activation step,$^{[5,6]}$ where a linear CO$_2$ undergoes electron reduction to form a bent CO$_2$ ($\sim 130^\circ$). Therefore, a catalyst that stabilizes bent CO$_2$ is favorable for CO$_2$ reduction reaction.

Supported Cu based catalysts (atoms, clusters and nanoparticles) have been reported to reduce CO$_2$ to form CO, methane, and methanol.$^{[3,7,9]}$ However, atomic level understanding from theoretical modeling is still lacking. In this present work, we modeled atomic Cu supported on TiO$_2$ to simulate the atomically dispersed Cu/TiO$_2$ photocatalyst that was
experimentally found to reduce CO$_2$ to CO with high catalytic activity compared to pure TiO$_2$.

4.2 Methodology

Periodic density functional theory (DFT) simulations of Cu/TiO$_2$ systems were performed using the Vienna ab initio simulation package. All calculations were conducted as spin-polarized. We specifically modeled a (1x2) supercell of the anatase (101) surface, which is the most stable anatase surface, with a single Cu atom adsorbed on the surface. The surface was treated by the slab approach and had \sim15 Å of vacuum between slabs. The surface slab consisted of six O-Ti-O trilayers (9Å thick) and had lattice vectors 10.4 Å by 7.6 Å parallel to the surface. The bottom two trilayers of the slab were frozen in bulk positions. The slab had a total of 24 Ti atoms and 48 O atoms. Similar models were used in previous DFT studies. A 2x2x1 k-point mesh was used in this study. All calculations used the PerdewBurkeErnzerhof exchange-correlation functional. The valence electrons were treated by a plane-wave basis set with a cutoff of 450 eV, while core electrons were treated by projector augmented-wave pseudopotentials with cores being: O ($1s^2$), Ti ($1s^22s^22p^63s^23p^6$), C ($1s^2$), and Cu ($1s^22s^22p^63s^23p^6$). This larger core for Ti has been shown to give very similar results compared to smaller electronic cores while allowing faster computational time. We applied the DFT+U correction method to Ti ($U_{\text{eff}} = 4.5$ eV) and Cu ($U_{\text{eff}} = 5$ eV) to improve electronic description. Similar values were used in previous works.

4.3 Results

Experimental results showed that the photocatalytic activity for reduction of CO$_2$ to form CO was much higher on Cu/TiO$_2$ compared to that on pure TiO$_2$ (see our published work in
Figure 4.1: Modeling results for CO$_2$ adsorption on (a) TiO$_2$ and (d and e) Cu/TiO$_2$. The calculated adsorption energies are (a) 0.25, (b) 0.05, (c) 0.06, (d) 0.23, and (e) 0.25 eV. Color code: Ti (gray), O in TiO$_2$ (red), Cu (dark yellow), O in CO$_2$ (magenta), and C (blue). Ref18 for details on the experimental results. In order to explain the observed experimental trends, we first calculated the most stable binding site of Cu atom on TiO$_2$. The most preferred site was found to be between two surface O atoms, in agreement with the work by Seriani et al.17 We modeled CO$_2$ adsorption over the bare anatase surface and over Cu/TiO$_2$, as shown in Figure 4.1. Other possible geometries were also investigated, but we report only the most stable results herein. On the anatase (101) surface, adsorption of CO$_2$ occurs preferentially on Ti atoms, with relatively weak binding energies (0.25 eV), which is similar to the previously reported value of 0.20 eV.19 When Cu is present on the surface, the binding is still relatively weak, but the presence of surface Cu atoms significantly stabilizes the adsorption of bent CO$_2$ (Figures 4.1e). This is important since the difficulty for single-electron CO$_2$ reduction originates from a possible large reorganization energy between the linear and bent configuration.6 Thus, the presence of Cu may contribute to stabilizing surface adsorption of CO$_2$ for subsequent photocatalysis.

After the photocatalytic CO$_2$ reduction, experiments showed that CO was adsorbed on Cu/TiO$_2$ catalysts as indicated by CO vibrational frequency shifts corresponding to adsorbed
Figure 4.2: Modeling of CO adsorption on TiO$_2$ and Cu/TiO$_2$. The calculated adsorption energies are (a) 0.36 eV on TiO$_2$ and (b) 1.04 eV on Cu/TiO$_2$.

CO. Consistent with experiments, modeling CO adsorption clearly showed that adsorption of CO was very stable on Cu/TiO$_2$ (Figure 4.2b) compared to that on pure TiO$_2$ (Figure 4.2a).

4.4 Conclusion

We studied CO$_2$ reduction over Cu/TiO$_2$ catalysts to understand the effect of Cu in improving the photocatalytic activity. The improved activity was attributed to the stabilization the bent CO$_2$ over linear CO$_2$ on Cu/TiO$_2$ catalysts when compared to pure TiO$_2$.

Bibliography

Chapter 5

CO₂ Reduction on Dispersed

Cu₁⁻₄/TiO₂ catalysts

5.1 Introduction

One approach to mitigating greenhouse gases like CO₂ is the conversion of such gases to other chemicals. Reducing CO₂ into chemical fuels such as methane and methanol can in principle help solve these environmental issues while also producing useful fuels. Photocatalytic conversion of CO₂ makes this process renewable and clean. Although photocatalytic reduction of CO₂ appears feasible, reported CO₂ conversion efficiencies have been low,¹⁵ limiting the potential of this process. More active photocatalysts are needed for commercialization of CO₂ conversion processes. TiO₂ is one of the widely used photocatalysts due to its low cost, chemical stability, and low toxicity.¹⁰ Metal-supported TiO₂ photocatalysts such as Cu/TiO₂ have attracted considerable interest due to several reports of promising CO₂ photoreduction activities.¹⁵⁻¹² Cu/TiO₂ catalysts have shown better selectivity for CO₂ photoreduction to methane with formation rates of methane comparable or larger than
Au/TiO$_2$ or Pt/TiO$_2$ photocatalysts. Moreover, the abundant availability and low cost of Cu makes Cu/TiO$_2$ a desirable photocatalyst for CO$_2$ photoreduction.

Dispersed Cu catalysts have shown strong reactivity for CO$_2$ photoreduction and water gas shift activity. Small clusters (i.e. less than 10 to 20 atoms) as catalysts are of especial interest due to several factors. Such small clusters adsorbed on a support have a high concentration of reaction sites, high activity to catalyst loading ratio, and possible favorable metal-support interactions. Several reports have appeared recently where supported single metal atom catalysts have been synthesized for several reactions like CO$_2$ reduction, H$_2$ evolution, NO removal, and CO oxidation. Other synthesis techniques such as the size-selected soft landing approach have also been successfully used to control the number of atoms in the cluster. Of particular interest for the present work are supported Cu clusters. Tanizawa et al. synthesized size-selected Cu$_3$ and Cu$_6$ clusters that were adsorbed on a TiO$_2$ rutile (110) surface. Vajda and coworkers synthesized Cu clusters between three and twenty atoms supported on Al$_2$O$_3$ that efficiently reduced CO$_2$ to methanol. Results using Cu$_5$ and Cu$_{20}$ clusters showed that Cu$_5$ resulted in CO$_2$ electrochemical reduction with lower overpotential compared to Cu$_{20}$. Well dispersed small Cu clusters and nanoparticles on TiO$_2$ rutile (110) surface with cluster heights less than around 0.5 and 1.0 nm were also found to be reactive for CO oxidation. Small Cu species with measured diameters of less than around 1 nm deposited on Ceria showed high conversion of dimethyl carbonate to methanol. Several other clusters consisting of noble metal atoms like Pt, Pd, Au, and Ag on the order of one to several tens of atoms have also been deposited on various supports. Previous work by the current authors highlighted photocatalysts for CO$_2$ reduction consisting of dispersed Cu atoms/clusters on TiO$_2$. Experimental work thus illustrates that small Cu clusters on metal oxide support can be synthesized as potential catalysts for CO$_2$ reduction.

CO$_2$ is a stable molecule and activation of the molecule is a key challenge for CO$_2$
reduction. The activation of CO$_2$ on metal oxides (such as TiO$_2$) has been of significant interest.33–39 The initial activation step is believed to occur through one electron reduction of CO$_2$ forming a CO$_2$ radical anion (CO$_2^-$).39–41 This CO$_2$ activation step structurally transforms the linear CO$_2$ to a bent CO$_2$ radical anion and the energy associated with such transformation is strongly unfavorable. Catalysts which can lower this energetic penalty to transform linear to bent CO$_2$ are desired. Our recent report15 showed that monoatomic Cu adsorbed on TiO$_2$ may promote bent CO$_2$ formation, and that higher photoactivity of Cu/TiO$_2$ compared to TiO$_2$ was observed. The higher activity was attributed to the presence of Cu as Cu$^{1+}$ species on TiO$_2$. Using density functional theory (DFT), we showed that Cu atoms offered binding sites for both the reactant (CO$_2$) and product (CO) that stabilized these molecules compared to pure TiO$_2$ surfaces. In a study by Liu et al.,23 they showed using both DFT and experiments that Cu0 species were the active sites for CO$_2$ reduction to methanol on Cu$_4$ supported on Al$_2$O$_3$. What oxidation state the Cu clusters may have on supports like TiO$_2$ is still an important question for CO$_2$ reduction.

DFT-based studies have focused on modeling CO$_2$ adsorption as well as possible CO$_2$ anion formation on various TiO$_2$ surfaces. Using DFT, He et al.34,42 reported the formation of bent CO$_2$ on TiO$_2$ anatase (101), which resembled a CO$_2$ anion. It was reported that the activation of CO$_2$ to bent CO$_2$ was the rate limiting step with a barrier of 0.87 eV in the formation of formic acid.34 Sorescu et al.43,44 used dispersion-corrected DFT to identify bent CO$_2$ structures on TiO$_2$ anatase (101) and rutile (110) surfaces with and without the presence of co-adsorbed oxidizing species, like water and OH. They found that adsorption of bent CO$_2$ could be stabilized in the presence of oxidizing species.44 Indrakanti et al.3 reported that electron transfer to CO$_2$ from TiO$_2$ anatase and rutile cluster surfaces was energetically unfavorable due to the energy level of the lowest unoccupied molecular orbital (LUMO) of CO$_2$ lying above the highest occupied molecular orbital (HOMO) of the TiO$_2$ surfaces.
Several DFT studies have focused on supported metal atoms. In our previous work15 we modeled a single Cu atom on anatase (101) and found that Cu favors the formation of bent activated CO\textsubscript{2}. Liu et al.23 studied CO\textsubscript{2} reduction to methanol, CO, and methane on Cu\textsubscript{4}/Al\textsubscript{2}O\textsubscript{3}. In their study the reactions proceeded by the formation of HCOO and COOH species which involved the presence of structurally bent O-C-O moiety). This again suggests the importance of activating linear CO\textsubscript{2} into its bent form for efficient CO\textsubscript{2} reduction. Uzunova et al. showed that the Cu\textsubscript{2}O (001) surface reconstructs and results in Cu dimers on the surface, which stabilized bent CO\textsubscript{2} and were found to be the active sites for CO\textsubscript{2} reduction to methanol15 Yang et al46,47 modeled CO\textsubscript{2} adsorption on Pt\textsubscript{4,6,8} and Ag\textsubscript{4,8} clusters, all supported on a TiO\textsubscript{2} anatase (101) surface. They reported strong adsorption of bent CO\textsubscript{2} anions. Similar strong adsorption of bent CO\textsubscript{2} on Cu\textsubscript{10} and Ru\textsubscript{10} on TiO\textsubscript{2} anatase(101) was also reported by Schlexer et al. recently.18 Shanmugam et al. used ab-initio molecular dynamics simulation and reported that various gas-phase Cu clusters (sizes of up to 7 atoms) were not able to stabilize the adsorption of bent CO\textsubscript{2}.19 In another report, Liu et al. reported an unfavorable adsorption energy of 0.27 eV for bent CO\textsubscript{2} on a lone Cu\textsubscript{4} cluster.50 These results on unsupported Cu clusters show that Cu alone does not stabilize bent CO\textsubscript{2}, but that a support such as TiO\textsubscript{2} may significantly alter CO\textsubscript{2} reduction activity.

In the present work we modeled using DFT Cu\textsubscript{x} (x=1-4) clusters on an anatase (101) surface to further understand how and if Cu clusters could activate CO\textsubscript{2}. This titania surface is the most stable facet of anatase, which often displays more photocatalytic activity than rutile.51,52 We characterized the nature of the supported Cu clusters, including morphology and oxidation state. We also determined how Cu\textsubscript{x}/titania may interact with adsorbed CO\textsubscript{2} and CO molecules, and possibly activate CO\textsubscript{2}. Since CO\textsubscript{2} activation is a very important step in CO\textsubscript{2} reduction, we focus specifically on this step in our present work. Future work may focus on CO\textsubscript{2} dissociation and/or hydrogenation reactions to form CO\textsubscript{2} reduction products such as formic acid, methanol, and methane. Our work aims to show how small Cu clusters
supported on TiO$_2$ may be good catalysts for CO$_2$ reduction.

5.2 Methodology

All spin-polarized DFT calculations were performed using the CP2K package, which uses the Gaussian and Plane Wave (GPW) approach. We used the generalized gradient approximation (GGA) PBE exchange correlation functional. Valence electrons were described using molecularly optimized (MOLOPT) double ζ basis sets and core electrons were described using Goedecker-Teter-Hutter (GTH) norm conserving pseudopotentials. A plane wave cutoff energy of 300 Ry was used, similar to previous work. The number of valence electrons used for Cu, Ti, O, and C were 11, 12, 6, and 4, respectively. Electronic and ionic relaxations were performed until energies and maximum forces converged below 1×10^{-6} Ha and 0.05 eV/Å, respectively. Since dispersion interactions have been reported to be important in adsorption of CO$_2$ on TiO$_2$ surfaces, we included the D3 dispersion correction with Becke-Jonsson damping. The CP2K program is limited to sampling k-space only at the gamma point, so we used large supercells to minimize errors related to k-space sampling.

Bulk anatase was modeled with a 3x3x2 supercell containing 216 atoms to determine appropriate lattice constants. The optimized lattice constants of bulk anatase were determined to be 3.78 and 9.58 Å, which are in good agreement with previous DFT (3.76 and 9.52 Å) and experimental (3.78 and 9.51 Å) work. The (101) surface of anatase was modeled as a (2x4) rectangular surface slab with six O-Ti-O layers, resulting in a supercell with a total of 288 atoms (see Figure 5.1). The bottom two layers in this slab were frozen. This supercell had lattice vectors of 20.6 Å and 15.1 Å parallel to the surface, and 30.0 Å perpendicular to the surface. The thickness of the slab was 9.4 Å, resulting in a vacuum spacing of ~ 20.6 Å. A similar slab thickness was used in previous work. Test calculations using
eight O-Ti-O layers showed that the adsorption energies of Cu and CO$_2$ on the TiO$_2$(101) surface changed by \leq0.08 eV compared to a six layer slab (refer Table A.1 in Supporting Information). We therefore used a six layer slab for the current work.

We used DDEC6 charge analysis \cite{66,67} in our work. In order to obtain accurate electron density, we performed single point calculations on the optimized geometries with a very fine grid spacing by setting a large plane wave cutoff of 1600 Ry. DDEC6 derived charges were extensively tested and compared to the widely used Bader charge method. \cite{68,69} We found the DDEC6 program to generate atomic charges in close agreement with those determined using Bader charges for both molecular and condensed systems (see Table A.2). Vibrational frequencies were calculated using finite differences to obtain numerical frequencies. We used a larger plane wave cutoff of 600 Ry and a tighter electronic convergence of 1E$^{-7}$ Ha to calculate vibrational frequencies, since we determined these settings were necessary to obtain good agreement with experimental gas-phase frequencies and previous DFT frequencies of adsorbed CO$_2$ (more details in Table A.4). Due to the increase in computational cost with the higher cutoff energy of 600Ry, we only relaxed 40-50 atoms from the adsorption site during our vibrational frequency calculations (atoms within 6-7Å of the C atom). As shown in Table A.4, the results obtained by relaxing 40-50 atoms near the adsorption site are very close to the results when two/four layer slabs were relaxed (see SI for more details).
We modeled CO$_2$ adsorption on Cu$_x$/TiO$_2$ where the entire system is neutral. Upon adsorption of CO$_2$ however, electron transfer from the surface to CO$_2$ may occur, resulting in the adsorbed CO$_2$ becoming charged. The Cu$_x$/TiO$_2$ geometries are all reported for the most stable spin state, which we found to be the lowest spin state (singlet or doublet). We ran calculations of higher spin states, but found these energies to always be larger than the low spin state solutions. Comparison of the low and high spin state energies are provided in the Supporting Information in Table A.5.

The adsorption energies (ΔE_{ads}) of Cu clusters are given by Equation 5.1

$$\Delta E_{ads-Cu_x} = \frac{1}{x}(E_{Cu_x/TiO_2} - E_{TiO_2} - xE_{Cu})$$ (5.1)

where, E_{Cu_x/TiO_2}, E_{TiO_2}, and xE_{Cu} are the energies of Cu$_x$/TiO$_2$, pure TiO$_2$, and atomic Cu respectively. Here x is the number of Cu atoms in the Cu$_x$ cluster and x ranges from 1 to 4. The adsorption energy of CO$_2$ or CO is given by Equation 5.2

$$\Delta E_{ads-CO_n} = E_{CO_n/Cu_x/TiO_2} - E_{Cu_x/TiO_2} - E_{CO_n}[n = 1, 2]$$ (5.2)

where, $E_{CO_n/Cu_x/TiO_2}$ is the energy of adsorbed CO$_n$ (n=1,2), E_{Cu_x/TiO_2} is the energy of the surface without CO$_n$, E_{CO_n} is the energy of gas phase CO$_n$. A negative adsorption energy indicates an exothermic adsorption process.

Standard DFT employing exchange correlation functionals like GGA often suffers from self-interaction errors in correlated materials like TiO$_2$. We therefore performed tests using the DFT+U formalism and compared results obtained using DFT. These are discussed in the Supporting Information and show that DFT and DFT+U give similar results for adsorption energies and charges. Similar conclusions were also previously reported for CO$_2$ adsorption on Pt/TiO$_2$, and metal cluster adsorption (Au and Pt) on TiO$_2$. Adsorption energies and charges are reported using DFT in this paper. Analysis of the electronic struc-
tury (i.e. density of states) however showed that DFT+U gives a better description (see the Supporting Information), so our analysis of the density of states (Section 5.3.3) used the DFT+U method.

5.3 Results and Discussion

5.3.1 Cu Clusters on Titania

The first step in our work was to identify the most stable gas phase Cu cluster geometries. Several DFT studies have reported Cu geometries.73,74 We tested these geometries as well as several others. We found that linear Cu\textsubscript{2}, triangular Cu\textsubscript{3}, and rhombus-shaped Cu\textsubscript{4} were the most stable geometries (see Figure 5.2). The linear Cu dimer had a bond distance of 2.2 Å. The most stable Cu trimer cluster had bond distances of 2.3, 2.4, and 2.4 Å with angles of 57.8°, 59.9°, and 62.3°. We also modeled the Cu trimer in an equilateral triangle structure, but the geometry changed to the triangle just described. In the case of Cu\textsubscript{4}, all four peripheral bond distances were ∼2.4 Å in the rhombus, but the cluster was not completely planar (see Figure 5.2). The most stable geometries that we found were also the most stable Cu geometries reported earlier.73,74 We calculated the binding energy per atom of these Cu clusters to be $1/x \left[E_{Cu x} - x E_{Cu} \right]$ where, $E_{Cu x}$ and E_{Cu} are the energies of the Cu cluster with x atoms and atomic Cu, respectively. The calculated binding energies were -1.15 eV for Cu\textsubscript{2}, -1.25 eV for Cu\textsubscript{3}, and -1.64 eV for Cu\textsubscript{4}. Our results are close to the values reported by Jiang et al.,73 which were -1.04, -1.13, and -1.48 eV, respectively.

Although several DFT studies have focused on TiO\textsubscript{2}-supported metal clusters,38,75,76 only a few studies focused on Cu adsorption over the TiO\textsubscript{2} anatase (101) surface.65,77 In contrast, Cu over the TiO\textsubscript{2} rutile (110) surface has been studied in several papers.26,78–81 Seriani et al.65 already reported Cu adsorption sites on the anatase (101) surface for cluster sizes of 1-4 atoms, similar to our work. In addition to the geometries reported by Seriani et
al., we modeled Cu clusters at several other adsorption sites on the TiO$_2$ surface in order to fully assess Cu adsorption. We report only the most stable geometries. The most stable adsorbed geometries for each cluster are shown in Figure 5.3. Bulk Cu has Cu-Cu bond distances of 2.6 Å and we used 2.6 Å as the cutoff distance to determine whether an atom was coordinated to a Cu atom. By determining which atoms were coordinated to Cu atoms, we could calculate coordination numbers of the Cu atoms.

 Atomic Cu prefers to adsorb at a bridge site between O atoms that are two-coordinated (denoted hereafter as O$_{2c}$ atoms) with an ΔE_{ads} of -2.56 eV. These O$_{2c}$ atoms move towards the Cu atom by \sim0.1 Å, such that both Cu-O$_{2c}$ bond distances were 1.89 Å. Atomic Cu on TiO$_2$ lies very close to the surface (0.56 Å above the surface), and has a coordination number of 3. Our ΔE_{ads} is in good agreement with the earlier reported value of -2.30 eV,65 which also found the bridge site to be most stable for atomic Cu. Luo et al.77 also found the bridge site to be the most stable site for the adsorption of atomic Cu. They however reported a smaller ΔE_{ads} value of -1.5 eV. In their work they represented the anatase surface as a cluster (not periodic) and also used different DFT parameters (i.e. hybrid exchange correlation functional and Gaussian basis sets), which could explain the difference in adsorption energies between our work and theirs.
Figure 5.3: Most stable adsorption sites for Cu (a), Cu$_2$ (b), Cu$_3$ (c), and two different Cu$_4$ clusters (d,e) on the TiO$_2$ anatase (101) surface. The two Cu$_4$/TiO$_2$ are represented as Cu$_4$(I) (d) and Cu$_4$(II) (e).
Similar to Cu, the Cu atoms in Cu$_2$ prefer to bond to O$_{2c}$ atoms on the TiO$_2$ surface. Upon adsorption, the Cu$_a$-Cu$_b$ bond distance slightly increases to 2.3 Å compared to the gas phase value of 2.2 Å. Each of the Cu atoms bonds to a O$_{2c}$ atom along different O$_{2c}$-rows as shown in Figure 5.3b. The Cu$_a$ atom bonds to an O$_{2c}$ atom lying above a five-coordinated surface Ti atom (Ti$_{5c}$), while the other Cu$_b$ atom bonds to an O$_{2c}$ atom lying above a subsurface six-coordinated Ti atom (Ti$_{6c}$) atom. The former Cu$_a$ atom also interacts with the Ti$_{5c}$ atom beneath it (having a Cu-Ti$_{5c}$ bond distance of 2.6Å), while also interacting with the O$_{2c}$ atom (Cu-O$_{2c}$ bond distance of 2.4Å). The Cu$_b$ atom has a Cu-O$_{2c}$ bond distance of 1.9 Å. The ΔE_{ads} of Cu$_2$ was calculated to be -2.09 eV. The Cu binding energy of the Cu$_2$ cluster on the TiO$_2$ surface, defined as $E_{\text{Cu}_x/\text{TiO}_2} + (x-1)E_{\text{TiO}_2} - xE_{\text{Cu}/\text{TiO}_2}$, was calculated to be 0.94 eV, indicating that clustering of adsorbed Cu atoms to form Cu$_2$ is energetically unfavorable. Cu$_a$ and Cu$_b$ atoms lie away from surface (1.7 and 1.3Å), which results in a small coordination numbers of 3 and 2 respectively. A different structure for Cu$_2$ (and also for Pd$_2$) on the TiO$_2$ anatase (101) surface was reported earlier to be most stable. This other structure had one Cu atom at a bridge site between two O$_{2c}$ atoms, while the other Cu atom was above a Ti$_{5c}$ atom. We found this structure to be 0.09 eV less stable than the structure reported in Figure 5.3b. We also found that two other structures had adsorption energies close to our most stable geometry: Cu$_2$ bound to two O$_{2c}$ atoms along the same row (ΔE_{ads} of -2.05 eV) and a Cu$_2$ structure with Cu atoms bound to O$_{2c}$ and O$_{3c}$ atoms (ΔE_{ads} of -2.03 eV). There are thus multiple Cu$_2$ structures which are close in energy, but we used the geometry shown in Figure 5.3b for this work since we determined it to be the most stable. Similar to the conclusion by Seriani et al., we found the Cu$_2$ cluster (compared to Cu, Cu$_3$, and Cu$_4$) to have the weakest binding to the TiO$_2$ surface.

We modeled several different structures for Cu$_3$ adsorption on the TiO$_2$ surface. Compared to the most stable geometry in Figure 5.3c, all other geometries were typically less stable by 0.15 eV to 1.39 eV. We also modeled a linear Cu$_3$ trimer, where each Cu atom
was bound to one oxygen atom, and found that the linear Cu$_3$ is strongly unstable by 2.0 eV compared to the most stable triangular Cu$_3$. In the most stable adsorption configuration Cu$_3$ adsorbs with two of its Cu atoms (indicated as Cu$_b$ and Cu$_c$) bound to two O$_2$c atoms, while the third Cu$_a$ atom does not interact with any surface atoms (see Figure 5.3c). The Cu$_a$-Cu$_b$, Cu$_b$-Cu$_c$, and Cu$_c$-Cu$_a$ bond distances were 2.3, 2.4, and 2.3Å respectively, which were similar to the gas phase values (2.3, 2.4, and 2.4 Å). The bond distances of Cu$_b$ and Cu$_c$ with O$_2$c were ~1.9Å, while the Cu$_a$ atom lies 3.1Å above a Ti$_5$c atom. The associated coordination numbers were calculated to be 2, 4, 4 for Cu$_a$, Cu$_b$, and Cu$_c$ respectively. The binding energy of the Cu$_3$ cluster was calculated to be -0.03 eV, which shows that Cu trimers and Cu adatoms on the surface are energetically similar. The ∆E$_{ads}$ of Cu$_3$ was found to be -2.57 eV, which is in close agreement with the reported value of -2.48 eV. Similar stable structures of metal trimers with two metal atoms bound to two O$_2$c atoms have been reported earlier for Au$_3$ and Pt$_3$ on the TiO$_2$ anatase (101) surface, as well as Cu$_3$ on the TiO$_2$ rutile (110) surface.

Similar to Cu$_3$, we considered several different geometries for Cu$_4$/TiO$_2$. Compared to the most stable Cu$_4$/TiO$_2$ geometry shown in Figure 5.3d, all the other tested geometries were less stable by 0.57 to 2.64 eV. For instance these clusters were rotated or translated in various configurations on the surface. We also modeled linear Cu$_4$/TiO$_2$, with each Cu atom bound to one oxygen atom in different orientations, and found it to be less stable by 2.6-2.8 eV when compared to the most stable Cu$_4$/TiO$_2$ in Figure 5.3d. After testing several different adsorption sites for Cu$_4$, we found two different stable Cu$_4$ tetramers on the surface as shown in Figure 5.3d and 5.3e. The more stable structure Cu$_4$(I), is shown in Figure 5.3d (∆E$_{ads}$ of -2.67 eV), while the second most stable structure Cu$_4$(II) is shown in Figure 5.3e (∆E$_{ads}$ of -2.52 eV). The more stable Cu$_4$(I) geometry undergoes structural changes so that the Cu$_4$ cluster does not resemble a rhombus shape, and one Cu-Cu bond between Cu$_a$ and Cu$_b$ breaks upon adsorption. The slightly less stable structure Cu$_4$(II)
keeps its basic rhombus shape intact upon adsorption. In Cu$_4$(I) the Cu$_a$ atom sits at the bridge site between two O$_{2c}$ atoms and bonds to a single Cu atom (Cu$_a$-Cu$_d$). In the Cu$_4$(II) structure Cu$_a$ and Cu$_c$ atoms are at the bridge sites between O$_{2c}$ atoms, while Cu$_b$ interacts with O$_{2c}$/O$_{3c}$ atoms. Cu$_d$ atom is positioned away from the surface and only interacts with other Cu atoms. We found that the coordination numbers of Cu$_a$, Cu$_b$, Cu$_c$, and Cu$_d$ in Cu$_4$(I) were 5, 3, 4, and 4. In Cu$_4$(II) the coordination numbers of Cu$_a$, Cu$_b$, Cu$_c$, and Cu$_d$ were 5, 5, 4, and 2. Upon adsorption of Cu$_4$ cluster, the Cu-Cu bond distances in Cu$_4$(I) and Cu$_4$(II) geometries were elongated. Compared to the gas phase Cu-Cu bond distances of around 2.4 Å in the gas-phase Cu tetramer, when Cu$_4$(I) adsorbs, two of the four edge bond distances (Cu$_a$-Cu$_b$ and Cu$_d$-Cu$_a$) increased to 3.9 and 2.6Å. Likewise for Cu$_4$(II) adsorption, the Cu$_a$-Cu$_b$ and Cu$_c$-Cu$_d$ distances increased to 2.6 and 2.8 Å compared to the gas phase cluster edge bond distances of 2.4 Å. The binding energy of the Cu$_4$ clusters on the TiO$_2$ surface were -0.42 for Cu$_4$(I) and 0.16 eV for Cu$_4$(II). Unlike the Cu dimer and Cu trimers, the negative binding energy of Cu$_4$(I) shows the preference of Cu tetramer cluster formation on TiO$_2$ compared to isolated Cu adatoms. We considered both Cu$_4$(I) and Cu$_4$(II) structures since they are very close in energy. The Cu$_4$(II) structure in Figure 5.3e, while slightly less stable, represents the case where the Cu$_4$ structure stays intact upon adsorption.

Seriani et al.\cite{65} reported a tetrahedral Cu$_4$ to be the most stable geometry on TiO$_2$ and found it to be more stable by ~0.5 eV compared to the flat structure depicted in Figure 5.3e. We found, however the adsorption energy of our flat Cu$_4$ structures to be more stable by 0.38 (Figure 5.3f) and 0.24 eV (Figure 5.3d) compared to an adsorbed Cu$_4$ tetrahedron. The flat Cu$_4$ cluster prefers to remain flat when adsorbed. This difference in flat versus tetrahedral geometry is largely due to the use of dispersion corrections in the present work, which increase favorable interactions between Cu atoms and the surface. We calculated that without the use of dispersion corrections, the adsorption energy of Cu$_4$ in Figure 5.3e was only 0.10 eV
Figure 5.4: Most stable adsorbed CO$_2$ on TiO$_2$ in linear (a) and bent (b,c) configurations. Both side and top views are shown for the structure in (b). The numbers correspond to the adsorption energies of CO$_2$. The Ti and O atoms of TiO$_2$ are shown as gray and red spheres, while C and O atoms of CO$_2$ are shown as blue and green spheres.

more stable than the tetrahedral geometry reported by Seriani et al., compared to the flatter Cu$_4$ structure being 0.38 eV more stable than the tetrahedral structure with dispersion corrections applied. Without dispersion corrections, both the flatter Cu$_4$ and tetrahedral Cu$_4$ are close in energy (0.1 eV) and within the accuracy limits of DFT. Puigdollers et al. reported that the ordering of stability of metal cluster isomers on a TiO$_2$ surface can change with inclusion of dispersion corrections.83 They reported that flat tetramers of Ag (similar to our Cu$_4$) on the TiO$_2$ anatase (101) surface were strongly stabilized when dispersion corrections were included in their DFT calculations. Similar to our flat Cu$_4$ clusters on the TiO$_2$ surface, other DFT reports exist for flat Cu$_4$ adsorption on Al$_2$O$_3$23 and flat Ag$_4$ on the anatase (100) surface.84 Our results of Cu cluster adsorption are also consistent with the experimental work by Tong et al.85 Similar to our findings for Cu adsorption, they reported that Au dimers, trimers, and tetramers prefer to adsorb flat on the TiO$_2$ rutile (110) surface. An experimental study by Kaden et al. also reported the presence of flat Pd$_n$ clusters on TiO$_2$ rutile (110) for $n \leq 10$ atoms.32
5.3.2 CO$_2$ adsorption over Cu Clusters and TiO$_2$

The adsorption of CO$_2$ on metal oxides such as TiO$_2$ has been widely studied in order to identify potential catalysts for CO$_2$ reduction. Geometrical parameters such as bond angle of CO$_2$ and bond distance of the C-O bonds have been used to identify CO$_2$ activation on a catalyst surface. Neutral CO$_2$ is a stable molecule with a linear structure as its ground state geometry. When neutral CO$_2$ undergoes one electron reduction, a CO$_2$ anion is formed that has a bent CO$_2$ geometry. The bent configuration may lead to increased reactivity of CO$_2$, including possible C-O bond breaking. Activation of CO$_2$ to form the bent structure is believed to be the initial step in the photoreduction of CO$_2$, and it has a large reorganizational energy cost for the transformation from a linear to bent geometry.

In this section we report on adsorption of CO$_2$ in linear and bent forms on TiO$_2$, as well as over supported Cu$_x$ clusters. This allows us to identify the potential role of Cu and titania in activating the CO$_2$ molecule.

We modeled linear and bent CO$_2$ as neutral species adsorbed on Cu$_x$/TiO$_2$ by considering multiple adsorption sites. We modeled CO$_2$ adsorbed directly to Cu atoms, surface TiO$_2$ sites, and interfacial sites, where CO$_2$ interacts with both the Cu atom(s) and TiO$_2$ atoms. Bent CO$_2$ on these different sites was modeled by considering structures that had C-M (M=Cu, Ti, O) and O$_{CO_2}$-N (N=Cu, Ti) interactions, or in other words geometries with O$_{CO_2}$ and C atoms interacting with surface O, Cu, and Ti atoms. Linear CO$_2$ geometries on Cu clusters, surface TiO$_2$ sites, and interfacial sites were modeled by considering various O$_{CO_2}$-Y (Y=Ti, Cu) interactions. Considering this variety of potential adsorption geometries allowed us to determine several possible configurations. In the following we report the most stable bent and linear CO$_2$ adsorption geometries.
CO₂ adsorption on TiO₂

The most stable linear and bent configurations of CO₂ on the clean TiO₂ surface have been reported earlier. In our work, we modeled the reported most stable configurations as shown in Figure 5.4. In the linear adsorption mode (with the O-C-O bond angle close to 180°), CO₂ binds to TiO₂ with a bond between an Oₐₙ₃ atom and a Ti₅c atom at the surface. The bond distance between Oₐₙ₃ and Ti₅c was found to be 2.5 Å and the ΔEₐₙ₃ was -0.40 eV. We give a summary in Table 5.1 of adsorption energies and geometry information for the most stable linear and bent CO₂ configurations over the various studied surfaces. In the case of bent adsorption on pure anatase (with the O-C-O bond angle considerably smaller than 180°), two binding modes having close ΔEₐₙ₃ values (-0.15 and -0.09 eV) are shown in Figure 5.4b, c. Both bent structures resemble carbonate (CO₃) geometries. Previous work however reported that the carbonate-like structure in Figure 5.4c was more stable than the structure in Figure 5.4b by 0.1 to 0.2 eV. This observed difference in the most stable bent CO₂ structure may be due to using different computational parameters, such as basis set, pseudopotential, or dispersion corrections. Nonetheless, we found the difference in adsorption energies between these two carbonate structures to be only 0.06 eV, which may be close to the accuracy of our DFT method. Our results are consistent with previous results that show bent CO₂ to have weaker adsorption energies compared to linear CO₂ on the anatase surface. For example, Sorescu et al. reported ΔEₐₙ₃ values of -0.48 and -0.16 eV for the most stable linear and bent CO₂ on anatase, similar to our values.

CO₂ adsorption over Cu/TiO₂

The adsorption geometries of the most stable linear and bent CO₂ configurations over Cu/TiO₂ are shown in Figure 5.5. In the most stable linear configuration (Figure 5.5a), CO₂ interacts with a Ti₅c atom through an Oₐₙ₃ atom with an ΔEₐₙ₃ of -0.40 eV (the same value when no Cu is present). In this configuration CO₂ does not even directly in-
Table 5.1: Structural parameters of the most stable adsorbed bent and linear CO$_2$ molecules. The last two columns show distances between CO$_2$ atoms and closest surface atoms (designated M and N). The closest surface atom types are given in parenthesis. 4(I) and 4(II) refer to the two Cu$_4$ clusters in Figure 5.3d,e respectively.

<table>
<thead>
<tr>
<th>x (Cu$_x$)</th>
<th>CO$_2$ Configuration</th>
<th>ΔE$_{ads}$ (eV)</th>
<th>C-O Bond Length (Å)</th>
<th>O-C-O angle $^{\circ}$</th>
<th>C-M Distance (Å)</th>
<th>O-N Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CO$_2$ (gas)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bent</td>
<td>-0.15</td>
<td>1.25, 1.25</td>
<td>135.1</td>
<td>1.42 (O$_{3c}$)</td>
<td>2.18, 2.22 (Ti$_{5c}$)</td>
</tr>
<tr>
<td></td>
<td>linear</td>
<td>-0.40</td>
<td>1.16, 1.18</td>
<td>177.4</td>
<td>3.37, 3.47 (O$_{2c}$)</td>
<td>2.47 (Ti$_{5c}$)</td>
</tr>
<tr>
<td>1</td>
<td>bent</td>
<td>-0.38</td>
<td>1.24, 1.28</td>
<td>132.1</td>
<td>1.39 (O$_{3c}$)</td>
<td>2.05 (Cu); 2.27, 2.40 (Ti$_{5c}$)</td>
</tr>
<tr>
<td></td>
<td>linear</td>
<td>-0.40</td>
<td>1.17, 1.18</td>
<td>176.8</td>
<td>3.20, 3.30 (O$_{2c}$)</td>
<td>2.59 (Ti$_{5c}$)</td>
</tr>
<tr>
<td>2</td>
<td>bent</td>
<td>-0.84</td>
<td>1.23, 1.30</td>
<td>128.4</td>
<td>2.01, 2.04 (Cu)</td>
<td>2.42 (Cu); 2.05 (Ti$_{5c}$)</td>
</tr>
<tr>
<td></td>
<td>linear</td>
<td>-0.49</td>
<td>1.17, 1.18</td>
<td>177.4</td>
<td>3.01, 3.15 (O$_{2c}$)</td>
<td>2.71 (Ti$_{5c}$)</td>
</tr>
<tr>
<td>3</td>
<td>bent</td>
<td>-0.56</td>
<td>1.23, 1.27</td>
<td>128.7</td>
<td>1.45 (O$_{2c}$)</td>
<td>1.93 (Cu); 2.83 (Ti$_{5c}$)</td>
</tr>
<tr>
<td></td>
<td>linear</td>
<td>-0.46</td>
<td>1.17, 1.18</td>
<td>176.3</td>
<td>2.67 (O$_{2c}$)</td>
<td>2.28 (Cu)</td>
</tr>
<tr>
<td>4(I)</td>
<td>bent</td>
<td>-0.32</td>
<td>1.27, 1.22</td>
<td>133.0</td>
<td>1.54 (O$_{2c}$)</td>
<td>1.99 (Cu); 2.85 (Ti$_{5c}$)</td>
</tr>
<tr>
<td></td>
<td>linear</td>
<td>-0.38</td>
<td>1.18, 1.17</td>
<td>178.0</td>
<td>3.36 (O$_{2c}$)</td>
<td>2.57 (Ti$_{5c}$)</td>
</tr>
<tr>
<td>4(II)</td>
<td>bent</td>
<td>-0.54</td>
<td>1.26, 1.28</td>
<td>128.7</td>
<td>2.57 (Cu); 1.37 (O$_{2c}$)</td>
<td>2.00 (Cu); 2.07 (Ti$_{5c}$)</td>
</tr>
<tr>
<td></td>
<td>linear</td>
<td>-0.48</td>
<td>1.17, 1.18</td>
<td>179.2</td>
<td>3.17 (O$_{2c}$)</td>
<td>2.48 (Cu); 2.72 (Ti$_{5c}$)</td>
</tr>
</tbody>
</table>

Figure 5.5: Stable adsorbed CO$_2$ on Cu/TiO$_2$ in linear (a,b) and bent (c,d,e) configurations. The numbers indicate adsorption energies of the CO$_2$ molecules.
teract with the Cu atom and is actually far from it on the surface. When a linear CO$_2$ interacts directly with Cu and Ti$_{5c}$ atoms (Figure 5.5b), the calculated adsorption energy is weaker, being -0.30 eV. This indicates that the presence of Cu does not significantly affect the adsorption of linear CO$_2$, as the CO$_2$ prefers to interact directly with the titania surface. In the bent CO$_2$ geometry, the most stable adsorption occurs at the Cu/TiO$_2$ interface (Figure 5.5c), where the primary interactions occur between CO$_2$ and Ti$_{5c}$/O$_{3c}$ atoms, while secondary interactions occur between O$_{CO_2}$ and Cu. When CO$_2$ adsorbs on the surface, a strong displacement of the Cu atom towards CO$_2$ by \sim1.0 Å occurs. The short bond distances of (C-O$_{3c}$ = 1.39 Å, O$_{CO_2}$-Cu = 2.05 Å, and O-Ti$_{5c}$=2.3,2.4 Å) between CO$_2$ and the surface atoms indicate strong interactions. In contrast, in linear CO$_2$ adsorption the distances between CO$_2$ and surface atoms are large (O$_{CO_2}$-Ti$_{5c}$=2.59 Å and C-O$_{2c}$ > 3.1 Å), indicative of weak adsorption. Table 5.1 also shows that the C-O bonds in CO$_2$ are elongated to 1.24 and 1.28 Å compared to the gas phase value of 1.17 Å. The O-C-O bond angle was also bent to 132$^\circ$. The ΔE_{ads} of bent CO$_2$ over Cu/TiO$_2$ (-0.38 eV) is significantly stronger than just over pure TiO$_2$ (-0.15 eV). Thus, a Cu atom stabilizes the bent CO$_2$ structure. This conclusion is similar to our previous work, where we also found a Cu atom to promote bent CO$_2$ adsorption.15 It has also been reported87 that bent CO$_2$ molecules over metal atoms (Rh, Ru, Pd) supported on TiO$_2$ anatase(101) surfaces have strong adsorption energies (in the range of -0.5 to -0.9 eV).

Two other bent CO$_2$ structures are shown in Figure 5.5. CO$_2$ binding at the interface site, shown in Figure 5.5d (ΔE_{ads} of -0.21 eV) had the C atom and one of the O$_{CO_2}$ atoms both interacting with the Cu atom and the O-C-O angle in CO$_2$ was slightly bent (159$^\circ$). The other bent CO$_2$ structure with a ΔE_{ads} of -0.20 eV preferred to bind to just the titania surface, away from the Cu atom in a carbonate-like structure (Figure 5.5e). Both these structures were not as stable as the most stable carbonate-like structure in Figure 5.5c, where the CO$_2$ structure has primary interactions with TiO$_2$ along with secondary interactions with
Figure 5.6: Several stable adsorbed CO$_2$ on Cu$_2$/TiO$_2$ in linear (a,b) and bent (c,d,e) configurations. The numbers indicate adsorption energies of the CO$_2$ molecules.

CO$_2$ adsorption on Cu$_2$/TiO$_2$

The two most stable linear CO$_2$ adsorption geometries on Cu$_2$/TiO$_2$ were found to occur at the TiO$_2$ surface and at the Cu$_2$/TiO$_2$ interface (see Figure 5.6a,b). Adsorption over the TiO$_2$ surface involved O$_{CO_2}$ binding to a Ti$_{5c}$ atom, similar to other linear geometries. This structure had a ΔE_{ads} of -0.49 eV, which is slightly more negative than that on pure TiO$_2$ (-0.40 eV). The large bond distance of 2.71 Å between O$_{CO_2}$-Ti$_{5c}$ further suggests weak adsorption. The other linear CO$_2$ was adsorbed at an interface site, and was arranged with one O$_{CO_2}$ atom interacting with Ti$_{5c}$ while the other one O$_{CO_2}$ atom interacted with a Cu atom. Linear CO$_2$ at the interfacial site was less stable with a ΔE_{ads} of -0.31 eV. The large bond distances of 2.9 and 2.7 Å between CO$_2$ and the surface also showed that linearly bound CO$_2$ at the interfacial site was weakly adsorbed.

Uzunova et al. reported on the role of Cu dimers in CO$_2$ conversion to methanol over Cu$_2$O.45 They reported that Cu dimers formed on the Cu$_2$O(001) surface, as well as Cu$_{32}$O$_{16}$
and Cu$_{14}$O$_7$ nanoclusters, due to surface reconstruction. These dimers served as active sites for strong adsorption of bent CO$_2$. We observed similar strong adsorption of bent CO$_2$ over Cu$_2$ on the anatase (101) surface. The most stable bent CO$_2$ (Figure 5.6c) binds strongly at a Cu$_2$/TiO$_2$ interface with an ΔE_{ads} of -0.84 eV. In this structure the C atom interacts with both Cu atoms. One O$_{\text{CO}_2}$ atom interacts with a Ti$_{5c}$ atom while the other O$_{\text{CO}_2}$ atom interacts with a Cu atom. The short bond distances of around 2.0 Å (see Table 5.1) between atoms of CO$_2$ and the surface atoms are indicative of stronger adsorption. The bent CO$_2$ also displays strong bending (128°) and C-O$_{\text{CO}_2}$ bond distances of 1.23/1.30 Å (compared to gas phase CO$_2$ values of 1.17/1.17 Å).

Besides the most stable CO$_2$ bent configuration, two other bent CO$_2$ structures (directly over Cu$_2$ and at the interface) also exist. The bent CO$_2$ molecule directly interacting with the Cu cluster (Figure 5.6d) has a ΔE_{ads} value of -0.45 eV. The last bent CO$_2$ structure has a ΔE_{ads} value of -0.38 eV and binds at an interfacial site (Figure 5.6e). The O-C-O angle of CO$_2$ in this configuration is 163°, which indicates an intermediate state between the bent and linear CO$_2$ structures. This structure slightly resembles the most stable configuration, however it adsorbs with a significantly weaker ΔE_{ads}. Further, the bonds formed between CO$_2$ and the surface are significantly larger (C-Cu = 2.59 and O$_{\text{CO}_2}$-Ti$_{5c}$ = 2.49 Å) compared to the most stable adsorption configuration. The later geometry in Figure 5.6e only interacts with one Cu atom, while the more stable geometry in Figure 5.6c interacts with two Cu atoms, which may explain why it is weaker. Incidentally the two bent configurations in Figure 5.6d,e have ΔE_{ads} values that are similar to linear CO$_2$ adsorption on pure TiO$_2$ (-0.40 eV). Thus, the Cu dimer is able to stabilize several possible bent CO$_2$ structures.

CO$_2$ adsorption on Cu$_3$/TiO$_2$

The most stable linear geometry on Cu$_3$/TiO$_2$ (ΔE_{ads} = -0.46 eV) was found to occur with CO$_2$ directly interacting with the Cu cluster through the top Cu$_a$ atom (see Figure 5.7a).
The second most stable linear CO\textsubscript{2} adsorption configuration has CO\textsubscript{2} bound to the surface without directly interacting with Cu atoms (see Figure 5.7b), similar to other linear adsorption modes. The two linear adsorption energies are very close in energy (0.03 eV difference), and are both close to the adsorption energy over pure TiO\textsubscript{2} (-0.40 eV). Among all the adsorbed linear CO\textsubscript{2} structures, only for the case of Cu\textsubscript{3} did linear CO\textsubscript{2} interact with the Cu cluster in its most stable configuration.

In the case of bent CO\textsubscript{2} adsorption over Cu\textsubscript{3}/TiO\textsubscript{2}, the most stable geometry occurs at an interfacial site with ΔE_{ads} being -0.56 eV. Figure 5.7c shows this geometry, which resembled a carbonate structure. Here, the C atom was bound to an O\textsubscript{2c} and the O\textsubscript{CO\textsubscript{2}} atoms were bound to either a Cu or Ti\textsubscript{5c} atom. The short bond distances for C-O\textsubscript{2c} (1.45 Å) and O\textsubscript{CO\textsubscript{2}}-Cu (1.93 Å) are indicative of strong interactions. Our results show that the top Cu\textsubscript{a} atom in Cu\textsubscript{3} is the preferred site for both the most stable bent and linear adsorption structures. This is likely due to the top Cu\textsubscript{a} atom having the least coordination number of 2 compared to the other Cu atoms (coordination number of 4), and is therefore most reactive. This top Cu atom is only coordinated to two other Cu atoms.

The other two bent CO\textsubscript{2} structures (see Figure 5.7d,e) were less strongly adsorbed, with ΔE_{ads} values of -0.28 and -0.16 eV. The former had a carbonate-like geometry that was adsorbed at an O\textsubscript{2c} site in the vicinity of the Cu cluster. The shortest O\textsubscript{CO\textsubscript{2}}-Cu\textsubscript{b} distance was 3.23 Å indicating that any interactions between the CO\textsubscript{2} molecule and Cu cluster were indirect. This carbonate-like structure was similar to the bent adsorption structure on Cu/TiO\textsubscript{2} (Figure 5.5e) and pure TiO\textsubscript{2} (Figure 5.4c). Our results show that in the presence of Cu or Cu\textsubscript{3} on TiO\textsubscript{2}, this carbonate-like geometry had slightly stronger adsorption energies (-0.20 and -0.28 eV respectively) when compared to that on pure TiO\textsubscript{2} (-0.09 eV). Since the Cu atom/clusters only indirectly interacted with these carbonate-like CO\textsubscript{2}, this suggests that Cu may have changed the surface and electronic properties in its vicinity.

The other bent structure was also a carbonate-like structure but it occurred at an inter-
facial site with one O$_{\text{CO}_2}$ atom bonding to a Ti$_{5c}$ while the other O$_{\text{CO}_2}$ atom was bound to a Cu atom. This geometry was weakly bound to the surface ($\Delta E_{\text{ads}} = -0.16 \text{ eV}$) which demonstrates that not all interfacial sites lead to stabilization of bent CO$_2$. The Cu atom involved in this structure was more fully coordinated, in contrast to the structure in Figure 5.5c where the CO$_2$ interacted with the lone under-coordinated Cu atom and exhibited strong adsorption. This suggests that the coordination of the Cu atoms may play a role in how well they bind to CO$_2$.

CO$_2$ adsorption on Cu$_4$/TiO$_2$

CO$_2$ adsorption on Cu$_4$(I)/TiO$_2$ structure We modeled CO$_2$ adsorption over the most stable Cu$_4$ cluster (I) and the slightly less stable Cu$_4$(II) cluster. Over Cu$_4$(I) the two most stable linear CO$_2$ had similar ΔE_{ads} of -0.38 (Figure 5.8a) and -0.36 eV (Figure 5.8b). A very similar adsorption structure (not shown) to Figure 5.8a, where CO$_2$ was adsorbed far away from Cu$_4$ also had a close ΔE_{ads} of -0.37 eV. All these structures bind to Ti$_{5c}$. For the geometry in Figure 5.8b the CO$_2$ also interacts with a Cu$_4$ atom. The ΔE_{ads} of these most
Figure 5.8: Several stable adsorbed CO$_2$ on Cu$_4$(I)/TiO$_2$ (the most stable Cu$_4$ structure as shown in Figure 5.3) in linear (a,b) and bent (c,d,e) configurations. Both side and top views have been shown. The numbers indicate adsorption energies of the CO$_2$ molecules.
two linear CO$_2$ were similar to when no Cu was present on the TiO$_2$ surface ($\Delta E_{\text{ads}}=0.40$ eV). In the case of bent CO$_2$ adsorption on Cu$_4$(I)/TiO$_2$, we found three different adsorption geometries at the interfacial site with ΔE_{ads} differing by around 0.1 eV (see Figure 5.8c-e). All these geometries appeared carbonate like. ΔE_{ads} of the most stable bent CO$_2$ consisted of each of the O$_{\text{CO}_2}$ binding to Cu$_4$ or Ti$_{5c}$ atom. This adsorption configuration was similar to that on Cu$_3$/TiO$_2$ ($\Delta E_{\text{ads}}=-0.56$ eV), however the ΔE_{ads} of -0.32 eV on Cu$_4$(I) was significantly smaller than that on Cu$_3$. Interestingly, over Cu$_4$(I), the ΔE_{ads} of the most stable bent and linear CO$_2$ were similar in energy.

The ΔE_{ads} (-0.29 eV) of the next most stable bent CO$_2$ over Cu$_4$(I) was close in energy to the most stable bent structure. These two geometries were similar, except the CO$_2$ interacted with different Cu atoms. The third stable bent CO$_2$ had a geometry similar to that on Cu$_3$/TiO$_2$ (see Figure 5.8e and Figure 5.7f). Here, the O$_{\text{CO}_2}$ bind with either Cu or Ti$_{5c}$ atoms, while the C atoms bond to surface O$_{2c}$.

CO$_2$ adsorption on Cu$_4$(II)/TiO$_2$ structure We now discuss the second most stable Cu$_4$/TiO$_2$ structure (II) (see Figure 5.3e). The most stable linear CO$_2$ was found to occur at the interface ($\Delta E_{\text{ads}}=-0.48$) where the O$_{\text{CO}_2}$ atoms bond to Cu$_d$ and Ti$_{5c}$ atoms (see Figure 5.9a). Another linear CO$_2$ structure had an ΔE_{ads} of -0.40 eV, where O$_{\text{CO}_2}$ was bound to a Ti$_{5c}$ atom. Interestingly, our results show that all the most stable linear structures on Cu$_x$/TiO$_2$ had ΔE_{ads} that were close to that of linear structures on pure TiO$_2$ (within 0.1 eV). This would again suggest that Cu clusters do not significantly affect linear CO$_2$ adsorption for activating CO$_2$.

The most stable bent CO$_2$ geometry was found to occur at an interfacial site (Figure 5.9c) and had a carbonate-like structure with ΔE_{ads} of -0.54 eV. Here the C atom was bonded to an O$_{2c}$ atom and the O$_{\text{CO}_2}$ atoms bonded to either Cu$_b$ or Ti$_{5c}$ atoms. Although this structure resembled a geometry on Cu$_3$/TiO$_2$ (Figure 5.7e) and Cu$_4$(I)/TiO$_2$ (Figure 5.8e),
Figure 5.9: Several stable adsorbed CO$_2$ on Cu$_4$(II)/TiO$_2$ in linear (a,b) and bent (c,d,e) configurations. Both side and top views have been shown. The numbers indicate adsorption energies of the CO$_2$ molecules.
the adsorption energy of -0.54 eV was significantly stronger (\(\sim\)-0.2 eV). When CO\(_2\) adsorbs, the Cu\(_b\) atom displaces 0.8 Å away from the surface to allow the favorable adsorption. Over Cu\(_3\) and Cu\(_4\)(I) this displacement does not occur. We find that Cu\(_4\)(II) stabilizes the bent CO\(_2\) slightly more than linear CO\(_2\). In contrast, linear CO\(_2\) is preferred compared to bent CO\(_2\) over Cu\(_4\)(I). Yang et al.\(^{47}\) reported that bent CO\(_2\) on Pt\(_4\)/TiO\(_2\) adsorbed through direct Pt\(_4\) interactions (without CO\(_2\) interacting with TiO\(_2\)) with a \(\Delta E_{\text{ads}}\) of -0.22 eV. Over pure TiO\(_2\) they found linear CO\(_2\) to have an adsorption energy of -0.14 eV, indicating a difference of 0.08 eV between their Pt\(_4\) and pure TiO\(_2\) adsorption energies. The difference in energy between bent CO\(_2\) on Cu\(_4\)(II) and linear CO\(_2\) on pure TiO\(_2\) was 0.14 eV in our work, a similar difference to the Pt\(_4\) work of Yang et al. However, our adsorption energies were much stronger. Yang et al. did not use dispersion corrections which could be why they obtained smaller absolute adsorption energies compared to our results.

Figure 5.9d,e shows two other bent CO\(_2\) structures, whose \(\Delta E_{\text{ads}}\) were both -0.34 eV. These structures both adsorb at interfacial sites. The bent CO\(_2\) shown in Figure 5.9d resembles the bent CO\(_2\) geometry on Cu\(_2\)/TiO\(_2\) (Figure 5.6b), but is less stable. The atoms in the Cu\(_4\)(II) cluster have higher coordination than the Cu\(_2\) cluster, which could explain why Cu\(_2\) has stronger adsorption. The last bent CO\(_2\) structure is shown in Figure 5.9e. Here, the C atom was bound to an O\(_{3c}\) atom, while the O\(_{\text{CO}_2}\) atoms were bound to either Cu\(_{d}\) or Ti\(_{5c}\) atoms.

Comparison of CO\(_2\) Adsorption

We show in Figure 5.10a a comparison of the most stable bent and linear CO\(_2\) adsorption energies on Cu\(_x\)/TiO\(_2\). On pure TiO\(_2\), adsorption of linear CO\(_2\) is more stable than bent CO\(_2\). However, in the presence of Cu bent CO\(_2\) is always strongly stabilized. Over atomic Cu linear CO\(_2\) is slightly more stable than bent CO\(_2\) (by only 0.02), while over Cu\(_4\)(I) linear CO\(_2\) is also slightly more stable than bent CO\(_2\) (by 0.06 eV). Over Cu\(_2\), Cu\(_3\), and Cu\(_4\)(II)
Figure 5.10: (a) Adsorption energies (ΔE_{ads}) of the most stable bent and linear CO$_2$ on the different Cu$_x$/TiO$_2$ surfaces. (b) The correlation between adsorption energies of bent CO$_2$ (ΔE_{ads}) on Cu$_x$/TiO$_2$ surfaces, and the C-O bond elongation (for the largest bond) upon adsorption. The solid line is the best linear fit to the data.
bent CO$_2$ is always preferred. The most stable bent CO$_2$ occurs over Cu$_2$ with a very strong adsorption energy of -0.84 eV. In contrast, the Cu$_2$ dimer had the lowest adsorption energy among the Cu$_x$ clusters on TiO$_2$ (see Section 5.3.1) suggesting that lower adsorption energy of the Cu cluster on TiO$_2$ results in a larger adsorption energy of bent CO$_2$. A review by Campbell88 discussed an inverse correlation between adsorption strength of metals on oxide support and the adsorption strength of small adsorbates like O$_2$, similar to what we find in our work. We discuss more details of Cu$_2$ later in this article. Of similar note, Kaden et al. reported CO oxidation activity as a function of Pd cluster size for Pd adsorbed on TiO$_2$ rutile(110).32 They found the Pd$_2$ cluster to have the largest activity out of Pd$_x$ clusters (x=0,1,2,4). We further found the trends in ΔE_{ads} values for bent CO$_2$ to be related to C-O elongation upon adsorption, which could be indicative of CO$_2$ activation. The largest bond change in adsorbed bent CO$_2$ correlates with ΔE_{ads}, as shown in Figure 5.10b. This indicates that increased interactions between CO$_2$ and the surface weaken the C-O bond (presumably as CO$_2$/surface bonds form) and lead to its elongation.

The ΔE_{ads} of adsorbed bent CO$_2$ consists approximately of two competing energy terms, the interaction energy between CO$_2$ and surface, and the reorganization energy for the formation of bent CO$_2$ from a linear CO$_2$ (i.e. energy to bend linear CO$_2$ to a bent structure). This can be written as: $\Delta E_{\text{ads}} \sim E_{\text{CO}_2-Cu_x/TiO_2 \text{interaction}} + E_{\text{CO}_2 \text{reorganization}}$. For linear CO$_2$ adsorption, the reorganization energy is essentially zero. We can assume that the reorganization energies are close to each other for the bent adsorption modes since the angles are similar to each other. On pure TiO$_2$, bent CO$_2$ had a weak ΔE_{ads} value (-0.15 eV), which indicates that the interaction energy is slightly more exothermic than the reorganization energy. However, the interaction energy term is much larger than the reorganization energy term when Cu clusters are present, such that the overall ΔE_{ads} values become more exothermic for bent CO$_2$ on Cu$_x$/TiO$_2$ compared to pure TiO$_2$. Cu$_x$ has strong interactions with CO$_2$, as we show in our analysis of the electronic states in Section 5.3.3.
We found that the most stable bent CO$_2$ geometries were at interfacial sites with CO$_2$ interacting with both the TiO$_2$ surface atoms (O$_{3c}$, O$_{2c}$, Ti$_{5c}$) and Cu cluster. For example see geometries in Figure 5.5c, Figure 5.6c, Figure 5.7c, Figure 5.8c, and Figure 5.9c. Graciani et al.89 also reported that activated bent CO$_2$ was present at Cu-Ceria interfacial sites using infrared reflection absorption spectroscopy (IRRAS). In previous DFT studies bent CO$_2$ adsorption was reported to occur at the interfacial sites of TiO$_2$ anatase(101) supported Cu$_{10}$,18 Ag$_8$,16 Pt$_6$,17 and Pt$_8$.16 On Cu$_{10}$, Pt$_6$, and Pt$_8$/TiO$_2$, the most stable adsorption sites consisted of C-metal(Cu/Pt) interactions, while on Ag$_8$/TiO$_2$, the most stable site was a carbonate-like structure at the interfacial site. In our work, except for Cu$_2$ with C-Cu interactions, the most stable bent CO$_2$ adsorbed in carbonate-like structures. Experimental studies using infrared spectroscopy involving titania supported Cu or Rh have also reported the formation of carbonate-like structures,90,91 as well as bent CO$_2$ with C-Rh interactions.92,93 CO$_2$ as carbonate-like species were also observed on CeO$_x$/Cu(111) catalysts using infrared reflection absorption spectroscopy.89

The strong adsorption energy of bent CO$_2$ on Cu$_2$/TiO$_2$ can be related to each Cu atom in Cu$_2$/TiO$_2$ having low coordination (coordination numbers of 3 and 2 for Cu$_2$). This low coordination makes the Cu$_2$ cluster very reactive towards CO$_2$ adsorption and activation. Other Cu$_x$ structures however, while being active for bent CO$_2$ formation, are likely less reactive than Cu$_2$ due to having larger coordination numbers, ranging from 3-5 (except Cu$_a$ atom in Cu$_3$, which has coordination number of 2). Silaghi et al. also found that bent CO$_2$ was stabilized strongly at the low coordinated edge and corner sites of alumina supported Ni clusters.94 Strong adsorption of bent CO$_2$ on Pt$_n$/TiO$_2$ ($n=4,6,8$) was found to occur at under-coordinated Pt sites.16,17
5.3.3 Characterization of Adsorbed CO$_2$

Vibrational Frequencies of Adsorbed CO$_2$

Experimentally, the presence of bent or linear form of CO$_2$ is often identified by techniques based on infrared or Raman spectroscopy. Several DFT papers have assisted experimental observations by clarifying the structure of adsorbed CO$_2$ (linear, bent, carbonate, or bicarbonate) using calculated vibrational frequencies. In this section we report calculated vibrational frequencies of the most stable adsorbed linear and bent CO$_2$ geometries.

We first calculated the vibrational frequencies of gas phase CO$_2$, which has several modes: asymmetric stretching (one bond elongates and other contracts), symmetric stretching (both bonds elongate/contract in unison), and in/out plane bending modes (O-C-O bond angle increases/decreases from 180°). For the asymmetric, symmetric, and bending modes, our calculated frequencies of 2380, 1308, and 657 cm$^{-1}$ agree well with the experimentally reported values of 2349, 1333, and 667 cm$^{-1}$ respectively.

Upon adsorption of CO$_2$ on TiO$_2$ P25 (which is predominantly anatase), the experimentally reported vibrational frequencies become 2355 (asymmetric stretch), 1379 (symmetric stretch), and 1271 cm$^{-1}$ (first overtone of bending mode). In another experimental paper, Mino et al. reported the asymmetric stretching frequency of linearly adsorbed CO$_2$ on the anatase (101) surface to be 2357 cm$^{-1}$. Our calculated frequencies of the stretching modes for linear CO$_2$ on the (101) surface, 2367 (asymmetric) and 1351 (symmetric) cm$^{-1}$, are comparable to these experimental values. The bending overtone at 1271 cm$^{-1}$ was a result of the Fermi resonance between the symmetric stretching mode and the first overtone of the bending mode, which shifts the bending frequency to higher values. DFT does not capture these resonance effects, as only the normal vibration modes are calculated, and our calculated bending modes were 667 and 688 cm$^{-1}$. Two types of bending modes are determined from our calculations: a parallel
Figure 5.11: Vibrational frequencies of CO$_2$ for the most stable adsorbed linear and bent CO$_2$ configurations on Cu$_x$/TiO$_2$ surfaces. The vibrational frequencies from top to bottom are the asymmetric stretching, symmetric stretching, bending parallel, and bending perpendicular modes. The dashed line indicates the calculated gas phase CO$_2$ vibrational frequencies.
bending mode occurs when the CO$_2$ bends primarily in the plane of the surface, while a perpendicular bending mode occurs when CO$_2$ bends primarily perpendicular to the surface. We visually examined the two calculated bending modes, and assigned them based on which mode best appeared to be parallel/perpendicular. Our calculated vibrational frequencies for adsorbed linear CO$_2$ are also close to previous DFT results. Comparing to several previous papers we find mean absolute differences of 13, 18, 26, 24, 86 cm$^{-1}$ when comparing the four vibrational modes. For example, Mino et al. reported the asymmetric, symmetric, and bending frequencies to be 2359, 1340, and 642/641 cm$^{-1}$ respectively, which are comparable to our calculated values.

Figure 5.11 shows the various vibrational frequencies of adsorbed CO$_2$. We note that in this section we only report the results for most stable Cu$_4$(I) geometry. All the asymmetric and symmetric stretching modes of bent CO$_2$ have lower frequencies (red shifted) compared to linear CO$_2$. This strong difference ranges from 658 to 806 cm$^{-1}$ for the asymmetric stretch and 74 to 280 cm$^{-1}$ for the symmetric stretch. Such strong red shifts for bent adsorbed CO$_2$ are due to the strong interaction of the CO$_2$ molecule with the surface atoms. In contrast, for adsorbed linear CO$_2$ weak interactions between CO$_2$ and surface occur, so that the asymmetric and symmetric stretching frequencies are very close to gas phase frequencies. In the case of bent CO$_2$ adsorbed on the Cu$_2$/TiO$_2$ surface, the symmetric stretching frequency is significantly red shifted to 1048 cm$^{-1}$. We attribute this large shift to the distinct strong C-Cu interactions between CO$_2$ and Cu$_2$, which do not occur in the carbonate-like structures observed on other Cu$_x$/TiO$_2$ surfaces. The bending frequencies however for bent CO$_2$ are higher compared to linear CO$_2$ (blue shifted). An exception occurs for the parallel bending mode on Cu$_2$/TiO$_2$, where a low vibrational frequency of 488 cm$^{-1}$ is observed, which again can be attributed to the distinct strong C-Cu interactions occurring with Cu$_2$. Overall, we generally observe large shifts in the stretching frequencies of bent CO$_2$, with red shifts of \sim600-800 cm$^{-1}$ (asymmetric) and \sim100-300 cm$^{-1}$ (symmetric) occurring, while bending
modes have blue shifts of ~ 100 cm$^{-1}$ compared to linear CO$_2$ frequencies.

In-situ FTIR and diffuse reflectance infrared spectra on Cu/TiO$_2$ catalysts show the formation of bent carboxylate species with asymmetric stretching frequencies corresponding to peaks at 1567 and 1595 cm$^{-1}$. In the work by Neatu et al., in-situ time resolved IR spectra showed that reactive bent CO$_2$ intermediates had an asymmetric stretching frequency of 1589 cm$^{-1}$ (carboxylate species) and 1674 cm$^{-1}$ (carbonate species) when adsorbed on a titania supported Au-Cu nanoalloy. In other experimental work, the asymmetric and symmetric stretching frequencies of 1610-1680 cm$^{-1}$ and 1220-1290 cm$^{-1}$ were reported for activated bent CO$_2$ adsorbed on defective TiO$_2$, CeO$_x$/Cu(111), and titania based nanotubes. Our calculated bent CO$_2$ species on Cu$_x$/anatase(101) showed predominantly a range of vibrational frequencies being 1537-1709 cm$^{-1}$ and 1048-1277 cm$^{-1}$ for asymmetric and symmetric stretch respectively, which were similar to these earlier reported experimental values. Using DFT, Yang et al. reported the vibrational frequencies of bent CO$_2$ at the interfacial sites on Ag$_8$, Pt$_6$, and Pt$_8$/TiO$_2$ to be in the range of 1510-1750 cm$^{-1}$ (asymmetric stretch), 1150-1270 cm$^{-1}$ (symmetric stretch) and 700-850 cm$^{-1}$ (bending). Another DFT work by Mudiyanselage et al. reported that at the of CeO$_x$/Cu(111) interface, the asymmetric stretching frequency of bent CO$_2$ species was 1610 cm$^{-1}$. The vibrational frequency ranges for bent CO$_2$ at the Cu$_x$/TiO$_2$ interface calculated in our present work fall in a similar range of vibrational frequencies compared to these earlier DFT results.

Charge Analysis of Adsorbed CO$_2$

Activation of CO$_2$ to form a negative anion is believed to be the first step in the CO$_2$ reduction reaction. He et al. identified bent CO$_2$ structures on neutral and negatively charged anatase (101) surfaces (similar to Figure 5.4). On a neutral TiO$_2$ surface bent CO$_2$ become moderately charged as -0.11 indicating the possibility of CO$_2$ anion formation. However, on a negatively charged TiO$_2$ surface (designed to mimic the surface with photoexcited
electron), He et al. found a new adsorption structure for bent CO$_2$ that showed formation of CO$_2$ anion species. TiO$_2$ surfaces with oxygen vacancies have also been reported to form CO$_2$ anions when CO$_2$ was adsorbed in the vicinity of the vacancy. Yang et al. reported CO$_2$ adsorption on Pt$_x$ (x = 4,6,8) and Ag$_8$ clusters supported on anatase (101) surfaces. They found that bent CO$_2$ with an electron gain by up to \sim -0.6 was stabilized (up to -1.0 eV) by the presence of these metal clusters. Therefore, in order to identify the possible formation of CO$_2$ anions when Cu clusters are present on TiO$_2$ anatase(101) surface, we calculated the charges of adsorbed CO$_2$.

We used the density derived electrostatic and chemical (DDEC6) approach to calculate atomic charges. Further details on the method and comparison with the Bader approach are given in the Supporting Information. We first looked at the charge transfer from Cu$_x$ atoms to the TiO$_2$ surface. We find that when a Cu atom is close to two O$_{2c}$ atoms, as in the case of Cu/TiO$_2$ (Cu$_a$), Cu$_b$/Cu$_c$ in Cu$_3$/TiO$_2$, Cu$_a$/Cu$_b$/Cu$_c$ in Cu$_4$(I)/TiO$_2$, or Cu$_a$/Cu$_c$ in Cu$_4$(II)/TiO$_2$, the Cu atom has significant electron transfer to the support, in the range of 0.20-0.53 electrons. All the other Cu atoms in Cu$_x$/TiO$_2$ show only a weak charge transfer to/from the support. Similar conclusions have also been reported earlier, where they find that electron transfer occurs from metal to the oxide support when the metal atoms lie closer
to the surface.[20][23]

The calculated charges using DDEC6 shown in Figure 5.12 clearly indicate that CO\textsubscript{2} in a bent configuration on any Cu\textsubscript{x}/TiO\textsubscript{2} surface gained electrons (negative charge values). The charges on CO\textsubscript{2} ranged from \sim -0.3 (for pure TiO\textsubscript{2} and single Cu atom) to -0.55 (over Cu\textsubscript{2}), with \sim -0.2 over Cu\textsubscript{3} and Cu\textsubscript{4}. In contrast to bent CO\textsubscript{2}, linear CO\textsubscript{2} molecules were slightly cationic. He et al.42 reported a +0.10 charge for adsorbed bent CO\textsubscript{2} on a TiO\textsubscript{2} surface built as a cluster, while 0.00 charge for adsorbed bent CO\textsubscript{2} on a TiO\textsubscript{2} surface using periodic boundary conditions (slab model). The bond angles in the bent CO\textsubscript{2} are close to the experimental gas phase CO\textsubscript{2} anion angle of 127$^\circ$[107] 135$^\circ$ over TiO\textsubscript{2}, 132$^\circ$ over Cu/TiO\textsubscript{2}, 128$^\circ$ over Cu\textsubscript{2}/TiO\textsubscript{2}, 129$^\circ$ over Cu\textsubscript{3}/TiO\textsubscript{2}, and 129$^\circ$ over Cu\textsubscript{4}/TiO\textsubscript{2}. Bent CO\textsubscript{2} on Cu\textsubscript{2}/TiO\textsubscript{2} showed the largest gain of electrons, suggesting stronger formation of anions when compared to other Cu\textsubscript{x}/TiO\textsubscript{2} surfaces.

In order to better understand the degree of electron transfer to CO\textsubscript{2} upon formation of the bent structure, we compared the calculated DDEC6 charges of adsorbed bent CO\textsubscript{2} to reference molecules having anionic CO\textsubscript{2}. Calculated charges will typically not match formal charges, so comparison to species with known formal charges can help in analyzing the calculated DDEC6 charges. We modeled CO\textsubscript{2} interacting with electron donors such as H, Li, and Ba+ to form OCOH (carboxylate), Li-CO\textsubscript{2}, and [Ba-CO\textsubscript{2}]+, respectively. Due to the electron-donating nature of H, Li, and Ba+, the CO\textsubscript{2} molecule would be expected to formally gain an electron. We used Ba+ instead of Ba, since Ba typically gives up two electrons to form Ba2+, and using Ba+ would lead to one electron transferred to CO\textsubscript{2}. The calculated charges of CO\textsubscript{2} were -0.37 (OCOH), -0.66 (Li-CO\textsubscript{2}), and -0.46 ([Ba-CO\textsubscript{2}]+). The calculated charges of adsorbed bent CO\textsubscript{2} were -0.31 (Cu), -0.56 (Cu\textsubscript{2}), -0.18 (Cu\textsubscript{3}), and -0.19 e- (Cu\textsubscript{4}). Thus the DDEC6 charges would suggest that either one electron (in the case of the Cu dimer) or less than one electron is transferred to CO\textsubscript{2}. Furthermore, we also compared the geometrical parameters of gas phase CO\textsubscript{2}, CO\textsubscript{2}, and CO\textsubscript{2}2- to the adsorbed
CO₂. The calculated C-O bond distances were 1.17 (CO₂), 1.26 (CO₂), and 1.34 Å (CO₂⁻), while O-C-O bond angles were found to be 180° (CO₂), 132° (CO₂), and 112° (CO₂⁻). The adsorbed bent CO₂ had C-O bond distances of 1.24/1.28 (Cu), 1.23/1.30 (Cu₂), 1.23/1.27 (Cu₃), and 1.26/1.28 Å (Cu₄). The corresponding O-C-O bond angles of adsorbed bent CO₂ were 132° (Cu), 128° (Cu₂), 129° (Cu₃), and 129° (Cu₄). The geometrical analysis is consistent with this conclusion of one or less than one electron transfer to CO₂, as all adsorbed CO₂ had similar bond lengths and angles to gas-phase CO₂.

We next analyze the charges on individual atoms. The atomic charges of CO₂ and Cuₓ are given in Table A.6. We found that over Cu₂/TiO₂ the C atom in bent CO₂ primarily gained electrons, as its charge become +0.33 from the gas-phase value of +0.75. The OCO₂ bonding with a Ti₅c atom also gained 0.23 e⁻ resulting in an overall large electron gain for bent CO₂ on Cu₂/TiO₂. Analysis of the atomic charges of Cu₂/TiO₂ indicated that Cu atoms become oxidized upon the adsorption of bent CO₂. The atomic charges of Cu were +0.13 and -0.07 (before adsorption) and +0.29 and +0.30 (after adsorption). For bent CO₂ on Cu₂/TiO₂, the electrons are primarily transferred from Cu atoms to the C atom of bent CO₂. The direct electron transfer for Cu₂ may be related to its adsorption geometry, where the C atom binds directly to the Cu₂. We also found evidence for electron transfer to C atoms in other structures where C-Cu interactions occurred. For example, the bent CO₂ on Cu₂ with an adsorption energy of -0.45 eV (Figure 5.6d) and the bent CO₂ on Cu₄ with an adsorption energy of -0.34 eV (Figure 5.9d) both had C-Cu interactions. In both these cases the C atom gained 0.38 and 0.41 e⁻ respectively when compared to gas phase CO₂. In contrast to Cu₂, on other Cuₓ/TiO₂ the O atoms of the most stable bent CO₂ were primarily reduced. In these cases, the C atoms were slightly oxidized (electron loss of <0.1 e⁻). The charges on Cuₓ atoms for x = 1, 3, and 4 before and after bent CO₂ adsorption showed insignificant (≤0.1 e⁻) changes (see Table A.6). This indicates that on Cuₓ/TiO₂ (x=0,1,3,4) the charge transfer occurred from the TiO₂ surface to the bent CO₂.

72
Our calculated charges for CO$_2$ are similar to those reported by Yang et al.46,47 They used Bader charge analysis and reported the number of electrons gained by bent CO$_2$ on Ptx/TiO$_2$ with x=4, 6, and 8 to be 0.3, 0.5, and 0.6, respectively. The adsorption geometries consisted of C-Pt interactions which led to electron gain primary by the C atom in bent CO$_2$. Our results for bent CO$_2$ on Cu$_x$/TiO$_2$ (x=0,1,2) showed that the electron gained by bent CO$_2$ is comparable to the values reported by Yang et al., while on other larger Cu$_x$/TiO$_2$ (x=3,4), the electron gain is relatively weaker. In another DFT paper by Silaghi et al.94 they reported a large gain of electrons (0.9 e$^-$) by bent CO$_2$ at the interfacial sites of alumina supported Ni$_{13}$ and Ni$_{55}$ clusters.

Electronic States of CO$_2$ on Cu$_x$/TiO$_2$

Electronic properties of correlated systems like TiO$_2$ suffer from self interaction errors70 as explained earlier. To avoid these self interaction errors, we used DFT+U formalism to calculate the PDOS. We used a U value of 5.0 eV applied to Ti 3d electrons as discussed further in the Supporting Information. The most stable linear and bent CO$_2$ structures were reoptimized at the level DFT+U. We found that applying the U correction resulted in essentially the same geometries. For instance the bond distances between adsorbed CO$_2$ and Cu$_x$/TiO$_2$ changed by <0.1"A for CO$_2$ linear and bent adsorption when compared to the structures reported using DFT in Figure 5.3.

We analyzed the site-projected density of states (DOS) of linear and bent CO$_2$ as shown Figure 5.13 to understand different orbitals associated with different atoms. Only the Cu and Cu$_2$ DOS are given in the figure, while DOS for the remaining Cu$_x$/TiO$_2$ systems are given in the Supporting Information. DOS for Cu$_3$ and Cu$_4$ are very similar to Cu$_1$. The Cu states are strongly localized near the valence band edge from 0 to \sim2 eV. Similar strongly localized states were also reported previously for clusters of Pt (1-4,8), Ag (2,4,8) and Au (1,2,3) on the TiO$_2$ anatase(101) surface.46,47,72,108 Cu states deeper in the valence band
Figure 5.13: Sited-projected density of states (DOS) for linear and bent CO\textsubscript{2} adsorbed on Cu\textsubscript{1} and Cu\textsubscript{2}. The left plots show linear CO\textsubscript{2} while the right plots show bent CO\textsubscript{2}. The valence band edge has been set to 0 eV.

Consist of shallow delocalized states extending up to -8 eV. The conduction band is composed predominantly of TiO\textsubscript{2} states. The DOS of linear CO\textsubscript{2} on all Cu\textsubscript{x}/TiO\textsubscript{2} show two localized peaks between -8 and -10 eV. Another characteristic peak for linear CO\textsubscript{2} is between -4 and -6 eV that appears consistently for all the Cu\textsubscript{x}/TiO\textsubscript{2} surfaces. The localized linear CO\textsubscript{2} peaks have little overlap with the Cu states which indicates weak interactions between CO\textsubscript{2} and Cu states.

In contrast, for bent CO\textsubscript{2} on Cu\textsubscript{x}/TiO\textsubscript{2} the characteristic CO\textsubscript{2} bands become hybridized with Cu states. On all the Cu\textsubscript{x}/TiO\textsubscript{2} surfaces, we find that bent CO\textsubscript{2} states become more delocalized within the valence band and start to overlap with Cu states. The broad energy range of overlap between CO\textsubscript{2} states with Cu states indicates strong hybridization between Cu and bent CO\textsubscript{2}. Since bent CO\textsubscript{2} states extend up to the valence band edge (unlike linear CO\textsubscript{2}), activation of bent CO\textsubscript{2} upon light absorption by photoexcited electrons is more possible. Similar to our results, the states of bent CO\textsubscript{2} on Ag and Pt/TiO\textsubscript{2} also extended close to the valence band edge.

While strong interactions occur between Cu\textsubscript{2} and bent CO\textsubscript{2}, Cu\textsubscript{2} has slightly different
DOS when compared to the other Cu\textsubscript{x}/TiO\textsubscript{2} systems. The bent CO\textsubscript{2} states for Cu\textsubscript{2}/TiO\textsubscript{2} (Figure 5.13d) are shifted to higher energy (by \(\sim 0.4\) eV) when compared to the other Cu\textsubscript{x}/TiO\textsubscript{2} surfaces. This shift results in more states of bent CO\textsubscript{2} near the valence band maximum compared to other Cu\textsubscript{x}/TiO\textsubscript{2}. We attribute this special behavior to the distinct C-Cu interactions on Cu\textsubscript{2}/TiO\textsubscript{2}, unlike the carbonate-like CO\textsubscript{2} that form on other Cu\textsubscript{x}/TiO\textsubscript{2} surfaces. The large number of bent CO\textsubscript{2} states near the valence band edge indicates strong possible photocatalytic activation on Cu\textsubscript{2}/TiO\textsubscript{2}. In contrast, for the case of Pt\textsubscript{8} on TiO\textsubscript{2}, bent CO\textsubscript{2} had only weak hybridization with Pt close to the valence band maximum edge46. This may indicate the strong potential photocatalytic activity of smaller clusters.

5.3.4 Oxidation state of Cu Clusters

Several reports have shown the oxidation state of the metal to be an important catalytic property. Reports focusing on the photocatalytic reduction of CO\textsubscript{2} to methanol or CO showed the presence of Cu1+ and/or Cu2+ to be active sites on Cu/TiO\textsubscript{2} catalysts5-7,9. The coexistence of Cu0 and Cu1+ species was also reported by other authors4,12,23 to be favorable for CO\textsubscript{2} photoreduction to methane. Chen et al.12 reported favorable photocatalytic activity as a result of the different oxidation states of Cu leading to efficient electron-hole separation between different Cu atoms, and accompanying lowered electron-hole recombination. Interactions of the support and adsorbed metals may lead to charge transfer, which may reduce or oxidize the metals. What oxidation state the Cu clusters may have on supports like TiO\textsubscript{2} that may serve as an active site is still an important question for CO\textsubscript{2} reduction.

Determination of Cu oxidation state using CO vibrational frequencies

Experimentally, the oxidation state of supported metals can be correlated to changes in CO vibrational frequencies upon adsorption4,15,109-112. For example, adsorbed CO on Cu/TiO\textsubscript{2} can be used to assign different oxidation states based on the CO vibrational frequency4.
Table 5.2: Determination of Cu oxidation state from adsorbed CO vibrational frequencies and DDEC6 charge analysis. Shown are adsorbed CO vibrational frequencies and assigned oxidation state of the Cu atom(s) bonding to the CO. DDEC6 charges are given for each Cu atom in the cluster. The DDEC6 charge analysis is for the bare clusters (no adsorbates present). The bold numbers indicate charges/oxidation states of the same Cu atom(s) from the vibrational analysis.

<table>
<thead>
<tr>
<th>Cu<sub>x</sub>/ν<sub>CO</sub> TiO<sub>2</sub> cm<sup>-1</sup></th>
<th>Assigned Oxidation state from ν<sub>CO</sub></th>
<th>DDEC6 Cu Charges</th>
<th>Assigned Oxidation state from DDEC6 Charges</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2097 Cu<sup>0</sup></td>
<td>0.53</td>
<td>Cu<sup>2+</sup></td>
<td></td>
</tr>
<tr>
<td>2 1788 –</td>
<td>-0.07, 0.13</td>
<td>Cu<sup>0</sup>, Cu<sup>0</sup></td>
<td></td>
</tr>
<tr>
<td>3 2104 Cu<sup>0</sup>/Cu<sup>1+</sup></td>
<td>0.03, 0.24, 0.24</td>
<td>Cu<sup>0</sup>, Cu<sup>1+</sup>, Cu<sup>1+</sup></td>
<td></td>
</tr>
<tr>
<td>4(I) top 2069 Cu<sup>0</sup></td>
<td>0.52, 0.20, 0.23, -0.07</td>
<td>Cu<sup>2+</sup>, Cu<sup>1+</sup>, Cu<sup>1+</sup>, Cu<sup>0</sup></td>
<td></td>
</tr>
</tbody>
</table>

2100 cm⁻¹ (Cu⁰), 2100-2150 cm⁻¹ (Cu¹⁺), or 2190-2200 cm⁻¹ (Cu²⁺). The experimental vibrational frequency of CO is 2169 cm⁻¹. These frequencies equate to CO vibrational shifts of -119 to -69 cm⁻¹ over Cu⁰, -69 to -19 cm⁻¹ over Cu¹⁺, and 21 to 31 cm⁻¹ over Cu²⁺. In the following section we assigned the oxidation state of Cu atoms that are bonded to CO molecules based on the adsorbed CO vibrational frequencies. In order to calculate the CO vibrational frequencies, we first determine the most stable CO adsorption sites on these photocatalysts as detailed in the Supporting Information. Our results show the most stable sites to have adsorption energies between -1.7 and -2.1 eV with the C atom bonding directly to Cu atoms, rather than TiO₂ atoms. Several other reports also show similar bonding where the C atom of CO is directly bonded to oxide-supported metal atoms such as Cu^{79,113} and Ag/Pd.¹¹⁴
On Cu/TiO$_2$, CO prefers to bind directly with the Cu atom ($\Delta E_{\text{ads}}=-1.96$ eV). The vibrational frequency of CO adsorbed on Cu/TiO$_2$(101) was 2097 cm$^{-1}$, which is a shift of -81 cm$^{-1}$ from the calculated gas-phase value. This red shift from gas phase CO suggests an oxidation state of Cu0 based on the assignments of Liu et al. as discussed above. See Table 5.2 for a summary of vibrational frequencies and assigned oxidation states. In the case of Cu$_2$/TiO$_2$, CO adsorbed strongly ($\Delta E_{\text{ads}}=-2.10$ eV) at the bridge site between two Cu atoms. The vibrational frequency of 1788 cm$^{-1}$ was significantly shifted. Such a lowered vibrational frequency for the bridge site bonding can be explained on the basis of Blyholder model, where back donation of electron occurs from the metal atom (Cu) to the antibonding orbital of CO, which is accompanied by a C-O bond elongation by 0.06 Å (compared to gas phase C-O bond distance of 1.14 Å) such that the vibrational frequency is lowered. Previous experimental work on Cu/TiO$_2$ catalysts did not find such a strongly red shifted CO vibrational frequency so we could not assign the oxidation state of the Cu atoms in Cu$_2$ based on CO vibrational frequency. The absence of such strong red shifts in the experimental work suggests the absence of Cu$_2$ dimers on TiO$_2$. We discuss more on the stability of Cu$_2$ dimers later in the paper. We also note that similar to our calculated strong red shifts for CO at the Cu$_2$ bridge site, strong red shifts of more than 100 cm$^{-1}$ were also observed for CO adsorption at a bridge site on Pd/Al$_2$O$_3$ and Pt/FeO$_x$.

CO was found to adsorb to the Cu$_3$ cluster (through C-Cu$_a$ bond) with a ΔE_{ads} value of -1.72 eV, and had a large vibrational frequency (2104 cm$^{-1}$) for adsorbed CO. This CO stretch frequency corresponds to a frequency shift of -74 cm$^{-1}$ compared to calculated gas phase CO frequency. Since this frequency shift is close to the shifts corresponding to both Cu0 and Cu$^{1+}$ species, the Cu$_a$ atom could not be definitively assigned. On Cu$_4$(I)/TiO$_2$, the most stable adsorption site was found to be at the bridge site bridge site between Cu$_a$ and Cu$_d$ of Cu$_4$ with an $\Delta E_{\text{ads}} = -1.91$ eV. The vibrational frequency of this bridged CO was calculated to be 1955 cm$^{-1}$. This frequency has a large shift of -223 cm$^{-1}$, again (similar
to Cu$_2$/TiO$_2$) can be explained on the basis of the Blyholder model. Unfortunately this shift could not be used to assign the oxidation state of Cu. A second top CO site over the Cu$_4$(I) cluster was only 0.23 eV less stable than the bridge site, indicating that CO atoms may adsorb in the top configuration over Cu$_4$(I). In Table 5.2 we report the vibrational frequency of CO adsorbed at this top site (with a C-Cu bond). The vibrational frequency of CO at the top site on Cu$_4$(I) was 2069 cm$^{-1}$ which corresponds to a vibrational frequency shift of -109 cm$^{-1}$ compared to gas phase CO value. This shift suggests the Cu$_c$ atom to have a Cu0 oxidation state.

Determination of oxidation state using DDEC6 charge analysis

The other approach that we used to determine the oxidation state of the Cu atoms was DDEC6 charge analysis. Details comparing this method with the common Bader method are found in the Supporting Information. In order to assign Cu oxidation state, we calculated the DDEC6 charges of Cu in several reference molecular and condensed systems with known Cu$^{1+}$ and Cu$^{2+}$ oxidation states, as detailed in the Supporting Information. The average calculated DDEC6 charge for Cu$^{1+}$ and Cu$^{2+}$ was 0.36 and 0.85 e$^-$ respectively. The DDEC6 charges of Cu$^{1+}$ species ranged from 0.25 to 0.52 while DDEC6 charges of Cu$^{2+}$ species ranged from 0.44 to 1.10. We used these calculated charges to help assign formal oxidation states to the Cu clusters.

We were able to calculate the charges of all Cu atoms (as opposed to the CO adsorption method in the previous section which only provided information on select Cu atoms), and these results are shown in Table 5.2. The calculated DDEC6 charges fall into three range of values. In the first case, the charge of the Cu atom is significantly positive \sim0.5, while in the second case the Cu charge is close to \sim0.2, while in the last case the Cu charge is \sim0. The calculated charge of 0.5, 0.2, and 0 can be assigned to formal oxidation states of Cu$^{2+}$, Cu$^{1+}$, and Cu0, respectively. DDEC6 based assignments show that the closer the Cu atoms are to
the TiO\textsubscript{2} surface, the more the Cu atoms are oxidized. The Cu\textsubscript{a} atoms that lie close to the TiO\textsubscript{2} surface in Cu\textsubscript{1} and Cu\textsubscript{4}(I) have calculated charges near 0.5, indicative of Cu2+ species. The other set of Cu atoms close to the TiO\textsubscript{2} surface are Cu\textsubscript{b} and Cu\textsubscript{c} in Cu\textsubscript{3} and Cu\textsubscript{4}(I), with calculated charges near 0.2 which correspond to Cu1+ species. Finally, the rest of Cu atoms which lie the farthest from the surface in Cu\textsubscript{2}, Cu\textsubscript{3}, Cu\textsubscript{4}(I) have calculated charges in the range of -0.07 to 0.13 which correspond to Cu0 species. Our results are consistent with the results of Liu et al., where they used Bader analysis and showed that when Cu in Cu\textsubscript{4}/Al\textsubscript{2}O\textsubscript{3} was closer (or farther) to the surface O atoms, Cu existed as Cu1+ (or Cu0) species.23 Our CO\textsubscript{2} adsorption results showed that Cu\textsubscript{a}, Cu\textsubscript{a}/Cu\textsubscript{b}, Cu\textsubscript{a}, and Cu\textsubscript{d} atoms in Cu\textsubscript{1} through Cu\textsubscript{4}(I) respectively were able to stabilize bent CO\textsubscript{2} (see Section 5.3.2). Except for the case of the lone Cu atom, these Cu atoms were located away from the surface and had DDEC6 charges of -0.07, 0.13 (Cu\textsubscript{a}/Cu\textsubscript{b} in Cu dimer), 0.03 (Cu\textsubscript{a} in Cu\textsubscript{3}), and -0.07 (Cu\textsubscript{d} in Cu\textsubscript{4}(I)). These charges are indicative of a Cu0 oxidation state, which would indicate that Cu0 atoms interact most strongly with bent CO\textsubscript{2} molecules. The lone Cu\textsubscript{a} atom in Cu/TiO\textsubscript{2} had significant charge transfer (0.53 calculated charge) and had a formal oxidation state of Cu2+.

Overall we find that assigned oxidation states from CO vibrational shifts are Cu1+/Cu0, while assigned oxidation states from DDEC6 analysis are Cu2+/Cu1+/Cu0. The DDEC6 method provides information on all Cu atoms in the cluster, not just those bound to CO. Discrepancies between the two methods could be attributed to charge transfer effects and/or DFT accuracy. First, adsorption can change the charges of Cu clusters due to electron transfer between adsorbate and Cu cluster. This charge transfer can lead for instance to the oxidation state of Cu being different before and after CO adsorption. We indeed observed that when CO was adsorbed on Cu\textsubscript{2}/TiO\textsubscript{2}, there was significant charge transfer from Cu\textsubscript{2} to CO. The same was true for CO\textsubscript{2} adsorption (see Table A.6). Before CO adsorption, the two Cu atoms in Cu\textsubscript{2} had charges of 0.13 and -0.07, while after adsorption the charges
became 0.44 and 0.39, indicating that Cu\textsubscript{2} changed from Cu0/Cu0 states to Cu1+/Cu1+ states. Sterrer et al. also reported charge transfer between CO and Au/MgO and reported that the probe molecule (CO) measured only the final state charges (after CO adsorption) instead of the bare catalyst (without CO adsorption).110 Charge transfer effects between a probe molecule and catalyst must be considered as this may change the oxidation state of the catalyst, although only the Cu\textsubscript{2} cluster charges changed upon CO adsorption. All the other clusters essentially had the same charges before and after CO adsorption. Second, the accuracy of calculated vibrational frequencies using DFT must also be considered. An error in DFT calculated frequencies (possibly up to \sim40117 cm-1) could lead to inaccurate assignments, especially for frequencies near the cutoff between two oxidation state ranges.

5.3.5 The Special Case of Cu\textsubscript{2}

Our results for Cu\textsubscript{2}/TiO\textsubscript{2} indicating strong CO\textsubscript{2} adsorption along with large charge transfer to bent CO\textsubscript{2} indicate the peculiarities of the Cu\textsubscript{2} dimer compared to other Cu clusters (see Figure 5.6c and Figure 5.10 for instance). Several papers have also reported transition metal dimers on different supports as potential reactive sites. The experimental work by Kaden et al.32 reported that Pd\textsubscript{2} on TiO\textsubscript{2} had substantial CO oxidation activity when compared to other Pd clusters of size \leq10 atoms. Pd\textsubscript{2} was found using DFT to have a lower barrier for CO oxidation compared to Pd\textsubscript{1}.118 Kydd et al.119 also reported large CO oxidation activity for Cu\textsubscript{2} dimers adsorbed on ceria. Metal dimers, like Cu\textsubscript{2}, may therefore be very reactive sites.

It is unclear, however, whether the Cu\textsubscript{2} dimer is stable on the TiO\textsubscript{2} surface. Indeed, the calculated CO vibrational frequency over Cu\textsubscript{2} is near 1788 cm-1, and such a frequency was not observed in previous experimental work on Cu clusters over TiO\textsubscript{2}.115 However, Qiao et al.20 reported the CO frequency to be 1860 cm-1 for a bridge-bonded CO over a Pt\textsubscript{2} dimer on FeO\textsubscript{x}, while they reported CO adsorption on a monomer Pt site to have a frequency
of 2030 cm\(^{-1}\), similar to our findings over Cu\(_x\) clusters. Since the frequencies for CO/Cu\(_2\) species were not experimentally observed for Cu/TiO\(_2\), this would suggest that Cu\(_2\) dimers may not be stable on TiO\(_2\). We calculated the dimer formation energy (Cu \rightarrow Cu\(_2\)) to be 0.94 eV, or an endothermic process. We further calculated the barrier for Cu atom diffusion across the anatase (101) surface to be 0.99 eV along the [010] direction and 1.63 eV along the [101] direction (see the Supporting Information for more details). This value along the [010] direction is close to the previous reported value of 1.23 eV for Cu adatom diffusion on the TiO\(_2\) anatase(101) surface\(^{120}\). Thus, Cu\(_2\) formation is thermodynamically unfavorable and also hard to form because of the high barrier for Cu diffusion on the surface. This would explain why Cu\(_2\) dimers did not appear in experimental work\(^{115}\). Our results suggest that if an experimental technique could synthesize and stabilize these dimers, this could lead to a very active CO\(_2\) photoreduction catalyst that readily activates CO\(_2\).

5.4 Conclusions

We used density functional theory calculations to determine how TiO\(_2\)-supported Cu clusters (Cu\(_x\), \(x = 1\) to 4) could activate CO\(_2\) for reduction. We found that Cu promotes the activation of CO\(_2\) on all Cu\(_x\)/TiO\(_2\) surfaces as shown by the strong adsorption energies of bent form of CO\(_2\) when compared to linear form of CO\(_2\). In contrast, on pure TiO\(_2\), the bent CO\(_2\) was less stable when compared to the linear CO\(_2\). Charge transfer analysis showed that bent CO\(_2\) on Cu\(_x\)/TiO\(_2\) gained significant electrons (0.2 to 0.5 e\(^{-}\)) from the Cu\(_x\)/TiO\(_2\) surfaces, indicating the formation of activated CO\(_2\) anion species. Further analysis showed that bent CO\(_2\) had strong vibrational frequency shifts (>100 cm\(^{-1}\)) when compared to linear CO\(_2\) on Cu\(_x\)/TiO\(_2\). Projected density of states showed evidence that the bent CO\(_2\) interacts strongly with the Cu clusters through mixing of CO\(_2\) and Cu electronic states. Charge and vibrational analysis indicates that Cu atoms had formally assigned oxidation states between
Cu\(^0\) and Cu\(^{2+}\), but that Cu atoms that interacted with CO\(_2\) molecules predominantly had charges of Cu\(^0\) or Cu\(^{1+}\), depending on the oxidation state characterization technique (charge analysis or CO vibrational shifts). Finally, we analyzed the Cu dimer; bent CO\(_2\) adsorption was very strong over the Cu dimer, suggesting that the Cu dimer could potentially be a very active catalyst. Cu dimer formation however is endothermic and has a high activation barrier. A synthesis technique that could stabilize these dimers could lead to very active catalysts. Several experimental studies on the synthesis of small Cu clusters (up to 20 atoms large) on oxide surfaces have been reported\(^{21,23-25}\). These reports have shown that small clusters can be highly active for CO\(_2\) reduction. Our work highlights the potential of Cu clusters for CO\(_2\) reduction, and provides motivation for further studies on these catalysts.

Bibliography

Chapter 6

Quantifying Support Interactions and Reactivity Trends of Single Metal Atom Catalysts over TiO$_2$

6.1 Introduction

Atomically dispersed catalysts represent the pinnacle for achieving high activity with minimal loading. A characteristic atomically dispersed catalyst contains a single metal atom as the active center on a support such as metal oxide, and is often described in the literature as "single-atom catalysts". Each metal atom interacts with the support, and interfacial effects may potentially lead to even more favorable catalysis. In the literature, single-atom catalysts have been synthesized for various applications such as CO$_2$ reduction, CO oxidation, methane oxidation, hydrogenation of organic molecules, water gas shift, and methanol steam reforming. A number of single-atom catalysts have been synthesized, such as Cu, Au, Pd, Pt, Ru, or Rh, over supports such as TiO$_2$, CeO$_2$, or FeO$_x$. Under-
standing and characterizing metal-support interactions is key to designing and synthesizing new, better single-atom catalysts since the support plays such a crucial role in stabilizing the individual catalyst atoms and affecting chemical reactivity.

Insight on supported dispersed metals is also important in understanding the formation of larger clusters and nanoparticles, as metals may aggregate during synthesis and reaction conditions. If the metal-support interactions are strong, then aggregation may be hindered, while if metal-support interactions are weak metal diffusion is fast and aggregation of metal atoms more readily occurs. For instance, Aydin et al. reported that certain clusters (Ir) on MgO were resistant to sintering, while others (Pt and Au) were not. Thus different interactions with the support for different metal atoms/clusters can occur to influence stability and structure of single metal atoms. Several reports have focused on the stability of supported small metal clusters or single atom catalysts. Theoretical methods such as density functional theory (DFT) can provide valuable insight on supported single atom catalysts.

DFT has been used to model metal atoms and clusters on several metal oxide supports, such as TiO$_2$, Al$_2$O$_3$, or CeO$_2$. Several DFT reports exist on metal cluster-oxide interactions and/or growth of late transition metal atom to form larger clusters on TiO$_2$. DFT studies have provided valuable insights on the stability of supported metal atoms/clusters, diffusion and activation barriers, charge transfer effects and other structural and electronic properties. Nonetheless, these accounts were primarily focused on the adsorption of late transition metal atoms (or clusters). A complete analysis of all transition metals is lacking, which is the focus of the current work.

The goal of this work was to understand the principles of how single metal atoms interact with a model metal oxide surface, the TiO$_2$ anatase (101) surface. Noble metals are often used as single-atom catalysts, but these metals are rare and costly, which underscores the importance of identifying catalysts that are more abundant and inexpensive. Therefore, we
have modeled the binding of all transition metals (3d, 4d, and 5d metals) to the surface and explain the nature of the metal-support interactions. We have also studied the activation of CO$_2$, important for CO$_2$ reduction, in order to further predict how these single-atom catalysts may behave. We briefly discuss results for post-transition metals. Our work provides a systematic analysis of supported transition and post-transition metals, and will be useful in further design of single-atom catalysts.

6.2 Methodology

We performed all spin-polarized DFT calculations with the Vienna Ab Initio Simulation Package (VASP). The valence electrons were represented by plane waves with a cutoff energy of 450 eV. Core electrons were treated by projector augmented wave (PAW) potentials. O had 6 valence electrons, while C had 4 valence electrons. For the metals we used the following number of valence electrons: 5 (Sb), 7 (Re), 8(Fe, Os), 9 (Co, Ir), 10 (Ti, Ni, Pd, Hf, Pt), 11 (Sc, Y, Ta, Cu, Ag, Au), 12 (Cr, Zn, Zr, Cd, Hg, W), and 13 (V, Ga, In, Mn, Nb, Tc, Tl), 14 (Ge, Mo, Pb, Ru, Sn), and 15 (Bi, Rh).

Reciprocal space was sampled with a k-point mesh of 2x2x1. Electronic states were converged below a threshold of 10^{-5} eV, while geometries were converged below a threshold of 2×10^{-2} eV/Å. We used the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional. The PBE exchange correlation suffers from self interaction errors for strongly correlated systems like TiO$_2$. To improve the quality of the electronic structure, such as correct localization of electrons and band gaps, we used Hubbard U corrections. The +U corrections were applied to Ti d orbitals with an effective U value of 4.5 eV, similar to previous work. For accurately determining the adsorption energies of weakly binding adsorbates such as CO$_2$ on TiO$_2$, inclusion of dispersion forces is important. To better model dispersion interactions, we used the Grimme D3 dispersion correction with Becke-Jonson
Figure 6.1: The side (a) and top (b) views of the anatase (101) surface slab used in the present work. In the top view, only the surface atoms are shown for clarity. The labels A, B, C, D, and E indicate the most stable metal adsorption sites. The distinction between Site B and C is shown in Figure 6.2. Blue spheres represent Ti atoms, while red spheres represent O atoms.

All the reported values (unless explicitly mentioned) are at the PBE+D3+U level.

We modeled the anatase (101) surface with the simulation cell shown in Figure 6.1. This cell was a (2x1) representation of the surface, having dimensions of 10.3 Å × 7.6 Å (72 atoms). The slab was ∼9.6 Å thick, or had six TiO₂ layers. The bottom two TiO₂ layers of the slab were kept frozen. A vacuum space of ∼15 Å was set between periodic slabs. The surface consisted of several types of atoms, such as two-coordinated O atoms (O₂c), three-coordinated O atoms (O₃c), and five-coordinated Ti atoms (Ti₅c). Equation 6.1 shows how adsorption energies were calculated.

\[\Delta E_{\text{ads-M}} = E_{\text{M/TiO}_2} - E_{\text{TiO}_2} - E_{\text{M}}. \] \hspace{1cm} (6.1)

\(E_{\text{M/TiO}_2} \) is the energy of a TiO₂ surface with metal atom adsorbed, \(E_{\text{TiO}_2} \) is the energy of a bare TiO₂ surface, and \(E_{\text{M}} \) is the energy of a lone metal atom M. We used the \(E_{\text{M}} \) values corresponding to the most stable spin state for each atom M, as determined by our calculations. A similar approach was used to calculate adsorption energies for CO₂.
6.2.1 Adsorption Energies of Metal Atoms

In Figure 6.2 we show the various possible adsorption geometries for stable metal adsorption. These sites are similar to previous work\cite{1,3,4} which also modeled metal atom adsorption over the anatase (101) surface. We considered other sites, but after optimization, all these geometries converged to one of the five configurations shown in Figure 6.2. Site A involves bridging between two O$_{2c}$, and is the most stable adsorption geometry for the metals. Site B involves the metal atom binding between a surface O$_{2c}$ atom and a surface O$_{3c}$ atom. Site C is similar to site B but an O$_{2c}$ becomes very distorted from its normal position by ~ 1 Å(on average) upon metal atom adsorption. This anomalous geometry has been previously discussed in the papers by Alghannam et al.\cite{1} and Wang et al.\cite{4} Site D involves an O$_{2c}$ atom and Ti$_{5c}$ atom. Site E occurs with the metal atom on top of O$_{3c}$ atom and interacting with two Ti$_{5c}$ atoms. We modeled all configurations for each metal, but not all configurations were stable for every metal and would sometimes converge to other geometries.

Figure 6.3 shows the adsorption energies for each atom at the various adsorption sites.
Figure 6.3: Adsorption energies of transition metal atoms in rows 4 (a), 5 (b), and 6 (c) on TiO\textsubscript{2} for the stable adsorption configurations as shown in Figure 6.2.

Only energies for converged structures are reported. For every transition metal, site A was the most stable adsorption mode. This configuration involved only under-coordinated O\textsubscript{2c} atoms binding to the adsorbed metal. Other stable configurations that existed for nearly every metal were site B and D, which involved O\textsubscript{2c} and O\textsubscript{3c} atoms for site B, and O\textsubscript{2c} and Ti\textsubscript{5c} atoms for site D. Site C, which had a large distortion of the O\textsubscript{2c} atom out of the surface, was mostly stable for mid- to late transition metal atoms such as Mn-Ni (except Fe) in row 4, Mo-Pd in row 5, and Ta-Au in row 6. Site E, where the metal atom adsorbed on top of an O\textsubscript{3c} atom while simultaneously bonding to two Ti\textsubscript{5c} atoms, was only stable for metals with half filled or completely filled d-orbitals such as Zn (d10), Tc (d5), Au (d10), and Hg (d10).

Based on this data we conclude that adsorbed transition metal atoms bind strongest to O\textsubscript{2c} atoms (site A), while binding at sites involving Ti\textsubscript{5c} atoms (Sites D and E) is essentially the
Adsorption energies depended upon whether the transition metal atom was early, middle, or late in the periodic table. Adsorption energies of the middle transition metals tended to be near -3 eV, while the adsorption energies increased with atomic number for the early and late transition metals. Adsorption energies for site A were very stable (-7.6 to -5.0 eV) for early transition metals, moderately stable (-3.4 to -2.0 eV) for mid to late transition metals (with the exception of W at -4.7 eV), and less stable (-0.4 to -0.9 eV) for late transition metals (with the exception of Cu at -2.3 eV). All the metals in their atomic configuration have d electrons to interact with the surface, except for the Cu and Zn group transition metals which have filled d orbitals. Cu group metals have stronger adsorption energies compared to Zn group metals. Cu group metals hybridize with TiO\textsubscript{2} while the Zn group elements do not, as shown by the state in the range of -1 to -7 eV in Figure B.1. Cu binds much stronger than the other metals in the Cu group (Ag and Au). This observation can be rationalized by the PDOS of lone Cu group atoms. Gas-phase Cu bands are much higher in energy (-0.4 eV below the conduction band) compared to gas-phase Ag and Au (around -2.5 and -1.3 eV below the conduction band respectively). See Figure B.2 for these plots. Upon adsorption these bands in Cu shift to lower energy to hybridize with the TiO\textsubscript{2} bands as bonds form (Figure B.1). Such a large shift stabilizes the Cu atom significantly as high energy orbitals become more stable lower energy orbitals. Such a shift is not seen in Ag or Au, and therefore Ag and Au do not bind as strongly to TiO\textsubscript{2} as Cu.

Overall, the adsorption energies decrease in strength with increasing atomic number, with the exception of the near constant adsorption energies of the middle transition metals. This decrease may be attributed to the weaker interactions with TiO\textsubscript{2} for transition metals that have more filled d bands and/or fewer unpaired electrons as was reported previously by Wang et al. for late transition metal atom adsorption on TiO\textsubscript{2}. For instance, early transition metals have more unpaired electrons compared to the later transition metals,
such that the former has a larger tendency to pair up their unpaired electrons with TiO$_2$ resulting in stronger interactions with TiO$_2$. Of note is that several metals typically relevant for catalysis (e.g. middle to late transition metals) have adsorption energies between -3.5 and -2 eV, or rather stable binding to the surface.

Our results agree with previous simulations of metal atom adsorption on the anatase (101) surface. We calculated the adsorption energy of Cu to be -2.31 eV, which is similar to other reported values of -2.30 eV44 and -2.26 eV37 as well as our reported value of -2.56 eV35 Our values of -3.26 and -0.86 eV for Pt and Au are also close to the values of -3.08 and -0.81 eV reported by Wang et al45 Zhang et al43 reported the Ru adsorption energy to be -3.59, while we calculated an adsorption energy of -3.19 eV. Zhang et al. used a different basis set (double numerical basis set with polarization) and also did not include a dispersion correction, which may explain the small differences for Ru. Alghannam et al.37 also found the most adsorption stable site of eight different transition metal atoms to be at the bridge site between two O$_{2c}$ atoms (our site A). The mean absolute difference between our adsorption energies and their reported values was 0.15 eV.

Diffusion of transition metal adatoms on support materials can have important consequences in terms of sintering and aggregation to form larger clusters or nanoparticles.37,66 Metal atoms that readily diffuse may not be stable single atom catalysts. Calculating the diffusion barrier for many metal atoms can be involved,37 and rather we can use a proxy to estimate diffusion barriers. A large energy difference between the most stable site and the next most stable site indicates that the most stable site has a very deep energy well and to move to the second most stable site, or across the surface, requires significant energy. For instance the energy difference for Cu is the difference in adsorption energies of site A and site B, and has a value of 0.57 eV. A good correlation ($R^2 = 0.76$) between literature diffusion barriers and the energy difference between the two most stable adsorption sites ($\Delta E_{\text{ads-1-2}}$) is given in Figure B.3. Thus, knowing the $\Delta E_{\text{ads-1-2}}$ value can provide an estimate of the
barrier for diffusion.

Figure 6.4: Diffusion analysis for metal atoms on TiO$_2$. (a) The energy difference between the two most stable sites is plotted against group number for all the transition metal atoms supported on TiO$_2$. (b) Comparison of the most stable adsorption energy at site A with the difference in adsorption energy between the two most stable sites. This energy difference between the two most stable sites can be used as a proxy for the activation barrier for diffusion as discussed in the Supporting Information.

In Figure 6.4a, we show the $\Delta E_{\text{ads}\text{-}1\text{-}2}$ values for all transition metals. Early transition metals (group 3-5) show significantly negative $\Delta E_{\text{ads}\text{-}1\text{-}2}$, which increases to more positive values for mid-transition metals (groups 6-8). Groups 9-12 transition metals show only moderate $\Delta E_{\text{ads}\text{-}1\text{-}2}$. These results show that early transition metals are trapped in deep energy wells with low probability to diffuse to the next most stable adsorption site on the TiO$_2$ surface. Moving along each row of the transition metals, this trapping becomes less pronounced. For late transition metals the trapping is weak, indicating easier diffusion. In
Figure 6.4b, we show the correlation of the most stable adsorption energies (site A) with the $\Delta E_{ads-1-2}$ values. Our results show that the stronger the adatom binds to the TiO$_2$ surface, the more difficult it will be to diffuse on the surface. Incidentally Iachella et al.\cite{Iachella2010} reported that a stronger adsorption energy of Cu compared to Au resulted in higher diffusion barrier of Cu (0.57 eV) compared to Au (0.26 eV) on the stoichiometric TiO$_2$ surface, similar to the current work. Our results demonstrate the efficient use of simple adsorption energy calculations to estimate diffusion barriers, and that earlier transition metals may be more stable than later transition metals on the surface.

6.2.2 Geometry Analysis of Adsorbed Metal Atoms

Figure 6.5: Comparison of metal adsorption energies with (a) M-O$_{2c}$ distances and (b) surface fluxionality. Shown are results for the most stable site, or site A.
We analyzed the geometries upon transition metal atom adsorption for the most stable site A, and summarize this information in Figure 6.5. Figure 6.5a shows the bond distances between the transition metal atom and nearby O$_{2c}$ atoms (M-O$_{2c}$) for each group. In site A the metal atoms are bonded only to the O$_{2c}$ atoms. There appears to be no direct correlation between the M-O$_{2c}$ bond distances and group number. There is also no correlation between metal adsorption energy and M-O$_{2c}$ distance. Rather, all M-O$_{2c}$ bond distances appear to be near 2 Å, with the exception of late transition metals which have large M-O$_{2c}$ bond distances. Similar bond distances near 2 Å were reported by Alghannam et al. for adsorption of eight transition metal atoms on the TiO$_2$ anatase (101) surface. Experiment also provides evidence based on EXAFS (extended x-ray absorption fine structure spectroscopy) results for group 7 and 8 transition metal-oxygen bond distances to be around 2.1 Å for supported single atoms over metal oxides or in zeolites. The atomic Cu and Zn group transition metals have d10 electronic configurations. Despite having filled d states, Cu and Ag bonded to O$_{2c}$ of TiO$_2$ with short bond distances (1.89 Å for Cu and 2.19 Å for Ag). An Au atom adsorbs on TiO$_2$ with large bond distances as the bonding interaction of Au involves primarily polarization and dispersion interactions with little charge transfer, unlike Cu and Ag. Larger charge transfer to TiO$_2$ from Cu and Ag (0.68 and 0.62 e-, respectively) compared to that of Au (0.2 e-) occurs. Similar bonding interactions were described by Wang et al. for Au$_1$/TiO$_2$.

We also analyzed how much the surface distorted upon metal atom adsorption for the most stable adsorption site A. The distortions of surface TiO$_2$ atoms were larger for early transition metals compared to the mid or late transition metals. For instance, upon adsorption of numerous early transition metals (Sc, Ti, Y, Zr, Nb, Hf, Ta, W), several of the surface atoms (typically four to seven) undergo >0.2 Å displacements. These transition metals had strong adsorption energies as Figure 6.3 shows. Upon adsorption of other metals, only a handful of surface atoms (less than four) were displaced by >0.2 Å. The atoms that distorted upon adsorption were typically the O$_{2c}$ and O$_{3c}$ atoms. Typical distortions of surface
O$_{2c}$ and O$_{3c}$ atoms involve these atoms moving out of the surface plane and towards the metal adatom. The distortions of surface Ti atoms were always small ($<$0.2 Å).

We also analyzed the surface fluxionality, which is a measurement of how much the surface changed upon adsorption. We used the approach of Yang et al., where they analyzed how a geometry changed between two different states. We calculated how much the surface changed upon metal atom adsorption through the fluxionality value. Figure 6.5b shows the calculated surface fluxionality values compared to the adsorption energies of the metals. A strong correlation exists, where higher surface distortion (or fluxionality) is correlated to stronger adsorption energy. Again this indicates that strong interactions between the metal and the surface, as evidenced by the surface distortions, lead to increased binding.

Sites B and C had similar geometries, where the metal atom bonds to O$_{2c}$ and O$_{3c}$ atoms. However, site C involved significant distortion of the O$_{2c}$ atom, while site B did not. The largest distortions (up to \sim0.4 Å) for site B primarily involved O3c and O2c atoms bonded to the metal adatom. Site C, which involved the most dramatic changes of the TiO$_2$ surface, where an O$_{2c}$ atom moved significantly out of the surface (\sim1 Å), was not a stable site for several of the transition metals (see Figure 6.3). Often an initial geometry for site C converged back to site B or was less stable than other adsorption sites. The large distortions of the O$_{2c}$ atoms decidedly limited the stability of site C.

6.2.3 Electronic Analysis of Adsorbed Metals

In order to further understand the electronic nature of the metal adsorbate-surface interactions, we calculated the projected density of states (PDOS) and show representative results in Figure 6.6. See Figure B.4 in the Supporting Information for PDOS of all adsorbed elements. The adsorption of transition metal atoms on TiO$_2$ results in surface or gap states. Similar observations have been reported earlier. Figure 6.6a shows results for Hf (an early transition metal), which introduces a gap state around -1 eV and also populates the
Figure 6.6: Projected density of states of representative early (a, Hf), mid (b, Mn), and late (c, Pd) transition metal atoms adsorbed on TiO\textsubscript{2}. The energies are shifted so that 0 eV is at the bottom of the conduction band. Bands below 0 eV are filled states.

conduction band edge with Hf states. Similar to other early transition metals (Sc, Ti, and V group elements), Hf introduces gap states that consist significantly of TiO\textsubscript{2} states. However, in the case of Mn (a mid transition metal) and Pd (a late transition metal), electronic states of these metal atoms are localized in the gap or near the top of the valence band edge. The localized gap states exist within the band gap between -0.8 and -1.6 eV for Mn/TiO\textsubscript{2} and between -0.6 and -2.2 eV for Pd/TiO\textsubscript{2}. The gap states were a hybridization of metal adatom, Ti, and O as seen from the overlap of electronic states between the three types of atoms. This behavior was similar to several other mid to late (Cr to Cu group elements) transition metal atoms. We note that metal bands significantly spread across the valence band region (∼-2 to -8 eV) for all metals except Zn group metals which have filled shells. For several transition metals (like Mn, Co, Ag, W, Pt, and Au) the band gaps, or difference between conduction band edge and valence band edge of the M/TiO\textsubscript{2} system, were lowered by 0.2 to 0.8 eV compared to a pure TiO\textsubscript{2} surface.

During catalytic and photocatalytic reactions over these supported single metal atoms, the high energy gap states may play an important role as these states are likely to interact (or hybridize) with the adsorbed reaction intermediates. For instance, in our previous work the valence band edge states of Cu clusters over TiO\textsubscript{2} interacted with CO\textsubscript{2} to stabilize the activated, bent form of CO\textsubscript{2} \cite{36}. Similar conclusions have been reported by others for both CO\textsubscript{2} reduction \cite{71,74} and CO oxidation reactions \cite{75}. The energy level of a gap state can be
be crucial for enabling reduction or oxidation reactions. Several mid-transition metals (see PDOS of Fe, Co, Mo, Cr, Rh, and W) and a few early/late transition metals (V and Ni) had gap states lying very close to the conduction band edge. Since these gap states are close to the conduction band they may more readily participate in reactions with high reduction potential. Wang et al. showed a similar example using TiO$_2$-supported Pt nanoparticles. The 1 nm Pt particle energy levels, as opposed to larger particles, were close to the CO$_2$/CH$_4$ redox potential and was this energy proximity was proposed to increase the activity for CO$_2$ reduction. Several gap states lie near the valence band (see PDOS of Mn, Fe, Co, Cu, Tc, Ru, Rh, Pd, W, Re, Ir) and after photoexcitation occurs holes may migrate to these metals to enable oxidation reactions with relatively lower potential. Yan et al. performed experiments and calculations to propose a similar phenomena with high and low energy gaps states from adsorbed metals. Finally, the presence of gap states and reduction of band gap can also be beneficial for visible light photocatalysis as reported by Nolan and coworkers.

For all adsorbed transition metals, the metal atoms became positively charged upon adsorption, as determined by Bader charge analysis. Electrons transferred to the TiO$_2$ surface upon adsorption. We found that the metal atom adsorption energies are correlated
with the adatom charges, as Figure 6.7 shows. Metal atoms with large charge transfer interact with the surface strongly, as reflected by stronger adsorption energies. The metal atom charges were also correlated with the metal-oxygen bond dissociation energies ($R^2 = 0.73$). Metals that formed stronger metal-oxygen bonds had larger degree of charge transfer from the metal adatom to TiO$_2$ surface due to strong interactions.

The Bader charges of the metal atoms were between $+0.02$ and $+2.32$ e$^-$. The early transition metals (group 3 to 5) had the largest charges, in the range of $+1.5$ to $+2.3$ e$^-$. The mid transition metals had charges between $+0.3$ and $+1.8$ e$^-$, while late transition metals had charges between $+0.02$ and $+0.8$ e$^-$. The larger charge transfer occurring with early and mid-transition metals can be attributed to the presence of a large number of unpaired electrons for these atoms, which upon adsorption can readily transfer to the TiO$_2$ surface. Moving across a transition metal row, this charge transfer tendency decreased as the transition metals approached stable s^2d^{10} configurations (see Figure B.5 in the Supporting Information). Of note, the charges of the row 4 transition metals decreased along the row more gradually than row 5 and 6 transition metals.

6.2.4 Further Explanation of Metal Atom Adsorption

We further aimed to understand the adsorption energy trends for the transition metals by correlating our adsorption data with known independent quantities. We have already shown that the adsorption energies correlate with the surface distortions (Figure 6.5) and metal atom charge (Figure 6.7). Such quantities, while useful for understanding adsorption behavior, cannot be determined a priori without modeling adsorption and may be of limited use in predicting adsorption behavior. We considered 11 different tabulated properties of transition metals, such as number of d electrons, atomic radii, electronegativity, cohesive energy, workfunction, polarizability, etc. See Table B.1 in the Supporting Information for properties considered. We used the Lasso shrinkage model79 to identify important descriptors and
performed linear regression using the identified descriptors (metal-oxygen dissociation energy, number of d electrons, electronegativity). Compared to univariate regression, the use of multiple descriptors improved the R2 values only slightly, so we report only univariate linear regression to avoid overfitting. Several of the descriptors we considered did not correlate well with the adsorption energy data (see Table B.2).

The group number correlated strongly (R$^2 = 0.85$) with metal atom adsorption energy, as well as the number of d electrons in the transition metal atom (R$^2 = 0.84$). Moving to the right of the transition metal series resulted in weaker binding to the TiO$_2$ surface. The d-band center of the lone adsorbed transition metal atom also correlated well with the adsorption energy (R$^2=0.80$). The d-band model by Nørskov and coworkers80,81 has been used to explain catalytic activity of different metals. A higher d-band center of the transition metal atom leads to stronger interactions with the surface. Note that the d-band center of the lone adsorbed metal atom is related to the group number and the number of d electrons so that these descriptors are not independent. Linear regression of d-band center against both the group number and number of d electrons resulted in an R2 values of 0.88. Group number was also reported as an important property in the prediction of d-band center of bimetallic compounds.82

The property that correlated best with the adsorption energies (R$^2 = 0.86$) was the tabulated M-O bond dissociation energies,83 or the energy to break the M-O bond in a diatomic gas phase MO molecule, as Figure 6.8 shows. A similar correlation was found earlier for metal adsorption on the rutile (110) surface.84 Essentially metal atoms that form strong M-O bonds (manifested by large M-O dissociation energies) will have large adsorption energies because these metal atoms interact strongly with surface oxygen atoms upon adsorption. We expect that a correlation between adsorption energy and M-O bond dissociation energy may exist over other metal oxide surfaces where formation of metal-oxygen bonds occurs. The correlation involving M-O dissociation energy also echoes work on the oxophilicity of transition
metals, or the tendency of the metals to bond with oxygen. Campbell and coworkers, using microcalorimetric experiments, correlated the metal oxophilicity with adhesion energy of metal nanoparticles over different metal oxide surfaces.

6.2.5 Effect of DFT Method

Our results so far have been at the DFT+D3+U level, or including dispersion corrections and the +U correction, as indicated in the Methodology section. We performed further tests without such corrections to assess their affect on the adsorption energies of the transition metal atoms. Figure 6.9 shows calculated adsorption energies at four levels of theory: DFT+U+D3, DFT+U, DFT+D3, and DFT. The trends in adsorption energies are the same using all four methods. Early transition metals bind strongly to the surface. The adsorption energies of the middle transition metals all have similar values within a row. Late transition metals bind weakly. We have summarized the differences in the adsorption energies for the four methods in Table B.3.

Compared to the PBE results, the inclusion of dispersion corrections (D3) stabilized the metal atoms by an average of 0.38 eV. V actually destabilized by 0.06 eV, while Nb was most
Figure 6.9: Comparison of four different levels of theory for the adsorption energies of row 4 (a), row 5 (b), and row 6 (c) transition metals. Results are for site A over the TiO$_2$ surface.
stabilized by 0.57 eV. A similar stabilizing effect using D2 dispersion corrections of 0.3 to 0.6 eV was also reported for Au and Ag atom adsorption on the TiO$_2$ anatase (101) surface.60 In contrast, when U corrections were applied to PBE, some atoms were stabilized (up to 1.06 eV for Ta) while others were destabilized (down to 0.87 eV for Re). Most atoms however appeared to be stabilized by the +U corrections. Finally, when both D3 and U corrections were applied to PBE, all the adsorption energies were more exothermic, except for a few metals (Tc, Ru, Re, and Os) which were destabilized by \(\leq 0.40 \) eV. The D3 correction will change the adsorption energies as will the U correction. The change in adsorption energies for D3 calculations and change in adsorption energies for U calculations are largely independently additive, since we find for most of the transition metals that adding the two changes from the two separate types of calculations differs by \(< 0.2\) eV from adsorption energy differences for combined D3+U calculations, or \(\Delta E_{\text{ads}}(\text{PBE}+\text{D3}+\text{U}) - \Delta E_{\text{ads}}(\text{PBE}) \approx [\Delta E_{\text{ads}}(\text{PBE}+\text{U}) - \Delta E_{\text{ads}}(\text{PBE})] + [\Delta E_{\text{ads}}(\text{PBE}+\text{D3}) - \Delta E_{\text{ads}}(\text{PBE})].\)

6.2.6 CO$_2$ Activation over Supported Metal Atoms

CO$_2$ reduction is an important reaction for curtailing this greenhouse gas and potentially converting it to useful fuels.87–91 CO$_2$ reduction to CO or CH$_4$ has been reported recently using single metal atom catalysts such as Cu/TiO$_2$,15,38,92 Rh/TiO$_2$,17 Ir/TiO$_2$,93 Pd/Al$_2$O$_3$,7,94 Pd/TiO$_2$,18 Mn/TiO$_2$,15,38 and Co in a metal oxide framework (MOF).95 During CO$_2$ reduction, the activation of a stable linear CO$_2$ molecule by one electron reduction to form bent CO$_2$ anion is one of the initial steps. However, this reaction step is well known to be highly unfavorable (redox potential of -1.9 V vs NHE90). Without CO$_2$ activation, further reduction of the CO$_2$ molecule can be difficult, if not impossible. The importance of CO$_2$ activation in the CO$_2$ reduction reaction has been emphasized by both experimental and theoretical studies.15,38,96,101

We modeled adsorption of both linear (non-activated) and bent (activated) CO$_2$ over the
Figure 6.10: Adsorption energies of the most stable bent and linear CO$_2$ on all the metal atom/TiO$_2$ surfaces.
metal atom/TiO$_2$ surfaces. In Figures B.6 and B.8 we show stable adsorption sites for linear and bent CO$_2$ that were found, while Figures B.7 and Figure B.9 show all the adsorption energies for CO$_2$ over the different metal/TiO$_2$ surfaces. All of the CO$_2$ adsorption geometries we modeled were with a metal in site A since this was found to be the most stable site for all transition metals. All the most stable bent CO$_2$ geometries occurred with CO$_2$ binding at interfacial sites except Hg/TiO$_2$, where CO$_2$ interacted with just TiO$_2$. The interfacial sites consisted of the C atom interacting with the transition metal adatom, surface O$_{2c}$, or O$_{3c}$ atom near the transition metal adatom. In the case of linear adsorption, the CO$_2$ adsorbed with O$_{CO_2}$-M bonds, where M was either a surface Ti$_{5c}$ atom or the transition metal adatom. Further discussion of the various CO$_2$ geometries we modeled can be found in the Supporting Information.

A comparison of the most stable linear and bent CO$_2$ adsorption energies is shown in Figure 6.10. Notable is the fact that all linear adsorption energies are in a narrow energy range of -0.43 and -0.76 eV with an average adsorption energy of -0.56 eV. There appears little trend in the linear CO$_2$ adsorption energies with respect to the various transition metals. These results are indicative of the uniform nature of the interactions between linear CO$_2$ and the surface. We further examined the effect of dispersion forces on linear CO$_2$ adsorption energies. We modeled linear CO$_2$ adsorption for the Row 4 transition metals without the dispersion correction (only PBE+U) and found the adsorption energies became more unstable by 0.06 to 0.36 eV. The average linear CO$_2$ PBE+U adsorption energy over the row 4 transition metals was -0.34 eV, compared to the average PBE+D3+U adsorption energy for row 4 transition metals of -0.56 eV. This indicates that dispersion forces can be important for binding linear CO$_2$.

Bent CO$_2$ adsorption however was much stronger and very much depended upon the adsorbed metal. Row 4 transition metal atoms on TiO$_2$ behaved differently compared to row 5 and row 6 metal atoms. For bent CO$_2$ adsorption over row 4 metals, only the early
transition metals had very large bent CO$_2$ adsorption energies being -1.72 eV, -1.61 eV, and -2.3 eV, for Sc, Ti, and V, respectively. For the rest of the row 4 metals, the bent CO$_2$ adsorption energies were more moderate, between -0.4 and -1.1 eV. In contrast, both the early and mid-transition metals in row 5 (Y to Ru) and row 6 (Hf to Os) elements stabilized the bent CO$_2$ significantly stronger than the later transition metals. These adsorption energies were in the range of -1.3 to -2.2 eV. Except for some late transition metals (Cu, Cd, Hg), bent CO$_2$ was more stable than linear CO$_2$ on all the supported transition metal atoms. This may indicate the potential strong reactivity of these single atom catalysts since activated bent CO$_2$ could lead to further CO$_2$ reduction. We further examined the charge transfer to the most stable bent CO$_2$ adsorption structures. We found that interaction between the metal adatom and C atom is important for significant (0.43 to 1.02 e-) electron transfer to CO$_2$ forming CO$_2$ anion species (see Figure B.10 and associated discussion).

One could expect that a catalyst which binds bent CO$_2$ strongly could be reactive for CO$_2$ reduction, while a catalyst that binds bent CO$_2$ weakly would be less reactive. For instance, Matsubu et al.17 reported high CO$_2$ reduction activity for single atom Rh/TiO$_2$ catalysts. Consistent with Matsubu et al.’s work, we find bent CO$_2$ adsorption on Rh/TiO$_2$ to be strongly stabilized (-1.04 eV) compared to the linear (-0.52 eV) adsorption. In a study comparing three different transition metal atoms supported on TiO$_2$ (Mn, Cu, and Pd), Yan et al.38 reported CO$_2$ photoreduction to CO and CH$_4$. Compared to pure TiO$_2$, the photocatalytic reduction activities improved with a 1.79 to 2.92-fold increase for CO$_2$ conversion to CH$_4$ using the three catalysts. Our results are consistent with Yan et al. where we show that bent CO$_2$ was strongly stabilized on Mn, Cu, and Pd/TiO$_2$. Yan et al.38 also showed that for CO$_2$ reduction Mn/TiO$_2$ and Pd/TiO$_2$ were excellent catalysts. Our results, based on bent CO$_2$ adsorption energies, also showed that Mn (-1.03 eV) and Pd (-0.90 eV) have strong binding energies, indicating activation of CO$_2$. We showed that TiO$_2$ supported early and mid transition metals could be potentially active for CO$_2$ reduction. A similar
conclusion on early and mid transition metals was reached by Li et al., although for CO oxidation over FeO$_x$-supported metal atoms.

Experimental results of atomic-size Cu on TiO$_2$ indicated increased CO$_2$ photoreduction activity compared to just TiO$_2$. Our previous modeling results showed that on a TiO$_2$ surface, bent CO$_2$ was less stable than linear CO$_2$ by 0.2-0.25 eV. Bent CO$_2$ was stabilized by atomic Cu, but was still less stable by \sim0.1 eV compared to linear CO$_2$. This indicates that at least for the case of Cu, lone atoms may not be the most reactive sites for CO$_2$ reduction. Rather, small Cu clusters (i.e. dimers, trimers) or other surface features (such as defects or step edges) may contribute to the CO$_2$ reduction activity of supported atomic-size Cu. We also note a similar conclusion that was reported recently. They showed that alkyne hydration reactions in solution occurred only when Au clusters with 3 to 5 atoms in size were formed.

We further considered several possible descriptors that could be used to explain the bent CO$_2$ adsorption energy trends. We examined several easily available and tabulated transition metal atom properties such as atomic number, atomic radius, electronegativity, ionization energy, electron affinity, number of d electrons, metal oxygen dissociation energy, polarizability, and group number. We also considered bulk transition metal properties such as cohesive energy and workfunction. Finally, from our DFT calculations we obtained other properties such as d-band centers and adsorption energies of transition metals on TiO$_2$. A list of descriptors and values that we considered is found in Table B.1.

We analyzed the descriptors and CO$_2$ adsorption energies by developing simple linear regression models using one independent descriptor variable. A model comparing the most stable CO$_2$ adsorption energies and group number gave an R^2 value of 0.59. A similar weak correlation existed between the metal adsorption energy and bent CO$_2$ adsorption energy with a R^2 value of 0.53. Other models we considered had relatively weak correlations ($0.56 \geq R^2 \leq 0.61$), such as using number of d electrons, metal cohesive energy, and d-band center.
Figure 6.11: Regression models analyzing bent CO$_2$ adsorption. (a) Bent CO$_2$ adsorption energies compared to dissociation energies of M-O molecules. (b) Bent CO$_2$ adsorption energies compared with two predictors, transition metal cohesive energy and workfunction.

A summary of models we considered is found in Table B.4. Our best simple regression model showed a roughly linear correlation (R^2 of 0.67) between bent CO$_2$ adsorption energies and tabulated M-O (M is a transition metal) dissociation energies of gas phase MO molecules, as Figure 6.11a shows. This behavior can be rationalized from the adsorption configurations of bent CO$_2$ (see Figure B.8). 22 out of 29 transition metals had O$_{CO_2}$ interacting directly with the transition metal atom with O$_{CO_2}$-M bond distances < 2.4 Å. Metals that form strong O bonds (large M-O dissociation energies) tend to bind CO$_2$ strongly through a M-O$_{CO_2}$ bond.

We expanded our analysis to include Lasso regression with the Scikit-learn code to develop models with multiple descriptors. To determine the best set of descriptors (i.e. feature selection), we used the shrinkage model called Lasso, which selects (based on L1 regularization) the best set of features by shrinking the coefficients of less important descriptors to zero. The best model with two descriptors had an adjusted R^2 of 0.76 and used the cohesive energies and workfunctions of the transition metals as independent variables (see Figure 6.11b). We rationalize this model as follows. A large cohesive energy indicates that a metal prefers to form bonds with other atoms compared to the atomic state. Metals with large cohesive energy also strongly bound to CO$_2$, as reflected by larger bent CO$_2$ adsorption...
energies. A linear correlation between metal cohesive energies and bent CO$_2$ energies had a R^2 value of 0.58. The second parameter in this model was the metal workfunction. The workfunction is the energy cost of transferring an electron from the fermi level to vacuum level. In the case of an adsorbate interacting with a transition metal, a smaller workfunction indicates that the metal atom more readily gives up electrons to the adsorbate. In our work metals with smaller workfunctions have a larger tendency to transfer electrons to stabilize bent CO$_2$, which explains why the metal workfunction correlates with the bent CO$_2$ adsorption energies. This model thus predicts that metals which (1) prefer to bond with other atoms and (2) more readily give up electrons will bind strongly to CO$_2$.

6.2.7 Post-Transition Metals

Our analysis has focused on transition metals and we briefly discuss the trends of post-transition metals. We modeled adsorption of several post-transition metals: row 4 (Ga, Ge), row 5 (In, Sb, Sb), and row 6 (Tl, Pb, Bi). We found Site A to be the most stable adsorption site for all the post-transition metal atoms, similar to our previous calculations. The adsorption energies ranged between -1.64 eV to -3.55 eV (see Figure B.11). We also calculated the Bader charges of the adsorbed atoms (see Figure B.12). Bader charges were in the range of +0.75 to +1.30 e$^-$, indicating significant electron transfer from the metal atoms to the TiO$_2$ surface. Metals with only one valence p electron (Ga, In, Tl) transferred a smaller number of electrons (in the range of 0.75 to 0.79 e$^-$) compared to other post-transition metals with more (2 or 3) electrons. Compared to the transition metals, the adsorption energies and Bader charges of post-transition metals had a smaller range. Transition metal adsorption energies and charges were in the range of -0.41 to -7.64 eV and +0.02 to +2.33 e$^-$, respectively. Using Lasso feature selection, we found a good correlation (adjusted $R^2=0.92$) between the adsorption energies and two descriptors: M-O dissociation energy and group number. The values for various descriptors considered are given in Table B.5.
We also modeled CO$_2$ adsorption over the post-transition adatoms. Compared to the transition metals, there was much less variation in the CO$_2$ adsorption energies for both bent and linear CO$_2$ configurations (See Figures B.13). The adsorption energies of the most stable linear CO$_2$ ranged between -0.51 and -0.60 eV and occurred through O$_{\text{CO}_2}$-Ti$_{5c}$ interactions. We also modeled linear CO$_2$ adsorption through O$_{\text{CO}_2}$-M interactions, but these geometries were always unstable for the post-transition metals and did not result in bound CO$_2$. In the case of bent CO$_2$, adsorption energies ranged between -0.39 and -0.84 eV. In contrast to linear CO$_2$, for most of the metals the most stable bent CO$_2$ configurations were at an interfacial site, where CO$_2$ interacted with both TiO$_2$ and the metal adatom (see Figure B.14). Only for Ga and In did CO$_2$ prefer to adsorb on TiO$_2$ far from Ga or In (the shortest O$_{\text{CO}_2}$-adatom distance was 2.6 or 2.7 Å for Ga or In, respectively).

Adsorbed CO$_2$ Bader charges were neutral for linear CO$_2$ while negative for bent CO$_2$, similar to the transition metal atoms, as Figure B.15 shows. The bent CO$_2$ charges for the post-transition metals were similar to the CO$_2$ charges over transition metals. We found that when bent CO$_2$ interacted with the C atom bonding to the post-transition metal atom (e.g., Sb and Bi), the charge transfer was significantly large (0.95 and 0.77 e$^-$). On other post-transition metals, where bent CO$_2$ interacted with the C bonded to surface O$_{2c}$ or O$_{3c}$ atoms, less charge transfer occurred, \sim0.2 e$^-$. Using Lasso, we found the atomic number and ionization energy of the post-transition metal atoms be be important descriptors for estimating CO$_2$ adsorption energies. Linear regression using these two descriptors gave an adjusted R2 of 0.72, which is a weaker correlation than the best transition metal correlation (based on workfunction and cohesive energy). Univariate regression showed poor correlations (see Table B.6), again in contrast with the transition metal results.
6.3 Conclusions

We modeled adsorption of all 29 transition metal atoms on the TiO$_2$ anatase (101) surface. The most stable adsorption configuration involved bridging between two O$_{2c}$ atoms (denoted as site A in our work) for all the adsorbed metal atoms. The adsorption energy of the transition metal atoms weakened going from early to mid to late transition metal atoms. The adsorption energies ranged between -7.6 and -0.4 eV. Using Lasso shrinkage models, the trends in adsorption energies were correlated to several descriptors like metal-oxygen bond dissociation energy, structural fluxionality, Bader charges, d-band center, and group number. Based on the adsorption energies we developed a correlation to predict diffusion energies, and show that early transition metals had the highest diffusion barriers while later transition metals had lower diffusion barriers. Density of states analysis showed that metal atom adsorption introduced gap states at various energy levels within the band gap of TiO$_2$. The gap states primarily consisted of TiO$_2$ states for early transition metals, while metal adatom states for mid and late transition metals.

We also modeled adsorption of bent CO$_2$, a first step in CO$_2$ activation. Early and mid transition metal atoms stabilized bent CO$_2$ anions with adsorption energies up to -2.2 eV. Suitable descriptors such as workfunction and cohesive energies were identified using the Lasso shrinkage model to explain the CO$_2$ adsorption energy trends. We also modeled post-transition metals and found that in general metal atom adsorption and bent CO$_2$ adsorption energies were weaker compared to the transition metals. Our results provide important insights into the trends of metal-support interactions across all the transition and several post-transition metals. Reactivity trends for CO$_2$ activation predicted that the early and mid transition metal atoms, which can be both abundant and inexpensive, to be catalytically active. Our work serves as important motivation to further explore several early to mid-transition metals as atomically dispersed catalysts.
Bibliography

Chapter 7

The Fate of Supported Atomic-Size Catalysts in Reactive Environments

7.1 Introduction

Sub-nanometer metal catalysts have attracted interest as potentially active atomic-size catalysts for applications such as chemical synthesis, energy production, and emissions control. Sub-nanometer or atomically dispersed catalysts are advantageous because they can have a high density of active sites and therefore a large activity to catalyst loading ratio. A number of such small clusters have been synthesized, such as Cu, Pt, Pd, Ag, and Au. Specific recent reactions that have been studied using such catalysts include CO oxidation, CO₂ reduction, and the water gas shift reaction. It has been a challenge to synthesize and correctly identify sub-nanometer clusters, and specialized synthesis techniques such as size-selected cluster (soft-landing) deposition, metal leaching, and wet chemistry methods have been used. Indeed, stabilizing atoms or clusters in certain sizes or oxidation states is key to controlling their catalytic activity. The current report focuses on understanding
the nature of cluster stability (i.e. oxidation state and size), and how this in turn affects catalyst properties.

Supported metal atoms or clusters can sinter at elevated temperatures, and the catalytic activity of supported metal clusters often depend on the size of the metal clusters. For instance, high activity of small clusters has been reported for CO oxidation, \[^{10} \] CO\(_2\) reduction, \[^{24} \] hydrogenation, \[^{25} \] oxidative dehydrogenation of propane, \[^{26} \] and propylene epoxidation. \[^{8} \] Still, reports also exist where catalytic activity of small supported clusters were reported to be smaller than supported nanoparticles. In the case of toluene hydrogenation, Ir\(_4\) and Ir\(_6\) clusters showed lower activity than a larger Ir\(_{20}\) particle, which was attributed to strong H\(_2\) chemisorption and hence poisoning of these smaller clusters. \[^{27} \] Interestingly, Ir\(_4\) clusters readily formed Ir\(_{20}\) aggregates on Al\(_2\)O\(_3\) but not on MgO, indicating the importance of cluster-support interactions in stabilizing clusters of particular sizes.

Furthermore, metal clusters can become oxidized during synthesis or reaction conditions. In some cases oxidation of metal clusters may be favorable while for other cases oxidation may have detrimental catalytic effects. DeRita et al. showed that isolated Pt atoms on TiO\(_2\) were active for CO oxidation, while platinum oxide clusters bound CO too strongly which resulted in no CO oxidation activity. On the other hand, Spezzati et al. reported that atomically dispersed PdO and PdO\(_2\) species on ceria improved CO oxidation activity. In the presence of excess oxygen, NO\(_x\) reduction by NH\(_3\) was reported to selectively occur when CuO existed as dispersed species on alumina. \[^{32} \] In the presence of H\(_2\) metallic clusters and nanoparticles of Ir\[^{33} \] and Cu\[^{13,34} \] were reported to be stable and active towards hydrogenation and CO\(_2\) reduction reactions. Understanding the chemical state of a supported cluster (metallic or oxidized) is crucial in understanding and characterizing dispersed catalysts.

Theory has been an essential tool to study sub-nanometer catalysts. Density functional theory (DFT) studies have examined metal atom diffusion, \[^{39} \] metal cluster growth, \[^{36,38} \]
cluster size effects, and oxidation of metal clusters supported on various oxides like TiO₂, MgO, and Al₂O₃. Huber et al. used DFT to show that small Pd clusters supported on magnesia readily dissociate O₂ to become oxidized, more so than similar Pd clusters in the gas phase. Ong and Khanna also reported that in the presence of small Pd clusters (≤ 7 atoms) supported on TiO₂, O₂ molecules preferred to exist on the surface in an activated or dissociated form. In a recent study by Concepcion et al., they reported that a smaller Cu₅ cluster showed less tendency to oxidize compared to larger Cu₈ or Cu₂₀ clusters, thereby highlighting the role of cluster size dependent oxidation. These reports demonstrate the utility of molecular modeling in characterizing supported or gas phase metal clusters. Such tools can clarify the nature of supported clusters, especially in oxidative reaction conditions, and provide better understanding on the stability of clusters (i.e. resistance to oxidation or aggregation).

This goal of this work was to address the issues related to finding the stable state of supported clusters (i.e. metallic or oxidized) under oxidizing conditions using a combination of modeling (density functional theory) and experiments. Precisely identifying the chemical state of potential supported clusters is important in order to design better catalysts with high catalytic activity and stability. The state of Cu clusters on TiO₂ (a prototypical support) under oxidizing reaction environments was identified and characterized by considering the kinetics of O₂ dissociation/oxidation along with the thermodynamics of Cu oxidation/aggregation. Our main focus was on Cu, but we also report on aggregation and/or oxidation processes of other metals in groups 9, 10, and 11.
7.2 Methodology

7.2.1 Computational Methodology

We report all our results using spin polarized DFT with the CP2K code.49, 50 CP2K employs a hybrid Gaussian and Plane Wave (GPW) approach.51 We used the generalized gradient approximation exchange correlation functional of Perdew Burke Ernzerhof (PBE).52 Molecularily optimized (MOLOPT) double ζ basis sets53 were used to describe the valence electrons, while the core electrons were described by norm conserving Goedecker-Teter-Hutter (GTH) pseudopotentials.54 The number of valence electrons used for were as follows: C (4), O (6), Ti(12), Co/Rh/Ir (17), Ni/Pd/Pt (18), Cu/Ag/Au (11). The electronic and ionic relaxation convergence criteria were 1E-6 Ha and 0.05 eV/Å, respectively, similar to our previous work.40 We used a plane wave cutoff energy of 300 Ry for our calculations. We also used Grimme’s D355, 56 dispersion corrections with Becke-Jonsson damping in our study, as dispersion was found to be important for accurately identifying the most stable geometries of supported clusters.57 Previous reports have shown that high spin states for Cu and Pt oxide clusters are more stable than lower spin state clusters.58, 59 We therefore tested multiple spin states for all the gas-phase and TiO$_2$-supported clusters and report only the most stable spin states herein.

We modeled the TiO$_2$ anatase (101) surface as a (2x4) rectangular slab consisting of six O-Ti-O layers for a total of 288 atoms. This slab had lattice vectors of 20.6Å and 15.1 Å parallel to the surface, and a lattice vector 30.0 Å normal to the surface. The thickness of the slab was 9.4 Å, which gave a vacuum space of \sim21 Å. The bottom two layers of the slab were frozen in bulk positions. More details on this model can be found in our previous work,40 which used a similar slab. This slab is shown in Figure C.1. In order to calculate the degree of electron transfer and oxidation state of atoms, we used DDEC6 charge analysis.60, 61 DDEC6 charges were compared extensively with Bader charges in our previous work for
Figure 7.1: (a) Cu aggregation geometries and corresponding reaction energies (in eV) in the gas-phase and over TiO$_2$. (b) Relative energies of clusters of various sizes in gas-phase and on TiO$_2$.

several periodic and molecular systems, and we found the DDEC6 and Bader methods to give similar partial atomic charges. To generate accurate DDEC6 charges, we calculated the electron density using a very large plane wave cutoff energy of 1600 Ry. The climbing image nudged elastic band method (CI-NEB)\(^{62}\) was used to calculate the activation energy of O$_2$ dissociation on TiO$_2$ supported Cu clusters. We used at least 7 images to model O$_2$ dissociation.

7.3 Results and Discussion

7.3.1 Thermodynamics of Cu aggregation and oxidation

Cu aggregation

We first modeled Cu atom addition (or Cu$_x$ + Cu \rightarrow Cu$_{x+1}$) in the gas phase. Figure 7.1 shows the reaction energies and energies of clusters of various sizes. The large negative reaction energies (-1.4 to -2.8 eV) clearly indicate the strong preference of Cu atoms to aggregate and form larger Cu clusters. We note that the most stable Cu cluster geometries consist of planar configurations, which was also reported previously (the transition to 3D structures occurs for clusters ≥ 7 atom)\(^{63}\).

In order to understand Cu aggregation on the TiO$_2$ anatase (101) surface, we adsorbed the
The most stable geometries of Cu\textsubscript{x} (x=1-4) clusters on TiO\textsubscript{2}. Several adsorption configurations were modeled with Cu atoms interacting with surface O\textsubscript{2c} and/or O\textsubscript{3c} atoms, similar to previous reports\cite{40,64} The most stable configurations are reported in Figure 7.1a. These configurations consisted of Cu atoms bound to surface oxygen atoms, that is at a bridge site between two O\textsubscript{2c} atoms or coordinating with only one O\textsubscript{2c} atom. The first Cu addition step was unfavorable with a reaction energy of 0.94 eV. Similar results were seen in our earlier work\cite{40} where it was shown that the Cu dimer is unstable. The reaction energy for Cu\textsubscript{2} \rightarrow Cu\textsubscript{3} was -0.97 eV, while the reaction energy for Cu\textsubscript{3} \rightarrow Cu\textsubscript{4} was 0.19 eV. Diffusion of Cu atoms is however slow on TiO\textsubscript{2}, with a diffusion barrier of 1 eV\cite{40} Thus Cu atoms interact with TiO\textsubscript{2} strongly which limits their aggregation to form larger clusters, such as the dimer or larger clusters. Compared to gas-phase aggregation, aggregation of the supported clusters is slow due to unfavorable reaction energies and slow diffusion of Cu atoms. These trends can be seen in Figure 7.1b which shows the relative energies of different clusters.
Cu oxidation

In order to understand Cu growth in the presence of oxidants, such as O$_2$, we modeled oxidation of Cu clusters in the gas phase and on TiO$_2$. For these calculations the source of O was taken as O$_2$ for gas phase calculations and O$_2$ adsorbed on TiO$_2$ for supported cluster calculations. We show the gas phase geometries of oxidized Cu clusters in Figure C.2. Our most stable geometries are consistent with literature, as discussed further in the Supporting Information. We used a similar approach to Nolan et al. to find the most stable adsorbed configurations of these Cu oxide clusters. The most stable Cu oxide gas phase clusters were first identified, which were then adsorbed on TiO$_2$ in several different configurations to find the most stable adsorption configuration. Figure 7.2 shows geometries and reaction energies of oxidized supported clusters while Figure 7.2 gives relative energies for oxidized gas phase and supported clusters. For the gas-phase clusters, all oxidation steps (Cu$_x$ + $\frac{1}{2}$O$_2$ \rightarrow Cu$_x$O) were exothermic, regardless of the cluster. Compared to a lone Cu atom, the reaction energies of clusters were much more exothermic, indicating that the Cu clusters were easier to oxidize. For instance, Cu$_1$ \rightarrow Cu$_1$O, Cu$_2$ \rightarrow Cu$_2$O, Cu$_3$ \rightarrow Cu$_3$O, and Cu$_4$ \rightarrow Cu$_4$O have reaction energies of -0.39, -1.13, -1.77, and -1.44 eV, respectively.

Most of the adsorbed oxidized Cu clusters formed flat configurations. Exceptions were the Cu$_3$O* and Cu$_3$O$_3$* geometries where one oxygen atom protruded out of the cluster away from the surface in a 3D-like configuration. In all the adsorbed structures, the bonding interactions consisted predominantly of Cu-O$_{2c}$ and O$_{\text{cluster}}$-Ti$_{5c}$ bonding. Nolan and coworkers modeled CuO/Cu$_2$O/Cu$_4$O$_4$ on the anatase (001)/(101) surfaces and Sn$_4$O$_4$/Zr$_3$O$_6$ nanoclusters on the anatase (101) surface. They reported the primary mode of interactions between nanocluster and surface atoms to be through M-O$_{2c}$ and O$_{\text{cluster}}$-Ti$_{5c}$ bonding, similar to our work. Sharma et al. also reported flat structures of Cu$_4$O$_3$ and Cu$_4$O$_4$ clusters on the TiO$_2$ anatase (101) surface. Their most stable geometry of Cu$_4$O$_3$ was similar to our geometry, but they reported a more ”closed” structure for the Cu$_4$O$_4$ cluster.
Figure 7.3: The adsorption geometries of the most stable combined aggregation oxidation growth pathway of Cu$_1$/TiO$_2$ (a). Numbers represent the reaction energy in eV. Relative energy of the most stable growth pathway in gas phase (b) and on TiO$_2$ (d). The reference for oxidation steps was O$_2$ adsorbed on TiO$_2$.

Nonetheless the adsorption energies were similar between our work (-3.55 eV) and theirs (-3.27 eV). A ring-like Cu$_4$O$_4$ in the gas phase was reported to be the most stable geometry by Bae et al.58 Our results on the ring-like Cu$_4$O$_4$ structure (with Cu and O alternating in the ring) were similar to the structure reported by Jin et al.45 on the anatase (001) surface. Finally, some of our adsorbed Cu oxide geometries (Cu$_2$O, Cu$_2$O$_2$, and Cu$_3$O) resembled the corresponding Pt oxide geometries on the rutile (110) surface.70

Figure 7.2b shows the relative energies of the gas phase and adsorbed oxidized clusters. Several trends can be seen. For example, oxidation of the adsorbed clusters is more exothermic than the gas phase clusters. Also, oxidation of a lone Cu atom is much less exothermic than the bigger Cu clusters. Additionally, the initial oxidation steps were all energetically downhill. However, the final oxidation steps of several adsorbed clusters were uphill, or endothermic: Cu$_1$O \rightarrow Cu$_1$O$_2$, Cu$_2$O$_2$ \rightarrow Cu$_2$O$_3$, and Cu$_4$O$_3$ \rightarrow Cu$_4$O$_4$. In contrast, all oxidation steps were exothermic for the gas phase clusters. Overall, the unfavorable final oxidation steps of the adsorbed clusters indicate that more fully oxidized clusters may not be thermodynamically stable on the TiO$_2$ surface.

So far we have considered metal aggregation or metal oxidation steps separately. During
synthesis or in a reaction environment, but processes are likely to occur depending on the environmental conditions. In Figure 7.3, we show the thermodynamically preferred growth pathway of supported Cu when both oxidation and Cu aggregation may occur \((\text{Cu}_x\text{O}_y^* + 1/2\text{O}_2^* \rightarrow \text{Cu}_x\text{O}_{y+1}^* \text{ and } \text{Cu}_x\text{O}_y^* + \text{Cu}^* \rightarrow \text{Cu}_{x+1}\text{O}_y^*)\). The preferred growth pathway involves sequential oxidation and metal addition steps: \(\text{Cu}_1 \rightarrow \text{Cu}_1\text{O} \rightarrow \text{Cu}_2\text{O} \rightarrow \text{Cu}_2\text{O}_2 \rightarrow \text{Cu}_3\text{O}_2 \rightarrow \text{Cu}_3\text{O}_3 \rightarrow \text{Cu}_4\text{O}_3 \rightarrow \text{Cu}_4\text{O}_4\). Figure 7.3b shows the relative energies of these processes. As the supported Cu oxide clusters get bigger, the reaction energies decrease, as indicated by the increasing slope with increasing cluster size. These results suggest that TiO\(_2\) stabilizes small metal oxide cluster growth but that formation of larger oxide clusters may be hindered.

In contrast to the supported clusters, the thermodynamically preferred growth of gas phase clusters involves only metal addition. The preferred growth of the clusters is simply: \(\text{Cu}_1 \rightarrow \text{Cu}_2 \rightarrow \text{Cu}_3 \rightarrow \text{Cu}_4 \rightarrow \text{Cu}_5\). All growth steps (metal atom addition) are highly exothermic, more so than the supported clusters. Metal-support interactions stabilize the supported smaller clusters, while no such stabilization occurs for the gas phase clusters. Our results are consistent with the experimental findings of Matsuda et al.,\(^71\) where they performed laser ablation of a copper metal foil. They found that laser ablation of the foil produced Cu clusters that were resistant to oxidation, similar to our results.

We characterized the oxidation state of the supported \(\text{Cu}_x\text{O}_y\) clusters in Figure 7.4 using DDEC6 charge analysis.\(^60\)\(^61\) The DDEC6 method partitions the electron density to assign charges to each atom and also reproduces the electostatic potential generated generated by the molecule. We have previously calculated the DDEC6 charges corresponding to formal \(\text{Cu}^0\), \(\text{Cu}^{1+}\), and \(\text{Cu}^{2+}\) species by calculating the DDEC6 charges of reference Cu complexes.\(^40\) \(\text{Cu}^{1+}\) and \(\text{Cu}^{2+}\) oxidation states were assigned to Cu when DDEC6 charges of Cu were close to 0.36 and 0.85 e\(^-\) respectively.

As expected, as the number of oxygen atoms in the supported Cu oxide clusters increased,
Figure 7.4: Calculated DDEC6 charges of the Cu atoms for the adsorbed copper/copper oxide clusters. Dotted lines show average Cu charges (+0.36 and +0.85) for reference molecules with formal Cu$^{1+}$ and Cu$^{2+}$ species.40
Figure 7.5: Calculated formation energies of oxidized supported Cu clusters in the presence of gas phase O$_2$ (at 1 atm) as a function of temperature. Formation energies are found from Equation 7.1 or according to the reaction Cu$_x^* + \frac{y}{2} O_2 \rightarrow Cu_xO_y^*$.

the Cu charges became more positive. For instance, with Cu$_2$ and Cu$_3$, the Cu charges clearly become more positive with increasing number of O atoms in the cluster. The Cu$_3$ data are very linear. Of particular notes is that a lone adsorbed Cu atom was already oxidized, having a DDEC6 charge of 0.53 e$^-$ which was assigned as Cu$^{1+}$. The Cu atom interacted with surface O$_{2c}$ atoms and was acted as a metal oxide cluster. The Cu$_4$ case is much more interesting, with a significant spread in the Cu oxidation states within each cluster. For instance, in the Cu$_4$ and Cu$_4$O clusters both Cu0 and Cu$^{1+}$ are observed. Cu$_4$O$_2$ had Cu$^{1+}$ atoms, but also had atoms that could be classified as Cu0 or Cu$^{1+}$. Cu$_4$O$_3$ had a mixture of Cu$^{1+}$/Cu$^{2+}$ atoms, while Cu$_4$O$_4$ was predominantly Cu$^{2+}$. Similar observations have been experimentally reported. For instance, Liu et al. showed that size selected Cu$_4$ clusters supported on alumina consisted of Cu atoms with observed oxidation states of Cu0, Cu$^{1+}$, and Cu$^{2+}$. Chen et al. also showed that Cu nanoparticles supported on TiO$_2$ had Cu...
with multiple oxidation states: Cu0, Cu$^{1+}$, and Cu$^{2+}$.

The charge of each Cu atom in the clusters was correlated to how many oxygen atoms it bonded to, as Figure 7.6 shows. Assigning atoms as bonded can be ambiguous as there is no well defined cutoff radius to determine whether an atom was bonded to another atom. Nonetheless, we considered a cutoff of 2.2 Å, which was close to the experimental value of \sim 2 Å for Cu-O bonds in copper oxide nanoparticles/composites as determined from extended X-ray absorption fine structure (EXAFS) spectroscopy. This correlation explains why in the larger clusters, like Cu$_4$, there is a wide range of observed Cu oxidation states. The Cu atoms in Cu$_4$ bind to O atoms in several distinct configurations (see Figure 7.2 for the geometry). This variation in the Cu-O coordination leads to the variation in Cu oxidation states.

In order to better understand the cluster stability, we used ab initio thermodynamics to determine the effect of temperature. The catalyst stability was characterized by calculating the Cu$_x$O$_y^*$ formation energy as given by Equation 7.1.

$$\Delta E_{\text{form}}(T, p) = E_{\text{Cu}_xO_y^*} - E_{\text{Cu}_x^*} - y\mu_O(T, p) \tag{7.1}$$

where, $E_{\text{Cu}_xO_y^*}$, $E_{\text{Cu}_x^*}$, and μ_O are the energies of an adsorbed Cu$_x$O$_y$ cluster, of an adsorbed
Cu\textsubscript{x} clusters, and the chemical potential of atomic O, taken as as $\mu_{O_2}/2$). Temperature dependent entropy and enthalpies of gas phase O\textsubscript{2} were obtained from tabulated values.[71]

We show the temperature dependent Cu\textsubscript{x}O\textsubscript{y} formation energies for gas phase clusters in Figure C.3. We found that the stability trends of oxidized Cu\textsubscript{1} and Cu\textsubscript{2} clusters were different from larger Cu\textsubscript{3} and Cu\textsubscript{4} clusters. At low temperatures, strongly oxidized CuO\textsubscript{2} and Cu\textsubscript{2}O\textsubscript{3} were the most stable small clusters. The more oxidized Cu\textsubscript{2}O\textsubscript{3} became less stable above \(~ 400\) K, such that Cu\textsubscript{2}O\textsubscript{2} was the most stable cluster between 400 to 800 K. At larger temperatures from 800 - 1100 K, Cu\textsubscript{2}O was the most stable oxidized cluster of Cu\textsubscript{2}. However, at higher temperatures metallic Cu\textsubscript{1} (500 K) and Cu\textsubscript{2} (1100 K) were more stable. In contrast, Cu\textsubscript{3}O\textsubscript{3} and Cu\textsubscript{4}O\textsubscript{4} were highly stable up to 1400 K, beyond which less oxidized Cu\textsubscript{3} and Cu\textsubscript{4} clusters became more stable.

In Figure 7.5 we show the formation energies of the supported Cu oxide clusters in the presence of O\textsubscript{2}, a common oxidizing species, at temperatures up to 800 K. All the Cu oxide clusters were stable over the 0-800 K range, as determined by the negative formation energies. The exception was CuO\textsubscript{2}* above 700 K. Likewise, extrapolation of the CuO* formation energy indicated that above \(~ 1500\) K the adsorbed CuO cluster was unstable. The Cu\textsubscript{2}O\textsubscript{2} cluster as the most stable Cu\textsubscript{2} oxide cluster within 0-800 K range. Nonetheless, at higher temperature of \(> 900\) K, the less oxidized Cu\textsubscript{2}O was more stable. A transition for the Cu\textsubscript{3} clusters occurs around 800 K, where below 800 K Cu\textsubscript{3}O\textsubscript{3} clusters are most stable, while above 800 K Cu\textsubscript{3}O\textsubscript{2} are more stable. Further extrapolation of energies to temperatures \(> 1000\) K indicates that the Cu\textsubscript{2}O cluster was the most stable cluster of all we studied at elevated temperatures. Based on the DDEC6 charges presented in Figure 7.4, the average Cu charges of the most stable clusters in this temperature range (CuO*, Cu\textsubscript{2}O\textsubscript{2}*, Cu\textsubscript{3}O\textsubscript{3}*, Cu\textsubscript{4}O\textsubscript{3}*) corresponded to \(~ Cu^{2+}\) oxidation states. We expect, at least based on thermodynamics, that Cu2+ would be a dominant species in the presence of O\textsubscript{2}. Mengwa et al.[72] also found more oxidized CuO stoichiometric clusters on the anatase (101) surface.
Figure 7.7: Formation energies of oxidized supported Cu clusters in the presence of various oxidants as a function of temperature. Each curve shows the formation energy of the most stable oxidized cluster after reacting with the indicated oxidant. I.e. \(\text{Cu}_{x}^{*} + \frac{y}{2} \text{O}_2 \rightarrow \text{Cu}_{x}\text{O}_y^{*} \), \(\text{Cu}_x + y\text{H}_2\text{O} \rightarrow \text{Cu}_x\text{O}_y + y\text{H}_2 \), or \(\text{Cu}_x + y\text{CO}_2 \rightarrow \text{Cu}_x\text{O}_y + y\text{CO} \). to be more stable than less oxidized \(\text{Cu}_2\text{O} \) clusters.

We also considered the effect of other oxidants like \(\text{H}_2\text{O} \) or \(\text{CO}_2 \) on Cu cluster oxidation (see Figure 7.7). The chemical potential of O to oxidize the clusters was calculated as \(\mu_{\text{H}_2\text{O}} - \mu_{\text{H}_2} \) or \(\mu_{\text{CO}_2} - \mu_{\text{CO}} \). The chemical potentials for these gas phase species were obtained from tabulated values. Copper oxide formation energies were most negative (exothermic) in the presence of \(\text{O}_2 \) indicating the strong oxidizing power of \(\text{O}_2 \). In the case of \(\text{H}_2\text{O} \), some formation energies were positive (\(\text{Cu}_1 \), elevated temperatures for \(\text{Cu}_3 \) and \(\text{Cu}_4 \)), while negative formation energies only occurred for \(\text{Cu}_2 \). This indicates that \(\text{H}_2\text{O} \) is a weak oxidizing agent of the supported Cu clusters. The most stable clusters in the presence of \(\text{H}_2\text{O} \) were \(\text{Cu}_1 \), \(\text{Cu}_2\text{O} \), \(\text{Cu}_3\text{O} \), \(\text{Cu}_4\text{O} \) at 300 K. Based on the DDEC6 charges of Cu (see Figure 7.4), the average Cu oxidation states of these clusters were all 1+. The associated DDEC6 charges were 0.53, 0.49, 0.46, and 0.25 e\(^{-} \) for \(\text{Cu}_1 \), \(\text{Cu}_2\text{O} \), \(\text{Cu}_3\text{O} \), and \(\text{Cu}_4\text{O} \), respectively. At higher
temperatures (> 500 K) in the presence of water, the most stable clusters were Cu$_1$, Cu$_2$O, Cu$_3$, and Cu$_4$, with corresponding average oxidation states of \sim Cu$^{1+}$ (Cu$_1$), Cu$^{1+}$ (Cu$_2$O), Cu0/Cu$^{1+}$ (Cu$_3$), and Cu0/Cu$^{1+}$ (Cu$_4$). These oxidation states were assigned based on the corresponding DDEC6 charges of 0.53, 0.49, 0.17, and 0.22 e- respectively. Thus, for all the Cu clusters, H$_2$O tended to only oxidize Cu to the Cu$^{1+}$ oxidation state, while O$_2$, as a stronger oxidant, led to Cu$^{2+}$ as the preferred oxidation state. Irrespective of the oxidant being H$_2$O or O$_2$, Cu$^{1+}$ was the preferred oxidation state for Cu$_1$ on TiO$_2$. We also note that oxidation by H$_2$O is the opposite of reduction with H$_2$ (for instance, Cu$_x$O + H$_2$ → Cu$_x$ + H$_2$O), so that an endothermic H$_2$O oxidation energy would correspond to an exothermic H$_2$ reduction energy. Indeed, our results show that reduction of Cu$_1$O (Cu$^{2+}$) by H$_2$ to form less oxidized Cu$_1$ (\sim Cu$^{1+}$) was similar to the trends observed in studies with TiO$_2$ supported Cu nanoparticles.34,76 On these catalysts the reduction of Cu$^{2+}$ species to form Cu$^{1+}$ and/or Cu0 species in the presence of H$_2$ occurred. CO$_2$ was the weakest oxidant, and was only able to oxidize Cu$_2$ to Cu$_2$O. Our results thus show that oxidation is very likely to occur using O$_2$, possibly using H$_2$O, and very unlikely using CO$_2$.

7.3.2 Kinetics of Cu Cluster Oxidation

The results presented so far have focused on the thermodynamics of Cu oxidation and aggregation. These calculations showed that oxidation of Cu clusters using O$_2$ or O$_2^*$ should readily occur based on the thermodynamic analysis. In this section we expand our analysis to consider the kinetics of Cu cluster oxidation. Indeed depending upon the reaction conditions like temperature and O$_2$ exposure to catalyst, the kinetics of O$_2$ dissociation on TiO$_2$ supported size-selected Pd$_n$ clusters (n=4,7,10,20) were reported to be slow or fast.77 Experiments and DFT calculations show that O$_2$ binds very weakly to TiO$_2$ and that dissociation of O$_2$ (which is necessary to oxidize the Cu clusters) does not readily occur over clean stoichiometric TiO$_2$.78,80 If O$_2$ is not able to bind or dissociate on the Cu/TiO$_2$ surface,
oxidation of Cu will not occur. We therefore investigated how the Cu clusters may aid in the adsorption and dissociation of O$_2$, which is necessary for the oxidation of the Cu.

In Figure 7.8 we report calculated adsorption free energies of O$_2$ at 300 K over the various clusters. The free energies were calculated as $\Delta G_{\text{ads}} \sim E_{(\text{Cu}_x\text{O}_y+\text{O}_2)^*} - E_{\text{Cu}_x\text{O}_y^*} - G_{\text{O}_2}$, where the first and second terms correspond to the DFT energies of Cu$_x$O$_y^*$ with adsorbed O$_2$, and lone Cu$_x$O$_y^*$ respectively. G_{O_2} was calculated by using the DFT energy of O$_2$ and including enthalpy and entropy corrections at 300 K from tabulated values. O$_2$ adsorption was strongest over the non-oxidized Cu clusters, or the Cu$_x$ clusters. In general, as the Cu clusters became more oxidized, O$_2$ adsorption weakened, and even became endothermic on several oxidized clusters. O$_2$ Adsorption on oxidized Cu clusters such as Cu$_1$O, Cu$_1$O$_2$, Cu$_2$O, Cu$_2$O$_2$, Cu$_3$O$_3$, and Cu$_4$O$_4$ were all unfavorable with positive O$_2$ adsorption energies. These results demonstrate that since O$_2$ will not bind to more oxidized clusters, oxidation may be limited to the clusters with fewer O atoms (e.g. Cu$_1$, Cu$_2$O, Cu$_3$O$_2$, Cu$_4$O$_3$) since a source of O will not be readily available for further oxidation.

We next calculated dissociation barriers for O$_2^*$ dissociation over the Cu clusters using the climbing image nudged elastic band method (CI-NEB). O$_2$ dissociation over a Cu atom was thermodynamically and kinetically unfavorable,
with a reaction energy of 0.93 eV and dissociation barrier 1.88 eV. However for Cu clusters, O₂ dissociation was thermodynamically downhill in energy and kinetically favorable with negligible barriers of ≤ 0.20 eV. Our results show that O₂* dissociation readily occurs over Cu clusters but was difficult over lone Cu atoms. After O₂ dissociation, the CuₓO₂ clusters in Figure 7.9 could further rearrange to form the stable CuₓO₂ geometries shown in Figure 7.2a. Transformation to the geometries in Figure 7.2a was exothermic for all clusters being -1.49 (Cu₂), -0.51 (Cu₃), and -0.97 eV (Cu₄). The most likely states of the clusters were found to be Cu₂O₂, Cu₃O₂, and Cu₄O₂. Since, O* formation was kinetically limited on Cu₁, the most likely state of a single Cu atom was in its unoxidized state (no additional O atoms). Once these atoms/clusters formed, further oxidation may be hindered since O₂ adsorption was weak to these clusters. An exception may be Cu₄O₂, where O₂ adsorption was relatively strong over the cluster (-1.30 eV). Further oxidation of the partially oxidized clusters however could be limited by slow O₂ dissociation kinetics. For example, Hang et al. compared the O₂ adsorption and dissociation (reaction energies and barriers) between metallic Pt₈/TiO₂ and oxidized Pt₈O₈/TiO₂. The adsorption energy of O₂ was 1.81 eV higher on Pt₈O₈ compared to Pt₈. The dissociation energy (O₂* → 2O*) was 1.24 eV higher on Pt₈O₈ compared Pt₈, while the dissociation barrier was slightly higher over Pt₈O₈ (0.13 eV higher than Pt₈). This indicates the difficulty to adsorb and dissociate O₂ over oxidized Pt clusters. Also, Wang et al. showed that as TiO₂ supported Au₂₀ oxidized more, the CO assisted dissociation barrier of O₂ (CO*+O₂* → CO₂*+O*) increased from 0.37 to 0.72 eV.

When we considered the kinetics of Cu oxidation, we may reach different conclusions than when only thermodynamics was considered. In the thermodynamic limit (no kinetic limitations for O₂ dissociation), we found that Cu easily oxidized on TiO₂ and existed as Cu₁O, Cu₂O₂, Cu₃O₃, and Cu₄O₃ (see Figures 7.3 and 7.5). The average calculated Cu charges for the the species correspond to Cu in formal ∼ Cu²⁺ oxidation states. However, in the kinetic limit, where O₂ adsorption and dissociation were considered, we found the
Figure 7.9: Reaction and activation energies for O$_2$ dissociation on supported Cu clusters. The initial states (IS), transition states (TS), and final states (FS) are indicated. Results are for (a) Cu$_1$ (b), Cu$_2$ (c), Cu$_3$, and Cu$_4$. O$_2$ dissociation is negligible on TiO$_2$. For example the reported dissociation barrier over TiO$_2$ assisted by H atoms was 1.78 eV.$^{[83]}$

Figure 7.10: Comparison of the average Cu DDEC6 charges of the most stable Cu clusters on TiO$_2$ in the kinetic and thermodynamic limits. The labels within each bar shows the most stable oxidized cluster under each limit.
most likely Cu species on TiO$_2$ to be Cu$_1$, Cu$_2$O$_2$, Cu$_3$O$_2$, and Cu$_4$O$_2$. Calculated DDEC6 charges for these species correspond to Cu in formal Cu$^{1+}$ and Cu$^{2+}$ states, depending on the atom/cluster. The most likely oxidation states of the supported clusters based on the thermodynamic and kinetic limits are shown in Figure 7.10.

We show in Figure 7.11 a suggested path for cluster growth based on the kinetics of cluster growth and O$_2$ dissociation. O$_2$ dissociation is slow over lone Cu atoms, while Cu$_2$ formation is also slow due to a high Cu diffusion barrier and has a highly endothermic dimerization energy. A synthesis technique that produces lone supported Cu atoms will not likely lead to further Cu growth or oxidation, and may require surfaces with defects (which will produce O*, extreme oxidizing conditions, or much higher temperatures to oxidize the Cu atoms. On the other hand if the synthesis technique produces larger Cu$_x$ clusters, then further oxidation may proceed quite readily. Our results provide important insights to corroborate experimental results which showed formation of atomic Cu$^{1+}$ species rather than Cu$^{2+}$. Synthesis of Cu/TiO$_2$ even under O$_2$ gave Cu$^{1+}$ species in that work. Further oxidation to Cu$^{2+}$ was not observed. This suggests that the experimental results may be producing lone Cu atoms on the surface, which exist as Cu$^{1+}$ (see Figure 7.10), rather than larger copper oxide clusters which exist as Cu$^{2+}$.
7.3.3 Metal aggregation and oxidation of Pt

Besides Cu, supported Pt atom or clusters have also been synthesized recently for applications like CO oxidation reactions. Under reaction conditions the Pt atom/clusters were reported to oxidize to form Pt oxide clusters. In this section, we study the growth of TiO$_2$ supported Pt to form metal aggregated clusters (Pt$_x$) or oxidized clusters (Pt$_x$O$_y$).

In the gas phase, similar to Cu, we found that Pt prefers to aggregate and form metallic Pt clusters (see Figure C.4 for the geometries). The Pt addition steps were always more favorable than oxidation steps. The reaction energies for Pt aggregation and oxidation were in the range of -3.05 to -3.95 and -1.31 to -2.24 eV, respectively. The geometries of the adsorbed Pt clusters are shown in Figure 7.12a. Also indicated are reaction energies for either Pt addition or oxidation. These reaction energies were calculated using adsorbed O$_2$. We found that some Pt oxide clusters, like Pt$_2$O$_2$ and Pt$_3$O$_3$, preferred to adsorb on TiO$_2$ with the clusters pointing away from the surface, unlike other clusters that lay flat on TiO$_2$. For the Pt oxide clusters that were flat on the surface, the number of cluster-TiO$_2$ interactions were larger than less flat clusters, thereby stabilizing these flat clusters compared to the less flat clusters. For instance, the adsorption energy of Pt$_2$O$_2$ (not flat) was -3.02 eV, while Cu–2O$_2$ (flat) was -4.68 eV (see Table C.1 for all the adsorption energies). These less flat structures were not observed with the Cu clusters. Similar to Cu oxide clusters, the main interactions for Pt oxide clusters with TiO$_2$ were through Pt-O$_2$/O3c and O$_{Pt_xO_y-Ti5c}$ bonds.

In the gas phase Pt aggregation (Pt$_x$ + Pt \leftrightarrow Pt$_{x+1}$, x=1,2) was strongly exothermic being \sim -3.7 eV for both aggregation processes. In contrast, Pt aggregation on TiO$_2$ was significantly less exothermic with Pt aggregation energies of -0.4 to -0.9 eV. The gas phase Pt oxidation energies in gas phase were between -1.3 to -2.3 eV. The corresponding Pt oxidation energies on TiO$_2$ were predominantly more positive than gas phase oxidation energies by 0.18 to 1.46 eV. The exception being Pt$_3$O \rightarrow Pt$_3$O$_2$, where on TiO$_2$, the oxidation energy
was 0.9 eV more negative than in the gas phase. For the first oxidation step occurring on
TiO$_2$ (M → MO), oxidation was much weaker for Pt (-0.39 eV) compared to Cu (-1.55 eV).
In contrast, Pt atoms can undergo aggregation (Pt* + Pt* → Pt$_2^*$) on TiO$_2$ (-0.43 eV),
while Cu atom aggregation over TiO$_2$ was unfavorable (0.94 eV). These results show that
over TiO$_2$ Pt clusters or Pt oxide clusters were most likely, while for Cu lone atoms were
most likely to occur.
Figure 7.12: Results for adsorption and growth of supported Pt clusters. (a) Geometries showing how cluster growth may occur through Pt addition or oxidation. The numbers are reaction energies in eV for Pt addition (horizontal arrows) and O addition (vertical arrows). (b) Relative energies for different Pt species on the surface. Three reaction pathways are indicated in the graph and correspond to those shown in (a). All reaction paths have similar energies. Adsorbed O$_2$ on TiO$_2$ was used as reference for oxidation steps.

As Figure 7.12 shows, there is no clear thermodynamically preferred reaction pathway, and three pathways have similar energies. These three pathways are indicated as Path I (Pt$_1$ → Pt$_2$ → Pt$_3$), Path II (Pt$_1$ → Pt$_1$O → Pt$_1$O$_2$ → Pt$_2$O$_2$ → Pt$_3$O$_2$ → Pt$_3$O$_3$), and Path III (Pt$_1$ → Pt$_2$ → Pt$_2$O → Pt$_2$O$_2$ → Pt$_3$O$_2$ → Pt$_3$O$_3$). Therefore, in the presence
of Pt* or O2*, both Pt clusters and Pt oxide clusters are thermodynamically favorable on TiO2. This result is important because the presence of non-oxidized Pt clusters may facilitate the dissociation of O2 (assuming non-oxidized Pt clusters are better for O2 dissociation like we have shown for Cu) to form Pt oxide clusters. In fact, Anderson and coworkers have reported that O2 dissociation occurred easily on size-selective Pd (a Pt group element) clusters on TiO2. Unlike Cu, where Cu1+ species were most likely to occur owing to limiting O2 dissociation kinetics, Pt clusters may get oxidized more easily due to faster kinetics of O2 dissociation. Consistent with this argument, DeRita et al. have reported Pt atoms to exist in a more oxidized Pt2+ state on TiO2. Similar strongly oxidized Pt atom/clusters have also been reported on other oxide supports.

7.3.4 Oxidation of Other Supported Metals

In this final section, we modeled the oxidation of group Co (group 9), Ni (group 10), and Cu group (group 11) atoms supported on TiO2. In each case, we considered only the initial oxidation steps of M* to form either MO* or MO2* clusters. For all 9 atoms, we found that oxidation of metal atoms to MO* and MO2* was thermodynamically favorable as shown.
by the negative oxidation energies in Figure 7.13. MO* formation was more favorable than
MO2* formation for the row 4 atoms (Co, Ni, and Cu). However, MO2* was more favored for
the larger atoms in row 5 (Rh, Pd, and Ag) and row 6 (Ir, Pt, and Au). Oxidation of group
9 elements was much more exothermic than oxidation of group 10 and 11 elements. These
results show that several atoms (like group 9 atoms) have oxidation energies much more
exothermic than Cu, and may not have thermodynamic or kinetic limitations for oxidation.
Experimental results have identified, for instance, the more reactive nature of Co and Ni
clusters towards oxidation compared to Cu clusters for cluster sizes of 2-60 atoms.86,87
Moreover, experimentally synthesized atomic species show strong oxidized states: 3+ (Rh),88
2+ (Pd),89 2+ (Pt).11

7.4 Conclusions

Using DFT and experiments we identified and characterized the growth and oxidation states
of Cu atoms and clusters on anatase. In the gas phase, Cu and Pt preferred to aggregate
and form larger metallic clusters. On TiO2 however, metal-support interactions stabilized
lone Cu atoms and prevented Cu aggregation. We found that Cu atoms/clusters however
preferred to oxidize based on thermodynamic analysis. In general as the number of O atoms
in the copper oxide clusters increased, Cu became more oxidized from Cu0 to Cu1+ to Cu2+.
The Cu oxidation state was directly related to the number of Cu-O bonds the Cu atom had,
and more O bonds led to higher oxidation states. Cu oxidation thermodynamics showed
that the most stable Cu oxide clusters formed ∼ Cu2+ species. However, experiments based
on previous our work31 showed only Cu1+ species, even under oxidizing conditions.

We found that thermodynamics alone could not explain the experimental results. O2
adsorption and dissociation kinetics was found to play an important role in the cluster
oxidation process. As the Cu clusters oxidized more, the O2 adsorption strength weakened.
O₂ readily dissociated over the Cu clusters, but would not dissociate over lone adsorbed Cu atoms. However, Cu aggregation to form Cu₂ and larger clusters is kinetically and thermodynamically limited. Thus, taking into account the difficulty of O₂ dissociation, which is necessary for Cu oxidation, we predict that lone atoms are the most likely Cu species (with an oxidation state of +1), while other kinetically limited clusters have oxidation states of 2+, 1+/2+, and 1+ for Cu₂, Cu₃, and Cu₄ respectively. Since Cu adatom diffusion was unfavorable, aggregation to form larger clusters was also unfavorable. Our results suggest the dominant Cu species on TiO₂ were Cu lone atoms. Kinetics may thus explain why Cu¹⁺, not Cu²⁺, is the dominant species observed in experiment. In contrast to Cu, Pt clusters may oxidize to form Pt²⁺ species, as the kinetics of O₂ dissociation on Pt group clusters are known to be fast. Finally, among Co, Ni, and Cu group elements, Co group elements showed a much stronger tendency for initial oxidation to form MO/MO₂ (M=Co, Rh, Ir) on TiO₂. Our results provide important insights into the nature of metal cluster oxidation and growth, and especially the important role of support interactions in cluster stability and structure.

Bibliography

156

Chapter 8

Conclusions

The conversion of carbon dioxide to useful chemicals on catalyst surfaces was studied using a quantum mechanical modeling tool density functional theory (DFT). Collaboration with experimentalists showed that photocatalytic reduction of CO$_2$ to CO was possible using atomically dispersed Cu on TiO$_2$. Motivated by these results, we sought to understand (i) CO$_2$ activation using a Cu$_1$/TiO$_2$ photocatalyst, (ii) the role of Cu clusters (1-4 atoms in size) supported on TiO$_2$ in activating CO$_2$, (iii) the trends in metal-support interactions across the periodic table (37 elements) and how they affect CO$_2$ activation, and (iv) the stability under reaction conditions for TiO$_2$-supported metal clusters.

CO$_2$ activation is one of the important initial reactions in CO$_2$ reduction, where a linear CO$_2$ molecule forms bent CO$_2$ species. Cu$_1$/TiO$_2$ catalysts were found to stabilize bent CO$_2$ anion species and potentially active CO$_2$. We next studied the role of clusters of Cu on TiO$_2$ and how they activated CO$_2$. Similar to Cu$_1$, all clusters of Cu (2-4) were found to activate CO$_2$ as shown by the bent CO$_2$ adsorption energies being stronger than the linear CO$_2$ on all Cu$_x$/TiO$_2$ (x=1-4) surfaces. The stabilization of bent CO$_2$ was also accompanied by electronic charge transfer to CO$_2$ forming CO$_2$ anion species on all TiO$_2$-supported Cu clusters. Out of the four Cu clusters, the Cu dimer was found to activate CO$_2$ the most.
However, the formation of Cu dimers by diffusion of Cu monomers on TiO$_2$ surface was found to be unfavorable (both thermodynamically and kinetically) suggesting that the Cu dimer is a reactive but unstable catalyst. Experimental efforts to stabilize the Cu dimer could lead to highly active catalysts.

In the literature, many atomically dispersed catalysts that have been studied are expensive late transition metals such as Rh, Ru, Pt, Ir, or Au. One of the important challenges in the field of atomically dispersed catalysts is the stabilization of the supported metal atom. In our work we elucidated the trends in metal-support interactions by modeling adsorption of 38 metal atoms (all transition and several post-transition metals) on TiO$_2$. Binding of the metals ranged from very strong (early transition metals) to weak (late transition metals). Using statistical learning methods like the Lasso shrinkage model, we identified important descriptors that can estimate the metal atom adsorption energies. Important descriptors or properties in describing metal adsorption were metal-oxygen bond dissociation energy, structural fluxionality, d-band center, Bader charge, and group number in the periodic table.

We also determined the CO$_2$ adsorption/activation trends for the 38 studied metals. In order to explain the trends in CO$_2$ activation, Lasso again was used to identify the d-band center, metal-oxygen bond dissociation energy, group number, cohesive energy and workfunction of the metal as the important descriptors for CO$_2$ adsorption. In terms of the trends in CO$_2$ activation, we again found that early and mid transition metal atoms activated CO$_2$ strongly and thus can potentially be active catalysts for CO$_2$ reduction. Our results encourage experimental synthesis of the abundant and inexpensive elements from early and mid transition metal atoms that are predicted to be potentially stable and active catalysts.

Under reaction or synthesis conditions, a supported metal atom or cluster can undergo aggregation and/or oxidation that can affect the catalyst’s activity. Stabilizing these small clusters in a desired state is crucial for developing stable and catalytically active catalysts.
In order to understand the stability of supported atoms of small clusters, we modeled metal aggregation and metal oxidation on TiO$_2$ surfaces for clusters of common transition metal atoms (Co, Ni, and Cu group elements). Cu and Pt atoms/clusters in gas phase favored metal aggregation compared to oxidation. The thermodynamically preferred growth pathway of Cu$_1$/TiO$_2$ to form larger clusters involved sequential oxidation and metal aggregation (Cu$_1$ → Cu$_1$O → Cu$_2$O → Cu$_2$O$_2$, etc.). In the case of Pt$_1$/TiO$_2$, the Pt aggregation and Pt oxidation growth pathways were both favorable and were close in energy. We found that O$_2$ adsorption and dissociation are important for the oxidation of Cu$_x$/TiO$_2$. Although, oxidation by O$_2$ is thermodynamically favorable to form Cu$^{2+}$ species, kinetics of O$_2$ dissociation showed that O$_2$ dissociation was favorable only on Cu clusters. Overall, considering both kinetics of O$_2$ dissociation and thermodynamics of oxidation, Cu$^{1+}$ was the stable oxidation state of all Cu atom/clusters on TiO$_2$. Our results were in agreement with experimental results, where the presence of O$_2$ resulted in oxidation of Cu to form Cu$^{1+}$ species (instead of complete oxidation to form Cu$^{2+}$). In the case of other transition metal atoms studied, we found Co group elements to more strongly oxidize on TiO$_2$, compared to Cu and Ni group elements.

The current work has raised several interesting questions that can be pursued in future research directions. (i) So far, we have only modeled the activation of CO$_2$. However, in order to understand the selectivity and formation of various reaction product like carbon monoxide, formic acid, formaldehyde, methanol, and methane, the complete CO$_2$ reduction mechanism should be considered. We modeled only the anatase (101) surface and understanding the role of different TiO$_2$ surface facets (including step edges) on the selectivity of CO$_2$ reduction products is also crucial for a better catalyst design. (ii) In order to better understand the oxidation of supported metal atoms and clusters, more kinetic data of the O$_2$ dissociation reaction may be required. (iii) We have only considered the possibility of O$_2$, H$_2$O, or CO$_2$ in oxidizing the small supported clusters using chemical potential of the gas phase molecules.
Under experimental conditions, these molecules may however react with the supported metal cluster catalyst resulting in radical species such as H, OH, and O, which can be important in understanding the stable oxidation state of the catalyst.

Robust quantum mechanical modeling tools such as DFT are essential for providing valuable structural, energetic, and electronic insights, which are difficult to probe experimentally. We have provided several examples where DFT was used to provide fundamental understanding of catalysts and also to predict potentially active catalysts that experimentalists can synthesize and validate. Theoretical tools therefore are important for designing better catalysts more efficiently, rather than trial and error based experimental synthesis.
Appendix A

Supporting Information - CO$_2$

Reduction on Dispersed Cu$_{1-4}$/TiO$_2$ catalysts

A.1 Effect of TiO$_2$ Slab Thickness

We tested the effect of the TiO$_2$ slab thickness as given in Table A.1. We modeled a single Cu atom adsorbed in the bridge site between two O$_{2c}$ atoms, and the adsorption energy changed by only 0.08 eV between six and eight layer slabs. Adsorption energies for linear and bent CO$_2$ molecules over pure TiO$_2$ changed by \leq 0.03 eV between six and eight layer slabs. We thus used a six layer slab in all of our work.
Table A.1: Effect of TiO\textsubscript{2} slab thickness on the adsorption energies (in eV) of a Cu atom, linear CO\textsubscript{2}, and bent CO\textsubscript{2}. See main text for geometries.

<table>
<thead>
<tr>
<th></th>
<th>6 Layers</th>
<th>8 Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>-2.56</td>
<td>-2.64</td>
</tr>
<tr>
<td>CO\textsubscript{2} linear</td>
<td>-0.40</td>
<td>-0.43</td>
</tr>
<tr>
<td>CO\textsubscript{2} bent</td>
<td>-0.15</td>
<td>-0.14</td>
</tr>
</tbody>
</table>

A.2 Comparison of DDEC6 charges with Bader charges

We used DDEC6 charge analysis1,2 in the present work as the DDEC6 code provides reference core charge densities that are easily augmented with the valence electron densities generated from CP2K. Core densities are necessary to ensure that proper charges on atoms are calculated. DDEC6 iteratively calculates partial atomic charges from the ground state electron density while simultaneously accurately reproducing electrostatic potentials from the electron density of the system.2 The challenge for any charge analysis technique is that there is no unique way to define atomic charge. Another complication is that calculated charges may not match formal charges due to ionocovalent bonding or limitations of the charge analysis technique. For example, Ti and O atoms in bulk TiO\textsubscript{2} anatase have DDEC6 charges of +2.28 and -1.14, respectively. Formally Ti has a +4 charge, while O has a -2 charge. We note however that the oxidation state of Ti and O in TiO\textsubscript{2} has been recently suggested to be rather +3 and -1.5,3 in contrast to the traditionally assigned charges in TiO\textsubscript{2}.

Nevertheless, charge analysis can provide useful insight on charge transfer during an adsorption process. Another widely used method is Bader charge analysis,4,5 where the electron density of a material is partitioned by determining the zero flux surfaces around each atom. We compared the charges calculated from DDEC6 with Bader for several molecules.
like CO$_2$, CO$_2^-$, CO, O$_2$, OH, and OH$^-$, as well as periodic solid systems like CO$_2$, LiTiO$_2$, LiTi$_2$O$_4$, CuO, and Cu$_2$O in Table A.2. We show in this table also results calculated using a common periodic DFT code, VASP. For the bulk crystals, calculated charges using DDEC6+CP2K and Bader+VASP gave a mean absolute difference of 0.08 e$^-$.

For molecules, the mean absolute difference was 0.43 e$^-$. For determining trends in charge transfer the DDEC6 method is fully adequate.
Table A.2: DDEC6 and Bader charges calculated using CP2K and VASP for bulk and molecular systems.

<table>
<thead>
<tr>
<th>System</th>
<th>Atoms</th>
<th>CP2K + DDEC6</th>
<th>VASP + DDEC6</th>
<th>VASP + Bader</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂ anatase</td>
<td>Ti</td>
<td>2.28</td>
<td>2.25</td>
<td>2.16</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>-1.14</td>
<td>-1.12</td>
<td>-1.08</td>
</tr>
<tr>
<td>LiTiO₂</td>
<td>Li</td>
<td>0.87</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>Ti</td>
<td>1.73</td>
<td>1.65</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>-1.30</td>
<td>-1.27</td>
<td>-1.23</td>
</tr>
<tr>
<td>Bulk LiTi₂O₄</td>
<td>Li</td>
<td>0.90</td>
<td>0.90</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Ti</td>
<td>1.95</td>
<td>1.94</td>
<td>1.84</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>-1.20</td>
<td>-1.19</td>
<td>-1.15</td>
</tr>
<tr>
<td>CuO</td>
<td>Cu</td>
<td>0.94</td>
<td>0.94</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>-0.94</td>
<td>-0.94</td>
<td>-0.99</td>
</tr>
<tr>
<td>Cu₂O</td>
<td>Cu</td>
<td>0.33</td>
<td>0.33</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>-0.65</td>
<td>-0.66</td>
<td>-1.08</td>
</tr>
<tr>
<td>CO₂</td>
<td>C</td>
<td>0.71</td>
<td>0.71</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>-0.35</td>
<td>-0.35</td>
<td>-0.99</td>
</tr>
<tr>
<td>CO₂</td>
<td>C</td>
<td>0.21</td>
<td>0.28</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>-0.61</td>
<td>-0.64</td>
<td>-1.18</td>
</tr>
<tr>
<td>CO</td>
<td>C</td>
<td>0.11</td>
<td>0.11</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>-0.11</td>
<td>-0.11</td>
<td>-1.00</td>
</tr>
<tr>
<td>O₂</td>
<td>O</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.05/0.07</td>
</tr>
<tr>
<td>OH</td>
<td>O</td>
<td>-0.33</td>
<td>-0.33</td>
<td>-0.59</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>0.33</td>
<td>0.33</td>
<td>0.61</td>
</tr>
</tbody>
</table>
Table A.2: Continued: DDEC6 and Bader charges calculated using CP2K and VASP for bulk and molecular systems.

<table>
<thead>
<tr>
<th>System</th>
<th>Atoms</th>
<th>CP2K + DDEC6</th>
<th>VASP + DDEC6</th>
<th>VASP + Bader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecules</td>
<td>OH-</td>
<td>-1.20</td>
<td>-1.21</td>
<td>-1.46</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>0.20</td>
<td>0.21</td>
<td>0.51</td>
</tr>
<tr>
<td>CuO</td>
<td>Cu</td>
<td>0.44</td>
<td>0.46</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>-0.44</td>
<td>-0.46</td>
<td>-0.55</td>
</tr>
<tr>
<td>Cu₂O</td>
<td>Cu</td>
<td>0.28</td>
<td>0.28</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>-0.59</td>
<td>-0.56</td>
<td>-0.81</td>
</tr>
<tr>
<td>Cu₃O</td>
<td>Cu</td>
<td>0.16</td>
<td>0.16</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>-0.50</td>
<td>-0.49</td>
<td>-0.85</td>
</tr>
<tr>
<td>CuO₂</td>
<td>Cu</td>
<td>0.59</td>
<td>0.70</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>-0.30</td>
<td>-0.35</td>
<td>-0.48</td>
</tr>
</tbody>
</table>

A.3 Vibrational Frequency Calculations

We determined the effect of several simulation parameters on the vibrational frequency calculations of CO adsorbed on Cu/TiO₂, and linear/bent CO₂ on TiO₂ surfaces. These include the plane wave cutoff energies, number of relaxed (unfrozen) atoms, and step size for displacement when calculating energies/forces. Vibrational frequencies were calculated numerically by displacing atoms to calculate second derivatives. Higher cutoff energies give more accurate energies since the basis set is more complete but require more time. Our strategy involved low/high cutoff energies (300/600 Ry). Because these systems were rather large and we did use large cutoff energies, we selectively froze atoms beyond the adsorption site in order to ensure the vibrational calculations were manageable. Frozen atoms were
typically 6-7 Å away from the C atom at the adsorption site. This resulted in a smaller set of atoms displaced during vibrational frequency calculation (in the range of 40-50 atoms), but allowed the atoms that could more directly influence the CO/CO$_2$ frequencies to affect calculation of the second derivatives. Our tests determined appropriate cutoff energies as well as the number of atoms that should be relaxed in order to obtain reasonable frequencies.

As shown in Table A.4, geometry optimization at the higher cutoff energies of 600 Ry followed by a vibrational frequency calculations at 600 Ry were required to obtain accurate frequencies close to the earlier reported experimental and DFT calculated frequencies. For instance, linear CO$_2$ adsorbed on TiO$_2$ was calculated to have vibrational frequencies of 2367 (asymmetric stretch) and 1351 (symmetric stretch), which agree well with both previous experimental (2355 and 1379 cm$^{-1}$) and DFT (2373 and 1323 cm$^{-1}$) values. We found that relaxing 40-50 atoms around the adsorption site was sufficient to obtain vibrational frequencies that were similar to the values obtained by relaxing one or two layers of TiO$_2$ slab. For instance, the difference in vibrational frequencies for adsorbed CO with the relaxed number of atoms being 42 atoms and 98 atoms (96 atoms relaxed in the top two layers of the slab and 2 atoms of CO) was only 5 cm$^{-1}$. We thus relaxed 40-50 atoms around the adsorption site for all our reported frequencies in the main text. With respect to the step size during the finite difference approach, we used 1.0E$^{-3}$ Bohr. Tests between 1.0E$^{-3}$ and 1.0E$^{-2}$ Bohr for CO$_2$ bent/linear adsorption showed the mean absolute difference to be small (12 cm$^{-1}$) for adsorbed CO$_2$ vibrational frequencies. The final settings we used for vibrational calculations were a cutoff of 600Ry, relaxing 40-50 atoms around adsorption site, a step size of 1.0E$^{-3}$ Bohr, and a tighter electronic convergence criteria of 1.0E$^{-7}$ Hartree. Using these settings the mean absolute difference between our DFT calculated and experimental gas phase CO$_2$ and CO frequencies were 12 cm$^{-1}$ and 5 cm$^{-1}$ respectively.8 Our DFT values for linearly adsorbed CO$_2$ were in good agreement with the experimental values,9 with a mean absolute difference of 20 cm$^{-1}$ for the asymmetric and symmetric stretching modes.
Table A.3: Effect of cutoff energy, number of relaxed atoms during frequency calculations (N_{relaxed}) and step size on calculated frequencies. All calculations for adsorbed CO$_2$ were on pure TiO$_2$ surfaces, while adsorbed CO were on Cu/TiO$_2$ surfaces. * indicates the experimentally observed Fermi resonance that shifts the bending frequency to a higher 1271 cm$^{-1}$ value.10,11 This resonance is not correctly described by the DFT calculations.

<table>
<thead>
<tr>
<th></th>
<th>Geo. Opt.</th>
<th>Vib. Freq.</th>
<th>Step Size (Bohr)</th>
<th>Frequency (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cutoff (Ry)</td>
<td>Cutoff (Ry)</td>
<td>N_{relaxed}</td>
<td></td>
</tr>
<tr>
<td>CO (gas)</td>
<td>600</td>
<td>600</td>
<td>2</td>
<td>1.0E-3</td>
</tr>
<tr>
<td>Experimental Reference8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Adsorbed CO</td>
<td>300</td>
<td>600</td>
<td>98</td>
<td>1.0E-3</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>600</td>
<td>98</td>
<td>1.0E-3</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>600</td>
<td>42</td>
<td>1.0E-3</td>
</tr>
<tr>
<td>CO$_2$ (gas)</td>
<td>600</td>
<td>600</td>
<td>3</td>
<td>1.0E-3</td>
</tr>
<tr>
<td>Theoretical Reference12</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Experimental Reference8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>600</td>
<td>195</td>
<td>1.0E-3</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>600</td>
<td>99</td>
<td>1.0E-3</td>
</tr>
<tr>
<td>Linear CO$_2$</td>
<td>600</td>
<td>600</td>
<td>42</td>
<td>1.0E-3</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>600</td>
<td>42</td>
<td>1.0E-2</td>
</tr>
<tr>
<td>Theoretical Reference12</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Experimental Reference9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>600</td>
<td>195</td>
<td>1.0E-3</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>600</td>
<td>99</td>
<td>1.0E-3</td>
</tr>
<tr>
<td>Bent CO$_2$</td>
<td>600</td>
<td>600</td>
<td>43</td>
<td>1.0E-3</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>600</td>
<td>43</td>
<td>1.0E-2</td>
</tr>
<tr>
<td>Theoretical Reference12</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
A.4 Most Stable Spin State

We calculated the most stable spin state of both gas phase Cu\textsubscript{x} clusters and adsorbed Cu\textsubscript{x}/TiO\textsubscript{2} geometries. We find that in all the cases, the lowest spin state with minimum number of unpaired electrons (multiplicity of 1 or 2) are the most stable spin state as shown in Table A.5.

Table A.4: Relative energies (in eV) with respect to the most stable spin state. Zero relative energy correspond to most stable spin state.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Cu\textsubscript{1}</th>
<th>Cu\textsubscript{3}</th>
<th>Cu\textsubscript{1}/TiO\textsubscript{2}</th>
<th>Cu\textsubscript{3}/TiO\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity 2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Multiplicity 4</td>
<td>5.27</td>
<td>1.16</td>
<td>0.85</td>
<td>1.31</td>
</tr>
</tbody>
</table>

A.5 Effect of DFT+U

A.5.1 Effect of the U Correction on Adsorption Energies

DFT+U has become a standard way to correct self interaction errors inherent in DFT using generalized gradient approximation exchange-correlation functionals13 Early DFT studies showed that the effect of U correction on the adsorption energies of adsorbates like formaldehyde or methanol on CeO\textsubscript{2}(111),14 oxygen molecule on TiO\textsubscript{2} rutile (110),15 and Au\textsubscript{20}/TiO\textsubscript{2} rutile(110)16 was small (less than 0.1 eV). However, Garcia and Deskins17 reported that the adsorption of O\textsubscript{2} on the anatase TiO\textsubscript{2} (101) with oxygen vacancy was strongly destabilized (~0.8 eV) with increasing U value of up to 10 eV. In the case of adsorption of CO\textsubscript{2}, He et
Figure A.1: Effect of different U corrections on the adsorption energies of most stable (as discussed in the main text) bent (a) and linear (b) CO$_2$ adsorption configurations on Cu$_x$/TiO$_2$. Shown are results for pure DFT and DFT with U corrections. For example, U(Ti-10,Cu-5) represents a U correction of 10.0 eV applied to Ti and 5.0 eV applied Cu atoms.

18 showed that the energy to convert linear CO$_2$ to bent CO$_2$ on the anatase TiO$_2$ (101) surface differed by only 0.03 eV between DFT and DFT+U (U=4.5 eV). One complication is that the appropriate U value choice depends on the basis set, pseudopotential, the target property (adsorption energy in our case), and the catalyst under consideration. We thus used various U values to determine the DFT+U effect on O$_{2c}$ adsorption over Cu$_x$/TiO$_2$ catalysts.

We used three different DFT+U schemes: a U correction (U values reported here are effective U, $U_{\text{eff}} = U - J$) applied to just Ti (5.0 eV), U correction applied to just Ti (10.0 eV), and U corrections applied to both Ti (10.0 eV) and Cu (5.0 eV). All corrections were applied to d electrons. Similar large U values were earlier used in modeling TiO$_2$ using CP2K.16,17,19 In the case of Cu, literature suggests that the application of U to Cu atoms in different oxidation states such as in CuO, Cu$_2$O, and Cu$_4$O$_3$ can be challenging.20,21 Electronic properties such as the band gap of Cu$_4$O$_3$ and CuO, direct or indirect band gap in Cu$_2$O, and location of defect levels in defective bulk Cu$_2$O were reported to be incorrectly described by DFT+U techniques.20,22 Nonetheless, in order to test the effect of U on Cu, we chose a representative U value for Cu as 5.0 eV, which is similar to the value of 5.2 eV.
We found that DFT+U predominantly gives more negative adsorption energies compared to DFT as Figure A.0 shows. The exception is bent CO$_2$ on the Cu4(I) structure, where inclusion of U resulted in slight (by less than around 0.1 eV) endothermic adsorption energies compared to the DFT value. The difference between DFT and DFT+U for both bent and linear CO$_2$ adsorption was small (up to 0.1 eV) when U of 5 eV was applied to Ti, while it was larger (in the range of 0.1 to 0.4 eV) when a U value of 10 eV was applied. Applying a U correction to Cu had almost no effect on bent CO$_2$ adsorption energies when compared to U of 10 eV applied to Ti, except for the Cu$_3$ and Cu$_4$(II) clusters. These clusters were less stable by 0.19 eV, Cu$_3$, and 0.16 eV, Cu$_4$(II), when the U correction was also applied to Cu. Only in the case of Cu$_4$(II) did applying the U correction to Cu have an effect in destabilizing adsorbed linear CO$_2$, although the effect appears small (0.06 eV). It appears therefore that DFT+U may only meaningfully affect the nature of larger Cu clusters, although this effect is small for the clusters we used. In the case of Cu$_4$(I), DFT+U results showed that bent CO$_2$ adsorption is 0.15-0.26 eV less stable than linear CO$_2$, while DFT results showed this difference between bent and linear CO$_2$ adsorption to be 0.06 eV. The trends in adsorption energies however are similar regardless of U value choice. Our calculated DFT adsorption energies agree with the literature values. The linear and bent CO$_2$ adsorption energies reported earlier using DFT12 were -0.48 eV and -0.01 eV, which are close to our DFT values of -0.40 and -0.15 eV respectively. We therefore present only the DFT adsorption energies in the main text.

A.5.2 Effect of U Correction on Atomic Charges

We also calculated DDEC6 charges of adsorbed CO$_2$, as well as Cu$_x$ clusters with and without adsorbed CO$_2$ using DFT and DFT+U (U of 10 eV on Ti atoms). We found that the DDEC6 charges were predominantly weakly affected (<0.1 electrons) when U corrections
are applied (see Table A.6). For instance, Cu$_3$ and Cu$_4$/TiO$_2$ charges before CO$_2$ adsorption were almost the same. The only considerable difference between DFT and DFT+U results was for the case of a single Cu atom. When linear CO$_2$ was adsorbed, the charge of the Cu atom from DFT was 0.48, compared to 0.65 using DFT+U. When bent CO$_2$ was adsorbed, the charge of the Cu atom from DFT was 0.59, compared to 0.82 using DFT+U. Otherwise, most charges were similar between DFT and DFT+U. The mean absolute difference in CO$_2$ charges between DFT and DFT+U was 0.08 electrons. The mean absolute differences in Cu charges between DFT and DFT+U was 0.08 electrons (no CO$_2$ adsorbed) and 0.13 electrons (CO$_2$ adsorbed). DFT charges are therefore presented in the main text.
Table A.5: DDEC6 charges of linear/bent CO$_2$ and Cu atoms using the DFT and DFT+U methods. Here, a U correction of 10 eV was applied to the Ti 3d electrons.

<table>
<thead>
<tr>
<th>No. Cu atoms</th>
<th>CO$_2$ Geometry</th>
<th>C, O, O Charges (Before Adsorption)</th>
<th>Cu$_x$ Charges (Before Adsorption)</th>
<th>Cu$_x$ Charges (After Adsorption)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(DFT Results)</td>
<td>(DFT+U Results)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO$_2$ (gas) 0.70, -0.35, -0.35</td>
<td>0.79, -0.30, -0.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 linear 0.75, -0.31, -0.37</td>
<td>0.80, -0.43, -0.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bent 0.79, -0.55, -0.54</td>
<td>0.83, -0.52, -0.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 linear 0.78, -0.40, -0.32</td>
<td>0.75, -0.29, -0.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bent 0.79, -0.58, -0.52</td>
<td>0.86, -0.59, -0.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 linear 0.77, -0.40, -0.33</td>
<td>0.80, -0.42, -0.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bent 0.83, -0.52, -0.43</td>
<td>0.83, -0.43, -0.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 linear 0.75, -0.29, -0.32</td>
<td>0.77, -0.32, -0.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bent 0.86, -0.59, -0.45</td>
<td>0.89, -0.61, -0.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4(I) linear 0.76, -0.32, -0.38</td>
<td>0.77, -0.31, -0.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bent 0.83, -0.52, -0.43</td>
<td>0.85, -0.53, -0.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4(II) linear 0.76, -0.33, -0.30</td>
<td>0.77, -0.34, -0.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bent 0.82, -0.58, -0.43</td>
<td>0.84, -0.64, -0.41</td>
<td></td>
</tr>
</tbody>
</table>
A.5.3 Effect of the U Correction on Electronic States

We also determined how U value choice impacts the electronic structure by examining the density of states of adsorbed Cu at different U values. Yan et al. reported that the significant Cu states are present at the valence band maximum edge. We find that a U value of 5.0 eV applied to Ti describes the Cu/TiO$_2$ electronic states correctly similar to what Yan et al. have reported and also gives a reasonable band gap of 1.66 eV (see Figure A.1). A large U value of 10 eV applied to Ti resulted in Cu states pushed to lower (more negative) energies within the valence band, which is not agreement with previous literature. We thus used a U correction of 5.0 eV to Ti for all our density of states calculations.

Figure A.2: Sited-projected density of states (DOS) for Cu/TiO$_2$ calculated using U values of 0, 5, and 10 eV (all applied to Ti). The valence band edge for each system has been set to 0 eV in the plots.
Figure A.3: Sited-projected density of states (DOS) for linear and bent CO$_2$ adsorbed on Cu$_x$/TiO$_2$ for a U value of 5 eV applied to Ti. The left plots show linear CO$_2$ while the right plots show bent CO$_2$. The valence band edge for each system has been set to 0 eV in the plots.
In Figure A.2 we show all the results for bent and linear CO$_2$ adsorption on Cu$_x$/TiO$_2$ (x=0-4) with a U value of 5.0 eV. The three characteristic localized peaks of linear CO$_2$ (at locations \sim -9.7, -8.1, -4.5 eV in Cu$_x$/TiO$_2$) are preserved regardless of Cu cluster, although the peaks are slightly shifted up in energy over pure TiO$_2$. Similarly, for bent CO$_2$, the delocalized character of the CO$_2$ peaks are preserved for bent CO$_2$ on TiO$_2$ with and without Cu clusters present. On the pure TiO$_2$ surface, the linear and bent CO$_2$ states extend within the valence band down to \sim -9 eV. In the presence of Cu, the CO$_2$ states are pushed to lower energies extending up to -11 eV (see for example Bent CO$_2$ on Cu1). As mentioned in the main text, we consistently find strong hybridization between bent CO$_2$ and Cu states in the valence band as indicated by the overlap of delocalized Cu and bent CO$_2$ states (between 0 and \sim -8 eV). In contrast, the linear CO$_2$ states are localized between -4 and -6 eV indicating weak hybridization with the Cu states.

A.6 CO adsorption on Cu$_x$/TiO$_2$

The most stable CO adsorption sites on Cu$_x$/TiO$_2$ are shown in Figure A.3. We found the most stable adsorption site for CO on Cu/TiO$_2$ to involve a linear O-C-Cu bond at the top site of Cu atom with an adsorption energy of -1.96 eV. The bond distance of C-Cu was found to be 1.82 Å. The Cu atom was displaced significantly upon CO adsorption (by 0.57 Å).
Figure A.4: Most stable adsorption sites of CO on Cu$_x$/TiO$_2$ with x=1 (a), 2 (b), 3(c), and 4(I)(d). The numbers above each structure correspond to the adsorption energy of CO for that structure. Color scheme of atoms are the same as in previous Figures.

When CO adsorbs on Cu$_2$/TiO$_2$, the most stable site of adsorption was determined to be the bridge site where the C atom bonds with both Cu atoms and has an adsorption energy of -2.10 eV (see A.3). This adsorption energy is also the largest among the CO adsorption energies over all Cu$_x$/TiO$_2$. The strong adsorption energy for Cu$_2$ again indicates the reactive nature of the Cu dimer, as was observed for CO$_2$ adsorption. The bond distances of both C-Cu bonds were 1.89 Å. Adsorption of CO at the bridge site also results in the Cu-Cu bond distance to elongate from 2.30 Å to 2.80 Å. We also show the next most stable top site adsorption configuration on Cu$_2$/TiO$_2$ in Figure A.3b. CO was found to be non-linearly bonded (the bond angle of Cu-C-O was 151º) with an adsorption energy of -1.42 eV. Adsorption of CO at the top site is significantly less stable than when CO adsorbs at the bridge site.

We adsorbed CO on several different adsorption sites over Cu$_3$/TiO$_2$. In the most stable configuration CO binds to the top Cu atom. The C-Cu bond distance was found to be 1.85 Å and the adsorption energy was -1.72 eV. The next most stable adsorption site had
an adsorption energy of -1.55 eV where CO bonded to a Cu atom that interacted with the surface. Several adsorption sites were tested for CO adsorption on Cu$_4$(I)/TiO$_2$, and the two most stable sites are shown in Figure A.3d. The most stable adsorption site involved CO bridging between Cu$_a$ and Cu$_d$ atoms with a C-Cu bond distance of 1.92 and 1.97 Å, respectively. The next stable adsorption site consisted of CO adsorbing on top of a Cu$_c$ atom with a C-Cu bond distance of 1.84 Å. This configuration had an adsorption energy of 1.68 eV. It was also found that CO adsorption in the top configuration bonded to any other Cu atom of Cu$_4$(I)/TiO$_2$ had adsorption energies between -1.57 to -1.68 eV.
A.7 Determining the Oxidation State of Cu using DDEC6

Table A.6: DDEC6 charges (in electrons) for Cu$^{2+}$ and Cu$^{1+}$ complexes, as well as CuF/CuF$_2$ and CuO/Cu$_2$O (bulk and molecule).

<table>
<thead>
<tr>
<th>Species</th>
<th>DDEC6 charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-CN-(H$_2$O)$_3$</td>
<td>0.33</td>
</tr>
<tr>
<td>Cu-Cl-(H$_2$O)$_3$</td>
<td>0.35</td>
</tr>
<tr>
<td>Cu-OH-(H$_2$O)$_3$</td>
<td>0.29</td>
</tr>
<tr>
<td>Cu-F-(H$_2$O)$_3$</td>
<td>0.41</td>
</tr>
<tr>
<td>Cu-CN-(NH$_3$)$_3$</td>
<td>0.25</td>
</tr>
<tr>
<td>Cu-Cl-(NH$_3$)$_3$</td>
<td>0.30</td>
</tr>
<tr>
<td>Cu-OH-(NH$_3$)$_3$</td>
<td>0.27</td>
</tr>
<tr>
<td>Cu-F-(NH$_3$)$_3$</td>
<td>0.30</td>
</tr>
<tr>
<td>Cu-CN-(N$_2$)$_3$</td>
<td>0.34</td>
</tr>
<tr>
<td>Cu-Cl-(N$_2$)$_3$</td>
<td>0.42</td>
</tr>
<tr>
<td>Cu-OH-(N$_2$)$_3$</td>
<td>0.46</td>
</tr>
<tr>
<td>Cu-F-(N$_2$)$_3$</td>
<td>0.52</td>
</tr>
<tr>
<td>Cu$_2$O (bulk)</td>
<td>0.33</td>
</tr>
<tr>
<td>Cu$_2$O (molecule)</td>
<td>0.28</td>
</tr>
<tr>
<td>CuF</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Table A.6: Continued: DDEC6 charges (in electrons) for Cu$^{2+}$ and Cu$^{1+}$ complexes, as well as CuF/CuF$_2$ and CuO/Cu$_2$O (bulk and molecule).

<table>
<thead>
<tr>
<th>Species</th>
<th>DDEC6 charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-(CN)$_2$-(H$_2$O)$_4$</td>
<td>0.78</td>
</tr>
<tr>
<td>Cu-Cl$_2$-(H$_2$O)$_4$</td>
<td>0.95</td>
</tr>
<tr>
<td>Cu-(OH)$_2$-(H$_2$O)$_4$</td>
<td>1.02</td>
</tr>
<tr>
<td>Cu-F$_2$-(H$_2$O)$_4$</td>
<td>1.10</td>
</tr>
<tr>
<td>Cu-(CN)$_2$-(NH$_3$)$_4$</td>
<td>0.67</td>
</tr>
<tr>
<td>Cu-Cl$_2$-(NH$_3$)$_4$</td>
<td>0.85</td>
</tr>
<tr>
<td>Cu-(OH)$_2$-(NH$_3$)$_4$</td>
<td>0.85</td>
</tr>
<tr>
<td>Cu-F$_2$-(NH$_3$)$_4$</td>
<td>1.01</td>
</tr>
<tr>
<td>Cu-(CN)$_2$-(N$_2$)$_4$</td>
<td>0.68</td>
</tr>
<tr>
<td>Cu-Cl$_2$-(N$_2$)$_4$</td>
<td>0.83</td>
</tr>
<tr>
<td>Cu-(OH)$_2$-(N$_2$)$_4$</td>
<td>0.67</td>
</tr>
<tr>
<td>Cu-F$_2$-(N$_2$)$_4$</td>
<td>1.02</td>
</tr>
<tr>
<td>CuO (bulk)</td>
<td>0.94</td>
</tr>
<tr>
<td>CuO (molecule)</td>
<td>0.44</td>
</tr>
<tr>
<td>CuF$_2$</td>
<td>0.93</td>
</tr>
</tbody>
</table>

We used DDEC6 charge analysis to calculate oxidation states of Cu. In order to identify the Cu states, we modeled several known Cu$^{1+}$ and Cu$^{2+}$ complexes. The geometries of Cu$^{2+}$ (or Cu$^{1+}$) coordination complexes are known to adopt an octahedral (or tetrahedral) coordination with Cu at the center of these complexes.20 For both complexes we considered several anionic and neutral ligands in different combinations. The neutral ligands considered were dinitrogen (N$_2$), water, and ammonia, while anionic ligands considered were Cl, F, CN,
and OH. In octahedral complexes, out of the six vertices (four equatorial and two axial), two equatorial sites contained the anionic ligands for describing Cu$^{2+}$ species with the rest of the four sites occupied by neutral ligands. In the case of the tetrahedral complexes, one of the four vertices contained an anionic ligand and other three contained a neutral ligand. The calculated DDEC6 charges are shown in Table A.8. Besides these Cu coordination complexes, we also considered other systems such as CuO (bulk and molecule), Cu$_2$O (bulk and molecule), molecular CuF, and molecular CuF$_2$. We determined average DDEC6 charges for Cu in the various formal oxidation states. For the Cu$^{2+}$ species the average DDEC6 charge was 0.85 with a standard deviation of 0.17, while for the Cu$^{1+}$ species the average DDEC6 charge was 0.36 with a standard deviation of 0.08. The range of DDEC6 charges for Cu$^{2+}$ was 0.44 to 1.10, while the range of charges for Cu$^{1+}$ was 0.25 to 0.52.
A.8 Diffusion of Adsorbed Cu Atoms

Figure A.5: Potential energy surface for Cu adsorbed on the TiO\textsubscript{2} anatase(101). The contour of the energy surface is shown in the top panel and the corresponding top view of the TiO\textsubscript{2} surface is indicated by the black box in the middle panel. The minimum energy pathway is shown in the bottom panel along [010] and [101] directions through sites A/B/C/B/A and A/D/C/B/A respectively. For clarity only the top layer of the TiO\textsubscript{2} surface slab is shown. Surface atoms on the top and middle panels are labeled. The contour legend shows the relative energies compared to most stable adsorption site in eV.

Cu\textsubscript{2} was found to stabilize CO\textsubscript{2} very strongly, but questions remain on its stability. We found the Cu\textsubscript{2} formation energy to be 0.94 eV (2 Cu/TiO\textsubscript{2} → Cu\textsubscript{2}/TiO\textsubscript{2} + TiO\textsubscript{2}). We also calculated the potential energy surface of a Cu atom bound to the anatase (101) surface, as shown in Figure A.3, in order to understand Cu diffusion on the surface. Cu diffusion
is necessary for lone Cu atoms to form dimers. We adsorbed a Cu atom at different points on the surface by freezing the x- and y-coordinates of the Cu atom while allowing the z-coordinate of the Cu atom to relax. The bottom four O-Ti-O layers (192 atoms) of the surface slab were also frozen. The Cu atom was placed at different points on the surface with a spacing of 0.2Å between points. After considering the surface symmetry, we modeled a total of 263 geometries. Test calculations showed that freezing the bottom four and two layers produced results that were very comparable. The largest difference in energy between freezing four and two layers for the adsorption of Cu at different sites (e.g. bridge site between O\textsubscript{2c} atoms or top sites was <0.13 eV).

Figure A.6: Diffusion barriers for Cu along Path 1 and Path 2 (shown in Figure A.3 over the TiO\textsubscript{2} anatase(101) surface.)

The most stable site for Cu adsorption was at the bridge site between two O\textsubscript{2c} atoms (indicated as point A in the bottom plot of Figure A.3], which corresponds to the deepest energy well with an adsorption energy of -2.60 eV. The energy corresponding to this site represents the zero energy reference in the contour plots. The second most stable site of adsorption (site C) is at a top site above a Ti\textsubscript{6c} atom, whose energy is 0.78 eV higher in energy than the most stable adsorption site A. In order for an atom to diffuse from a site A to another site A, it can follow one of the pathways indicated in the bottom plot of Figure A.3]
Path 1 moves along the [010] direction and follows the pathway indicated: A → B → C → B → A. The energy barrier for Path I was calculated to be 0.99 eV as the atom crossed from site A to site B (see Figure A.4). Path 2 along moves in a general [101] direction and follows the indicated pathway: A → D → C → B → A. The energy barrier for Cu diffusion along this direction moves from site A to site D with an activation barrier of 1.63 eV. The lowest barrier for diffusion moves along the [010] direction with a value of 0.99 eV, which would indicate that Cu diffusion along the (101) surface should be relatively slow.

Bibliography

Appendix B

Supporting Information - Quantifying Support Interactions and Reactivity Trends of Single Metal Atom Catalysts over TiO\(_2\)

B.1 Electronic properties of Cu and Zn group elements

The projected density of states (PDOS) of Cu and Zn group elements supported on TiO\(_2\) are shown in Figure B.1. In order to understand why Cu was different from other Cu group elements, we examined the PDOS of Cu, Ag, and Au when they were not interacting with the TiO\(_2\) surface, or the transition metal atom was 6 Å above the surface O\(_{2c}\) atom. This system mimics the lone atom and bare surface, while ensuring the orbitals share a common energy reference. The PDOS of the non-interacting systems are shown in Figure B.2. See
the main text for discussion on this.

Figure B.1: Projected density of states (PDOS) of Cu group (upper panel) and Zn group (lower panel) transition metal atoms supported on TiO$_2$.

Figure B.2: Projected density of states (PDOS) of Cu group transition metal atoms 6 Å above the surface or not interacting with TiO$_2$. Zero eV is set at the conduction band minimum.

B.2 Transition metal adatom diffusion on TiO$_2$

In Figure B.3 we show that there is a correlation between the DFT-calculated diffusion barriers of metal adatoms on the anatase TiO$_2$ (101) surface for 8 transition metals.
by Alghannam et al. and the adsorption energy difference between the two most stable adsorption sites of these adatoms as calculated by us. Alghannam et al. studied three different surface diffusion pathways on the anatase (101) surface. Out of these three reported pathways, we show that both the largest and smallest diffusion barriers on the surface can be estimated from simple adsorption energy calculations of the two most stable adsorption sites. This provides a simple and computationally inexpensive approach to estimate diffusion barriers estimation compared to computationally intensive transition state finding methods.

Figure B.3: Correlation between the energy difference of the two most stable adsorption sites and calculated diffusion barriers. Results are for eight transition metal adatoms on TiO₂. Shown are the (a) largest and (b) smallest barriers as calculated by Alghannam et al.

B.3 Electronic properties of supported transition metals

Projected density of states for all transition metals are given in Figure B.4. The Bader charges of the transition metal atoms supported on TiO₂ are given in Figure B.5. The charges generally decreased with increasing atomic number. Linear fits of group number
compared to adsorption energy results in R^2 values of 0.85, 0.91, and 0.87 for Row 4, 5, and 6 transition metals, respectively.

Figure B.4: Projected density of states of all 29 transition metal atom adsorbed on TiO$_2$. Zero eV is set at the conduction band minimum.
Figure B.4: Continued: Projected density of states of all 29 transition metal atom adsorbed on TiO$_2$. Zero eV is set at the conduction band minimum.
B.4 Analyzing metal adsorption

In order to understand the transition metal adatom adsorption energy trends on TiO$_2$, we examined various descriptors of the transition metal atoms. A summary of these descriptors can be found in Table B.1. These descriptors include mostly tabulated values and also DFT-derived properties like d-band center of the transition metal atom. We calculated two different d-band centers. The first was the d-band center of the combined transition metal atom adsorbed on TiO$_2$ (M/TiO$_2$) system and the other was d band center of only the adsorbed transition metal atom. In the latter case, since the transition metal atom primarily induced gap states, valence band or conduction band edge states within the energy limits of -4 to +2 eV, we computed the d-band center of M in M/TiO$_2$ within this energy range. Here, the energy was referenced to the Fermi energy ($E - E_{\text{Fermi}}$). This procedure was similar to that reported by Garcia-Mota et al. A simple linear regression of metal atom adsorption energy against each of these descriptors were performed one at a time. The results shown in

![Figure B.5: Bader charges of transition metal atoms adsorbed on TiO$_2$.](image)

![Graph showing Bader charges of transition metal atoms adsorbed on TiO$_2$.](image)
Table B.2 clearly indicate that metal atom adsorption energies were strongly correlated with number of d electrons (which is closely related to group number), metal-oxygen dissociation energy, and d-band center of the adsorbed transition metal atom.
Table B.1: Various descriptors and their values used in the regression and in the Lasso shrinkage models for metal adsorption and CO$_2$ adsorption. References for the source of the data are given in the column headings.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>2.15</td>
<td>1.59</td>
<td>1.36</td>
<td>6.56</td>
<td>0.188</td>
</tr>
<tr>
<td>22</td>
<td>2.11</td>
<td>1.48</td>
<td>1.54</td>
<td>6.83</td>
<td>0.079</td>
</tr>
<tr>
<td>23</td>
<td>2.07</td>
<td>1.44</td>
<td>1.63</td>
<td>6.75</td>
<td>0.525</td>
</tr>
<tr>
<td>24</td>
<td>2.06</td>
<td>1.3</td>
<td>1.66</td>
<td>6.77</td>
<td>0.666</td>
</tr>
<tr>
<td>25</td>
<td>2.05</td>
<td>1.29</td>
<td>1.55</td>
<td>7.43</td>
<td>-0.52</td>
</tr>
<tr>
<td>26</td>
<td>2.04</td>
<td>1.24</td>
<td>1.83</td>
<td>7.9</td>
<td>0.151</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>1.18</td>
<td>1.88</td>
<td>7.88</td>
<td>0.662</td>
</tr>
<tr>
<td>28</td>
<td>1.97</td>
<td>1.17</td>
<td>1.91</td>
<td>7.64</td>
<td>1.156</td>
</tr>
<tr>
<td>29</td>
<td>1.96</td>
<td>1.22</td>
<td>1.9</td>
<td>7.73</td>
<td>1.235</td>
</tr>
<tr>
<td>30</td>
<td>2.01</td>
<td>1.2</td>
<td>1.65</td>
<td>9.39</td>
<td>-0.63</td>
</tr>
<tr>
<td>39</td>
<td>2.32</td>
<td>1.76</td>
<td>1.22</td>
<td>6.22</td>
<td>0.307</td>
</tr>
<tr>
<td>40</td>
<td>2.23</td>
<td>1.64</td>
<td>1.33</td>
<td>6.63</td>
<td>0.426</td>
</tr>
<tr>
<td>41</td>
<td>2.18</td>
<td>1.56</td>
<td>1.6</td>
<td>6.76</td>
<td>0.893</td>
</tr>
<tr>
<td>42</td>
<td>2.17</td>
<td>1.46</td>
<td>2.16</td>
<td>7.09</td>
<td>0.748</td>
</tr>
<tr>
<td>43</td>
<td>2.16</td>
<td>1.38</td>
<td>2.1</td>
<td>7.28</td>
<td>0.55</td>
</tr>
<tr>
<td>44</td>
<td>2.1</td>
<td>1.34</td>
<td>2.2</td>
<td>7.36</td>
<td>1.05</td>
</tr>
<tr>
<td>45</td>
<td>2.1</td>
<td>1.34</td>
<td>2.28</td>
<td>7.46</td>
<td>1.137</td>
</tr>
<tr>
<td>46</td>
<td>2.1</td>
<td>1.3</td>
<td>2.2</td>
<td>8.34</td>
<td>0.562</td>
</tr>
<tr>
<td>47</td>
<td>2.11</td>
<td>1.36</td>
<td>1.93</td>
<td>7.58</td>
<td>1.302</td>
</tr>
<tr>
<td>48</td>
<td>2.18</td>
<td>1.4</td>
<td>1.69</td>
<td>8.99</td>
<td>-0.73</td>
</tr>
<tr>
<td>72</td>
<td>2.23</td>
<td>1.64</td>
<td>1.3</td>
<td>6.83</td>
<td>0.014</td>
</tr>
<tr>
<td>73</td>
<td>2.22</td>
<td>1.58</td>
<td>1.5</td>
<td>7.55</td>
<td>0.322</td>
</tr>
<tr>
<td>74</td>
<td>2.18</td>
<td>1.5</td>
<td>1.7</td>
<td>7.86</td>
<td>0.815</td>
</tr>
<tr>
<td>75</td>
<td>2.16</td>
<td>1.41</td>
<td>1.9</td>
<td>7.83</td>
<td>0.15</td>
</tr>
<tr>
<td>76</td>
<td>2.16</td>
<td>1.36</td>
<td>2.2</td>
<td>8.44</td>
<td>1.1</td>
</tr>
<tr>
<td>77</td>
<td>1.93</td>
<td>1.42</td>
<td>2.2</td>
<td>8.97</td>
<td>1.5638</td>
</tr>
<tr>
<td>78</td>
<td>2.13</td>
<td>1.3</td>
<td>2.2</td>
<td>8.96</td>
<td>2.128</td>
</tr>
<tr>
<td>79</td>
<td>2.14</td>
<td>1.3</td>
<td>2.4</td>
<td>9.23</td>
<td>2.30863</td>
</tr>
<tr>
<td>80</td>
<td>2.23</td>
<td>1.32</td>
<td>1.9</td>
<td>10.44</td>
<td>-0.52</td>
</tr>
</tbody>
</table>
Table B.1: Continued. Various descriptors and their values used in the Lasso shrinkage model and regression. M refers to the transition metal atom and M/TiO$_2$ refers to metal atom adsorbed on TiO$_2$.

<table>
<thead>
<tr>
<th>Number of d electrons</th>
<th>Cohesive Energy (eV)</th>
<th>M-O Dissociation Energy (eV)</th>
<th>Polarizability (10$^{-24}$ cm3)</th>
<th>d band center of M/TiO$_2$ (eV)</th>
<th>d band center of M in M/TiO$_2$ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.9</td>
<td>6.96</td>
<td>14.4</td>
<td>-5.16</td>
<td>0.99</td>
</tr>
<tr>
<td>2</td>
<td>4.85</td>
<td>6.91</td>
<td>9.4</td>
<td>-5.13</td>
<td>0.74</td>
</tr>
<tr>
<td>3</td>
<td>5.31</td>
<td>6.53</td>
<td>10.1</td>
<td>-4.64</td>
<td>0.49</td>
</tr>
<tr>
<td>5</td>
<td>4.1</td>
<td>4.78</td>
<td>8.9</td>
<td>-4.89</td>
<td>-0.34</td>
</tr>
<tr>
<td>5</td>
<td>2.92</td>
<td>3.75</td>
<td>9.9</td>
<td>-5.02</td>
<td>-0.60</td>
</tr>
<tr>
<td>6</td>
<td>4.28</td>
<td>4.22</td>
<td>9.47</td>
<td>-4.94</td>
<td>-0.96</td>
</tr>
<tr>
<td>7</td>
<td>4.39</td>
<td>4.12</td>
<td>8.55</td>
<td>-4.78</td>
<td>-0.91</td>
</tr>
<tr>
<td>8</td>
<td>4.44</td>
<td>3.79</td>
<td>7.57</td>
<td>-4.61</td>
<td>-0.65</td>
</tr>
<tr>
<td>10</td>
<td>3.49</td>
<td>3.04</td>
<td>8.7</td>
<td>-4.69</td>
<td>-1.73</td>
</tr>
<tr>
<td>10</td>
<td>1.35</td>
<td>1.65</td>
<td>5.75</td>
<td>-5.49</td>
<td>-2.34</td>
</tr>
<tr>
<td>1</td>
<td>4.37</td>
<td>7.4</td>
<td>24.1</td>
<td>-5.16</td>
<td>0.74</td>
</tr>
<tr>
<td>2</td>
<td>6.25</td>
<td>7.94</td>
<td>16.6</td>
<td>-4.83</td>
<td>0.88</td>
</tr>
<tr>
<td>4</td>
<td>7.57</td>
<td>7.53</td>
<td>14.5</td>
<td>-5.02</td>
<td>0.74</td>
</tr>
<tr>
<td>5</td>
<td>6.82</td>
<td>5.2</td>
<td>12.9</td>
<td>-4.99</td>
<td>0.22</td>
</tr>
<tr>
<td>5</td>
<td>6.85</td>
<td>5.68</td>
<td>11.9</td>
<td>-4.89</td>
<td>-0.57</td>
</tr>
<tr>
<td>7</td>
<td>6.74</td>
<td>5.47</td>
<td>9.6</td>
<td>-4.90</td>
<td>-0.75</td>
</tr>
<tr>
<td>8</td>
<td>5.75</td>
<td>4.2</td>
<td>1.6</td>
<td>-4.84</td>
<td>-0.97</td>
</tr>
<tr>
<td>10</td>
<td>3.89</td>
<td>2.47</td>
<td>4.8</td>
<td>-4.82</td>
<td>-1.50</td>
</tr>
<tr>
<td>10</td>
<td>2.95</td>
<td>2.29</td>
<td>6.8</td>
<td>-4.65</td>
<td>-3.00</td>
</tr>
<tr>
<td>10</td>
<td>1.16</td>
<td>2.45</td>
<td>7.36</td>
<td>-5.80</td>
<td>-1.72</td>
</tr>
<tr>
<td>2</td>
<td>6.44</td>
<td>8.3</td>
<td>12.4</td>
<td>-4.87</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>8.1</td>
<td>8.7</td>
<td>8.6</td>
<td>-5.03</td>
<td>0.96</td>
</tr>
<tr>
<td>4</td>
<td>8.9</td>
<td>7.46</td>
<td>11.1</td>
<td>-4.48</td>
<td>0.35</td>
</tr>
<tr>
<td>5</td>
<td>8.03</td>
<td>6.5</td>
<td>9.05</td>
<td>-4.98</td>
<td>-0.10</td>
</tr>
<tr>
<td>6</td>
<td>8.17</td>
<td>5.96</td>
<td>8.5</td>
<td>-4.94</td>
<td>-0.55</td>
</tr>
<tr>
<td>7</td>
<td>6.94</td>
<td>4.25</td>
<td>7.6</td>
<td>-4.84</td>
<td>-1.05</td>
</tr>
<tr>
<td>9</td>
<td>5.84</td>
<td>4.34</td>
<td>6.5</td>
<td>-4.93</td>
<td>-1.68</td>
</tr>
<tr>
<td>10</td>
<td>3.81</td>
<td>2.31</td>
<td>4.13</td>
<td>-4.25</td>
<td>-2.04</td>
</tr>
<tr>
<td>10</td>
<td>0.67</td>
<td>2.79</td>
<td>5.08</td>
<td>-5.44</td>
<td>-2.22</td>
</tr>
</tbody>
</table>

Table B.2: Summary of linear regression models for predicting transition metal atom adsorption energies using various descriptors. R2 values for models with the descriptors are given.

<table>
<thead>
<tr>
<th>Descriptors</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic Number</td>
<td>0.01</td>
</tr>
<tr>
<td>van der Waals Radius</td>
<td>0.16</td>
</tr>
<tr>
<td>Covalent Radius</td>
<td>0.61</td>
</tr>
<tr>
<td>Electronegativity</td>
<td>0.42</td>
</tr>
<tr>
<td>Ionization Energy</td>
<td>0.55</td>
</tr>
<tr>
<td>Electron Affinity</td>
<td>0.01</td>
</tr>
<tr>
<td>Number of d electrons</td>
<td>0.84</td>
</tr>
<tr>
<td>Cohesive Energy</td>
<td>0.32</td>
</tr>
<tr>
<td>M-O Dissociation Energy</td>
<td>0.86</td>
</tr>
<tr>
<td>d band center of M in M/TiO$_2$</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Table B.1: Continued. Various descriptors and their values in the Lasso shrinkage model and regression. M refers to the transition metal atom.

<table>
<thead>
<tr>
<th>Group Number</th>
<th>Workfunction[[b]] (eV)</th>
<th>M atom adsorption energy (eV)</th>
<th>Bent CO\textsubscript{2} adsorption energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3.5</td>
<td>-6.7</td>
<td>-1.72</td>
</tr>
<tr>
<td>4</td>
<td>3.96</td>
<td>-6.15</td>
<td>-2.32</td>
</tr>
<tr>
<td>5</td>
<td>4.3</td>
<td>-4.96</td>
<td>-1.61</td>
</tr>
<tr>
<td>6</td>
<td>4.5</td>
<td>-3.2</td>
<td>-0.71</td>
</tr>
<tr>
<td>7</td>
<td>4.1</td>
<td>-3.37</td>
<td>-1.03</td>
</tr>
<tr>
<td>8</td>
<td>4.5</td>
<td>-3.42</td>
<td>-0.63</td>
</tr>
<tr>
<td>9</td>
<td>4.92</td>
<td>-3.13</td>
<td>-0.86</td>
</tr>
<tr>
<td>10</td>
<td>5.15</td>
<td>-3.26</td>
<td>-0.97</td>
</tr>
<tr>
<td>11</td>
<td>4.65</td>
<td>-2.31</td>
<td>-0.44</td>
</tr>
<tr>
<td>12</td>
<td>4.33</td>
<td>-0.53</td>
<td>-1.06</td>
</tr>
<tr>
<td>3</td>
<td>3.1</td>
<td>-6.82</td>
<td>-1.56</td>
</tr>
<tr>
<td>4</td>
<td>4.05</td>
<td>-7.03</td>
<td>-1.68</td>
</tr>
<tr>
<td>5</td>
<td>4.3</td>
<td>-6.2</td>
<td>-2.21</td>
</tr>
<tr>
<td>6</td>
<td>4.6</td>
<td>-3.31</td>
<td>-2.11</td>
</tr>
<tr>
<td>7</td>
<td>4.82</td>
<td>-3.33</td>
<td>-1.32</td>
</tr>
<tr>
<td>8</td>
<td>4.71</td>
<td>-3.19</td>
<td>-1.74</td>
</tr>
<tr>
<td>9</td>
<td>4.98</td>
<td>-3.11</td>
<td>-1.04</td>
</tr>
<tr>
<td>10</td>
<td>5.12</td>
<td>-2.03</td>
<td>-0.9</td>
</tr>
<tr>
<td>11</td>
<td>4.26</td>
<td>-0.91</td>
<td>-0.87</td>
</tr>
<tr>
<td>12</td>
<td>4.22</td>
<td>-0.53</td>
<td>0.05</td>
</tr>
<tr>
<td>4</td>
<td>3.9</td>
<td>-7.64</td>
<td>-1.75</td>
</tr>
<tr>
<td>5</td>
<td>4.25</td>
<td>-7.41</td>
<td>-2.04</td>
</tr>
<tr>
<td>6</td>
<td>4.55</td>
<td>-4.74</td>
<td>-2.03</td>
</tr>
<tr>
<td>7</td>
<td>4.96</td>
<td>-3.16</td>
<td>-1.86</td>
</tr>
<tr>
<td>8</td>
<td>4.83</td>
<td>-3.33</td>
<td>-2</td>
</tr>
<tr>
<td>9</td>
<td>5.27</td>
<td>-3.62</td>
<td>-1.17</td>
</tr>
<tr>
<td>10</td>
<td>5.65</td>
<td>-3.26</td>
<td>-0.86</td>
</tr>
<tr>
<td>11</td>
<td>5.1</td>
<td>-0.86</td>
<td>-0.58</td>
</tr>
<tr>
<td>12</td>
<td>4.49</td>
<td>-0.41</td>
<td>-0.22</td>
</tr>
</tbody>
</table>
In the main text, we discuss a correlation between the metal atom adsorption energies and the bond dissociation energies of gas phase diatomic metal-oxygen molecules, which was found to be the best model. In the literature, adsorption energies of Row 4 transition metal atoms on the MgO(100) surface were reported to correlate with the cohesive energies of 3d metals. However, we did not find a strong correlation ($R^2 = 0.32$) between metal adsorption energies and cohesive energies. This difference is potentially due to the chemically different nature of TiO$_2$ (a reducible oxide) and MgO (a non-reducible oxide). The oxygen atoms in MgO are almost fully reduced as O$^{2-}$ anions with a minimal tendency of O to gain electrons from the adatom, while oxygen atoms in TiO$_2$ are not fully reduced with a larger tendency O to gain electrons from the adatom.

B.5 Comparison of different DFT methods

Table B.3 shows all the adsorption energies of transition metal atoms adsorbed at Site A (see main text for this geometry) using four different levels of theory compared with PBE results.
<table>
<thead>
<tr>
<th>Adsorption Energy (eV)</th>
<th>Difference in Adsorption Energy (eV)</th>
<th>Adsorption Energy (eV)</th>
<th>Difference in Adsorption Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element name</td>
<td>PBE</td>
<td>PBE+U</td>
<td>PBE+D3</td>
</tr>
<tr>
<td>Sc</td>
<td>-5.91</td>
<td>-0.25</td>
<td>-0.45</td>
</tr>
<tr>
<td>Ti</td>
<td>-5.55</td>
<td>-0.23</td>
<td>-0.49</td>
</tr>
<tr>
<td>V</td>
<td>-4.91</td>
<td>-0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>Cr</td>
<td>-2.62</td>
<td>-0.16</td>
<td>-0.41</td>
</tr>
<tr>
<td>Mn</td>
<td>-2.61</td>
<td>-0.42</td>
<td>-0.45</td>
</tr>
<tr>
<td>Fe</td>
<td>-2.87</td>
<td>-0.15</td>
<td>-0.34</td>
</tr>
<tr>
<td>Co</td>
<td>-2.29</td>
<td>-0.58</td>
<td>-0.31</td>
</tr>
<tr>
<td>Ni</td>
<td>-3.00</td>
<td>0.10</td>
<td>-0.37</td>
</tr>
<tr>
<td>Cu</td>
<td>-1.88</td>
<td>-0.07</td>
<td>-0.40</td>
</tr>
<tr>
<td>Zn</td>
<td>-0.11</td>
<td>-0.06</td>
<td>-0.34</td>
</tr>
<tr>
<td>Y</td>
<td>-5.77</td>
<td>-0.72</td>
<td>-0.46</td>
</tr>
<tr>
<td>Zr</td>
<td>-6.01</td>
<td>-0.64</td>
<td>-0.50</td>
</tr>
<tr>
<td>Nb</td>
<td>-4.80</td>
<td>-0.88</td>
<td>-0.57</td>
</tr>
<tr>
<td>Mo</td>
<td>-2.97</td>
<td>0.15</td>
<td>-0.31</td>
</tr>
<tr>
<td>Tc</td>
<td>-3.39</td>
<td>0.72</td>
<td>0.20</td>
</tr>
<tr>
<td>Ru</td>
<td>-3.33</td>
<td>0.65</td>
<td>-0.01</td>
</tr>
<tr>
<td>Rh</td>
<td>-2.78</td>
<td>0.13</td>
<td>-0.47</td>
</tr>
<tr>
<td>Pd</td>
<td>-1.57</td>
<td>0.00</td>
<td>-0.47</td>
</tr>
<tr>
<td>Ag</td>
<td>-0.66</td>
<td>0.14</td>
<td>-0.42</td>
</tr>
<tr>
<td>Cd</td>
<td>-0.10</td>
<td>-0.06</td>
<td>-0.36</td>
</tr>
<tr>
<td>Hf</td>
<td>-6.62</td>
<td>-0.66</td>
<td>-0.46</td>
</tr>
<tr>
<td>Ta</td>
<td>-5.98</td>
<td>-1.06</td>
<td>-0.48</td>
</tr>
<tr>
<td>W</td>
<td>-4.10</td>
<td>-0.20</td>
<td>-0.45</td>
</tr>
<tr>
<td>Re</td>
<td>-3.19</td>
<td>0.87</td>
<td>-0.52</td>
</tr>
<tr>
<td>Os</td>
<td>-3.73</td>
<td>0.81</td>
<td>-0.52</td>
</tr>
<tr>
<td>Ir</td>
<td>-3.24</td>
<td>0.11</td>
<td>-0.51</td>
</tr>
<tr>
<td>Pt</td>
<td>-2.69</td>
<td>-0.07</td>
<td>-0.52</td>
</tr>
<tr>
<td>Au</td>
<td>-0.34</td>
<td>-0.14</td>
<td>-0.36</td>
</tr>
<tr>
<td>Hg</td>
<td>-0.07</td>
<td>-0.03</td>
<td>-0.30</td>
</tr>
</tbody>
</table>

Avg. Diff. – -0.09 -0.38 -0.51
Avg. Diff. Std. Dev. – 0.47 0.18 0.43
MAD – 0.35 0.40 0.55
Abs. Diff. Std. Dev. – 0.32 0.13 0.37
R² – 0.96 0.99 0.97
B.6 Further details on CO$_2$ adsorption

Figure B.6 shows the different sites we modeled for linear CO$_2$, and Figure B.7 provides the adsorption energies for linear CO$_2$ at these sites. We found that the L1 adsorption geometry of CO$_2$, where O$_{CO_2}$ was bound to a Ti$_{5c}$ atom, was a stable configuration for all transition metals. The L1 site also resembled the most stable adsorption site of linear CO$_2$ on the TiO$_2$ anatase (101) surface. For most of the metals (except Ti, Cr, Mn, Zr, Ru, and Hf), the L1 site had the strongest adsorption energies. The average L1 adsorption energy over all M/TiO$_2$ surfaces was -0.54 eV. On the TiO$_2$ anatase(101) surface the linear CO$_2$ adsorption energy was -0.40 eV). We also found two other linear CO$_2$ adsorption configurations with O$_{CO_2}$ bound directly to the metal adatom. Linear CO$_2$ adsorbing in the L2 and L3 configurations was only slightly (\leq 0.15 eV) more stable than the L1 site for select metals (Ti, Cr, Mn, Zr, Ru, and Hf). These results indicate that in general the metal adatoms do not increase linear CO$_2$ binding.

![Figure B.6: Stable adsorption geometries for linear CO$_2$ over M/TiO$_2$ surfaces.](image)

200
Figure B.7: Stable adsorption energies for linear CO$_2$ over M/TiO$_2$ surfaces.

In the case of bent CO$_2$ adsorption we modeled several geometries, including at the interface between metal adatom and TiO$_2$ surface, on top of the metal adatom (bent CO$_2$ only interacting with metal adatom), and on TiO$_2$ surface (bent CO$_2$ only interacting with TiO$_2$ surface atoms). We show stable adsorption sites for bent CO$_2$ in Figure B.8 and the corresponding adsorption energies in Figure B.9. We found that not all adsorption configurations were stable for every metal. For instance, site B4 was not stable for the late transition metals, and sites B3, B5, and B7 were stable for only select metals. On the other hand sites B1 and B2 were stable for most of the transition metals. For all the transition
metals (except Ni, Re, Ir, Pt, Au, and Hg) either B1 or B2 sites were the most stable adsorption sites. On Ni, Ir, Pt (late transition metals), B3 was the most stable adsorption site. On Re and Au, site B5 was the most stable configuration. In the case of Hg, we found the most stable adsorption configuration to be similar to B1 but without any direct interaction between Hg and CO$_2$ (the Hg-O$_{CO_2}$ distance was 4.50 Å). This configuration is denoted as B6. The adsorption energy of this configuration was -0.22 eV. Another site which interacted with only TiO$_2$ was site B7 that consisted of C-O$_{2c}$ and O$_{CO_2}$-Ti$_{5c}$ interaction. Both B6 and B7 (except Hg) were always less stable than the most stable bent CO$_2$ adsorption configuration. We also modeled bent CO$_2$ interacting directly only with the metal adatom. For the row 4 transition metals, this adsorption configuration was stable only for V and Co but they were less stable (adsorption energy was -0.87 and -0.41 eV) than the most stable configurations (site B2 and B1 in Figure B.9a). Since both V and Co resulted in less stable adsorption energies, we did not model bent CO$_2$ interacting only with the metal atoms from row 5 and 6.

Adsorption energies ranged from very strong (-2.32 eV for Ti at site B2), to very weak (+0.05 eV for Cd at site B2). We note that for comparison the most stable bent CO$_2$ adsorption energy over pure TiO$_2$ was found to be -0.15 eV.8 In contrast, linear adsorption energies of CO$_2$ were in the range of -0.43 and -0.76 eV as Figure B.7 shows. These values were close to the most stable linear CO$_2$ adsorption on pure TiO$_2$ (adsorption energy of -0.40 eV).8 Comparison of the linear and bent CO$_2$ adsorption energies shows that bent CO$_2$ is stabilized compared to linear CO$_2$ on most of the transition metal adatoms. Thus, compared to pure TiO$_2$, most of the transition metal adatoms stabilize activated CO$_2$. Our results for the most stable B2 configuration of bent CO$_2$ on Rh, Ru, Pt, and Pd/TiO$_2$ are consistent with the most stable geometry reported by Ma et al.,9 except for Pt/TiO$_2$. On Pt/TiO$_2$, we find the B3 structure to be 0.16 eV more stable than the B2 structure, which was assumed to be the most stable site by Ma et al. Their bent CO$_2$ adsorption energies
were -0.54 eV (Rh), -0.90 eV (Ru), -0.17 eV (Pt), -0.53 eV (Pd) eV. Our adsorption energies for these species are more negative, which is most likely due to the inclusion of dispersion corrections in our work. The trends between these different metals is similar in our work and the work of Ma et al. Our bent CO\textsubscript{2} adsorption energies were -1.04 eV (Rh), -1.74 eV (Ru), -0.86 eV (Pt), and -0.90 eV (Rh).

Figure B.8: Stable adsorption geometries for bent CO\textsubscript{2} over M/TiO\textsubscript{2} surfaces.
Figure B.9: Adsorption energies for bent CO$_2$ over M/TiO$_2$ surfaces of row 4 (a), row 5 (b), and row 6 (c) transition metal atoms.

In Figure B.10 we show the Bader charges of linear and bent CO$_2$. There is negligible charge transfer in the case of linear CO$_2$ adsorption. Bent CO$_2$ were always negatively charged. However, when bent CO$_2$ forms on the surface two types of CO$_2$ charges exist. One type of bent CO$_2$ gained 0.19 to 0.26 e$^-$. The other type of bent CO$_2$ gained a larger number of electrons in the range of 0.43 (Au) to 1.02 (Ta) e$^-$. These two types of CO$_2$ are directly related to the interactions of bent CO$_2$ with the transition metal adatom. In the first case with less negative charge, CO$_2$ is in the B1 configuration, where no interaction
between C and transition metal adatom occurs. The second type of bent CO$_2$, however, occurred with the C atom directly interacting with the transition metal adatom (B2-B5), and the electron transfer to the CO$_2$ was much larger.

Figure B.10: Bader charge (number of electrons) of bent and linear CO$_2$ adsorbed over various transition metals in row 4 (a), row 5 (b), and row 6 (c) adsorbed on TiO$_2$. Shown are results for the most stable CO$_2$ geometries.
B.7 Analyzing CO$_2$ adsorption

As mentioned in the main text, we used linear regression and Lasso for understanding and predicting the bent CO$_2$ adsorption energies. Table B.1 shows all the tabulated and DFT-derived predictors used in analysis. A summary of the different linear regression models using one independent descriptor is found in Table B.4. In Lasso regression, the coefficients of the fitted model are found by minimizing the function $RSS + \lambda \sum \beta_i$, where RSS is the residual sum of squares, the second term is the shrinkage penalty, λ is the tunable parameter, β is the coefficient of each descriptor, and p is the number of descriptors. The value of λ was chosen by cross validation comparison. Due to the small dataset, we used leave-one-out cross validation (LOOCV) as the resampling method to fit our dataset containing 29 samples (or transition metal atoms). In this approach n-1 samples are used to train the model and this model is used to predict the one excluded sample. This process is repeated n times (yielding n models) to predict n different samples. From n different predictions, we obtain an overall model performance as the average mean squared error ($1/n \sum \text{MSE}_i$). The λ value was chosen based on the smallest average MSE. Note that all the data for the descriptors were standardized (zero mean and unit standard deviation) before Lasso and regression analysis.

Corresponding to this optimum λ value, we found the significant descriptors based on their non-zero coefficients (β). Larger values of β indicate more important descriptors in predicting the bent CO$_2$ adsorption energies. The important descriptors were found to be cohesive energy, group number, d-band center of the combined M/TiO$_2$ system, d-band center of lone adsorbed metal atom, and workfunction of transition metal atoms. Using these 5 descriptors the adjusted R^2 was 0.78. Using five descriptors with only 29 samples could suffer from overfitting. We thus searched for the minimum number of descriptors that could explain the data well. We found that a multiple linear regression model using cohesive energy and workfunction (the best combination of these five descriptors) resulted
in an adjusted R^2 of 0.76.

Table B.4: Summary of linear regression models with one descriptor compared to the bent CO$_2$ adsorption energies. R^2 values for the linear regression of various descriptors compared to the adsorption energy of bent CO$_2$ on M/TiO$_2$.

<table>
<thead>
<tr>
<th>Descriptors</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic Number</td>
<td>0.00</td>
</tr>
<tr>
<td>van der Waals Radius</td>
<td>0.13</td>
</tr>
<tr>
<td>Covalent Radius</td>
<td>0.38</td>
</tr>
<tr>
<td>Electronegativity</td>
<td>0.08</td>
</tr>
<tr>
<td>Ionization Energy</td>
<td>0.34</td>
</tr>
<tr>
<td>Electron Affinity</td>
<td>0.00</td>
</tr>
<tr>
<td>Number of d electrons</td>
<td>0.56</td>
</tr>
<tr>
<td>Cohesive Energy</td>
<td>0.58</td>
</tr>
<tr>
<td>M-O Dissociation Energy</td>
<td>0.67</td>
</tr>
<tr>
<td>Polarizability</td>
<td>0.24</td>
</tr>
<tr>
<td>d band center of M/TiO$_2$</td>
<td>0.02</td>
</tr>
<tr>
<td>d band center of M in M/TiO$_2$</td>
<td>0.61</td>
</tr>
<tr>
<td>Group Number</td>
<td>0.59</td>
</tr>
<tr>
<td>Workfunction</td>
<td>0.08</td>
</tr>
<tr>
<td>Metal Atom Adsorption Energy</td>
<td>0.53</td>
</tr>
</tbody>
</table>

B.8 Post Transition Metal Atoms

The adsorption energies of post transition metal atoms are shown in Figure B.11 for various stable adsorption configurations. Bader charges of the site A adsorption of post transition metal atoms are shown in Figure B.12. As described in the main text, out of the several
descriptors we tested (Table B.5), we found the best set of descriptors using Lasso to describe metal adsorption energy at the most stable adsorption site (site A) were the M-O dissociation energies and group number.

Figure B.11: Adsorption energies of post transition metal atoms adsorbed on TiO$_2$. Different stable adsorption configurations are labeled. Refer to the main text for the geometries.
Figure B.12: Bader charges (in e−) of post transition metals with site A adsorption configurations.

Figure B.13 shows the adsorption energies of the most stable linear and bent CO\textsubscript{2} configurations on TiO\textsubscript{2}-supported post transition metal adatom. For the case of bent CO\textsubscript{2}, we report the stable adsorption configurations of bent CO\textsubscript{2} in Figure B.14. Adsorption configurations of Site B1-B7 were shown in Figure B.8. The Bader charges of CO\textsubscript{2} in their most stable adsorption configurations are presented in Figure B.15. A summary of linear regression using various descriptors against the bent CO\textsubscript{2} adsorption energies is shown in Table B.6.
Table B.5: Various descriptors and their values used in the regression and in the Lasso shrinkage models for post transition metal atom adsorption. References for the source of the data are given in the column headings.

<table>
<thead>
<tr>
<th>Atomic Number</th>
<th>van der Waals Radius (Å)</th>
<th>Covalent Å Radius (Å)</th>
<th>Electronegativity (Pauling Scale)</th>
<th>Ionization Energy (eV)</th>
<th>Electron Affinity (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>1.87</td>
<td>1.23</td>
<td>1.81</td>
<td>6</td>
<td>0.43</td>
</tr>
<tr>
<td>32</td>
<td>2.11</td>
<td>1.2</td>
<td>2.01</td>
<td>7.9</td>
<td>1.232712</td>
</tr>
<tr>
<td>49</td>
<td>1.93</td>
<td>1.42</td>
<td>1.78</td>
<td>5.79</td>
<td>0.3</td>
</tr>
<tr>
<td>50</td>
<td>2.17</td>
<td>1.4</td>
<td>1.96</td>
<td>7.34</td>
<td>1.112067</td>
</tr>
<tr>
<td>51</td>
<td>2.06</td>
<td>1.4</td>
<td>2.05</td>
<td>8.61</td>
<td>1.046</td>
</tr>
<tr>
<td>81</td>
<td>1.96</td>
<td>1.44</td>
<td>1.8</td>
<td>6.11</td>
<td>0.2</td>
</tr>
<tr>
<td>82</td>
<td>2.02</td>
<td>1.45</td>
<td>1.8</td>
<td>7.42</td>
<td>0.364</td>
</tr>
<tr>
<td>83</td>
<td>2.07</td>
<td>1.50</td>
<td>1.90</td>
<td>7.29</td>
<td>0.946</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic Number</th>
<th>Cohesive Energy (eV)</th>
<th>M-O Dissociation Energy (eV)</th>
<th>Polarizability (10^{-24} cm^3)</th>
<th>Group Number</th>
<th>Workfunction (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>2.81</td>
<td>3.88</td>
<td>8.12</td>
<td>13</td>
<td>4.2</td>
</tr>
<tr>
<td>32</td>
<td>3.85</td>
<td>6.81</td>
<td>5.84</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>49</td>
<td>2.52</td>
<td>3.59</td>
<td>10.2</td>
<td>13</td>
<td>4.12</td>
</tr>
<tr>
<td>50</td>
<td>3.14</td>
<td>5.47</td>
<td>7.84</td>
<td>14</td>
<td>4.3</td>
</tr>
<tr>
<td>51</td>
<td>2.75</td>
<td>4.5</td>
<td>6.6</td>
<td>15</td>
<td>4.55</td>
</tr>
<tr>
<td>81</td>
<td>1.88</td>
<td>2.21</td>
<td>7.6</td>
<td>13</td>
<td>3.84</td>
</tr>
<tr>
<td>82</td>
<td>2.03</td>
<td>3.96</td>
<td>6.98</td>
<td>14</td>
<td>4.25</td>
</tr>
<tr>
<td>83</td>
<td>2.18</td>
<td>3.49</td>
<td>7.4</td>
<td>15</td>
<td>4.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic Number</th>
<th>Adsorption Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>-2.87</td>
</tr>
<tr>
<td>32</td>
<td>-3.55</td>
</tr>
<tr>
<td>49</td>
<td>-2.66</td>
</tr>
<tr>
<td>50</td>
<td>-3.10</td>
</tr>
<tr>
<td>51</td>
<td>-2.03</td>
</tr>
<tr>
<td>81</td>
<td>-2.49</td>
</tr>
<tr>
<td>82</td>
<td>-2.69</td>
</tr>
<tr>
<td>83</td>
<td>-1.64</td>
</tr>
</tbody>
</table>

Figure B.13: Most stable bent and linear CO$_2$ adsorption energy on TiO$_2$ supported post-transition metal atoms.

Figure B.14: The stable adsorption energies of different bent CO$_2$ adsorption configurations on post-transition metal atoms on TiO$_2$.
Figure B.15: Bader charges (in e−) of the most stable linear and bent CO\textsubscript{2} adsorption sites on post-transition metal atoms on TiO\textsubscript{2}.
Table B.6: Linear regression using various descriptors to estimate the bent CO₂ adsorption energies on TiO₂ supported post-transition metal atoms.

<table>
<thead>
<tr>
<th></th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic Number</td>
<td>0.32</td>
</tr>
<tr>
<td>van der Waals Radius</td>
<td>0.38</td>
</tr>
<tr>
<td>Covalent Radius</td>
<td>0.26</td>
</tr>
<tr>
<td>Electronegativity</td>
<td>0.19</td>
</tr>
<tr>
<td>Ionization Energy</td>
<td>0.47</td>
</tr>
<tr>
<td>Electron Affinity</td>
<td>0.09</td>
</tr>
<tr>
<td>Cohesive Energy</td>
<td>0.06</td>
</tr>
<tr>
<td>M-O Dissociation Energy</td>
<td>0.00</td>
</tr>
<tr>
<td>Polarizability</td>
<td>0.33</td>
</tr>
<tr>
<td>Group Number</td>
<td>0.40</td>
</tr>
<tr>
<td>Workfunction</td>
<td>0.00</td>
</tr>
<tr>
<td>Metal Atom Adsorption Energy</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Bibliography

213

Appendix C

Supporting Information - The Fate of Supported Atomic-Size Catalysts in Reactive Environments

C.1 Surface Slab of TiO2 Anatase (101)

The anatase (101) surface slab used in the work with six layers thick is shown in Figure C.1.
Figure C.1: The anatase(101) surface slab used in the present work. The undercoordinated atoms on the surface are labelled as O$_{2c}$, O$_{3c}$, Ti$_{5c}$, and Ti$_{6c}$, where nc refers to n coordinations. Gray and red spheres represent Ti and O atoms.

C.2 Gas Phase Cu Clusters

A genetic algorithm as implemented within the atomistic simulation environment (ASE) package was used to help identify stable cluster geometries. We performed a geometry search using a two step process similar to previous work. We first used a genetic algorithm with DFT using small basis sets (3-21G for oxygen and LANL2DZ for metal atoms) to determine top stable geometries, followed by an accurate basis set optimization (MOLOPT double ζ basis sets) of these most stable geometries. The first step involving the genetic algorithm was performed using NWChem since it readily works with the ASE package. We used CP2K to determine final Cu cluster geometries in the second step. In this second step, we chose the geometries within 1 eV of the most stable structure identified in step 1, and optimized them again using CP2K at the level of theory discussed in the Methodology section in the main text.
Figure C.2: Reaction pathways for formation of Cu\textsubscript{x}/Cu\textsubscript{x}O\textsubscript{y} clusters in the gas phase. The numbers indicate reaction energies for each reaction step (in eV). A horizontal reaction is Cu addition, while vertical reactions are O addition (from 1/2 O\textsubscript{2} molecule). Numbers in red show the most favorable pathway. Cu and O atoms are represented in yellow and blue spheres respectively.

Our calculated geometries are consistent with reported stable Cu\textsubscript{x}O\textsubscript{y} geometries. For metallic clusters up to 5 Cu atoms, our most stable planar geometries are similar to those reported by Jiang et al. Small clusters such as CuO\textsubscript{2} and Cu\textsubscript{2}O, are similar to geometries reported earlier. For CuO, Cu\textsubscript{2}O\textsubscript{2}, Cu\textsubscript{2}O\textsubscript{3}, Cu\textsubscript{3}O\textsubscript{2} and Cu\textsubscript{3}O\textsubscript{3} geometries, our most
stable geometries were similar to those reported by Bae,7 while for Cu$_3$O, our most stable planar geometry was 0.02 eV more stable than the pyramidal geometry reported by Bae. This difference may be due to their use of different basis set (LANL2DZ for both Cu and O) and exchange correlation functional (B3LYP). Our Cu$_4$O$_2$ structure was also consistent with Trinchero et al.11 where O atoms prefer the adjacent edges of Cu$_4$ unit of Cu$_4$O$_2$ geometry. In the case of Cu$_4$O$_4$, we found a ring-like structure to be the most stable geometry unlike the three dimensional structure reported by Bae et al.6 Our ring-like structure of Cu$_4$O$_4$ cluster consisted of alternating Cu-O-Cu bonds. Bae et al. reported their Cu$_4$O$_4$ to consist of a planar Cu$_2$O$_4$ unit with the extra two Cu atoms above and below the plane of Cu$_2$O$_4$. Our most stable structure was 1.31 eV more stable than the structure of Bae et al. Our test calculations showed that the difference in the two geometries was primarily due to the use of different exchange correlation functionals. When using B3LYP functional these two geometries became closer in energy (a difference of 0.21 eV). A ring-like Cu$_4$O$_4$ cluster was also reported earlier by Jin et al.12

Figure C.2 shows the reaction pathways for Cu aggregation/oxidation in the gas phase. We calculated the formation energy of gas phase Cu oxide clusters as shown in Figure C.3. The definition of formation energy of Cu oxide clusters and further discussion is presented in main text.
Figure C.3: Formation energies of oxidized gas phase Cu clusters in the presence of gas phase O$_2$ as a function of temperature.

C.3 Gas Phase Pt Clusters

For clusters with four or more atoms we searched for the most stable geometries using a genetic algorithm. For smaller clusters, we manually created initial configurations, as the configurational space was relatively small for these small clusters. The most stable geometries of Pt oxide clusters are shown in Figure C.4. The cluster geometries of PtO$_2$, Pt$_2$O, Pt$_3$O, and Pt$_2$O$_2$ were similar to the geometries reported by Xu et al. In other cases (Pt$_3$O$_2$ and Pt$_3$O$_3$), we found our geometries to be more stable than those reported by Xu et al. The reaction energies of Pt aggregation and oxidation steps were calculated to find the preferred growth pathway. The corresponding most stable Pt oxide cluster geometries are also shown in Figure C.4. We discuss the results in the main text.
Figure C.4: Reaction pathways for formation of Pt\textsubscript{x}/Pt\textsubscript{x}O\textsubscript{y} clusters in the gas phase. The numbers indicate reaction energies for each reaction step (in eV). A horizontal reaction is Cu addition, while vertical reactions are O addition (from 1/2 O\textsubscript{2} molecule). Numbers in red show the most favorable pathway. Pt and O atoms in Pt\textsubscript{x}O\textsubscript{y} are shown as turquoise and blue spheres respectively.

C.4 Adsorption of M\textsubscript{x}O\textsubscript{y} clusters on TiO\textsubscript{2}

The adsorption energies of all the metal oxide clusters we studied in this work are given in Table C.1.

Bibliography

Table C.1: Adsorption energies of M_xO_y clusters on TiO$_2$.

<table>
<thead>
<tr>
<th>Cu_xO_y</th>
<th>ΔE_{ads} (eV)</th>
<th>Pt_xO_y</th>
<th>ΔE_{ads} (eV)</th>
<th>MO_y ($y=1,2$)</th>
<th>ΔE_{ads} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>-2.56</td>
<td>Pt</td>
<td>-3.42</td>
<td>Co</td>
<td>-4.25</td>
</tr>
<tr>
<td>CuO</td>
<td>-3.87</td>
<td>PtO</td>
<td>-2.11</td>
<td>CoO</td>
<td>-4.40</td>
</tr>
<tr>
<td>CuO$_2$</td>
<td>-3.04</td>
<td>PtO$_2$</td>
<td>-1.14</td>
<td>CoO$_2$</td>
<td>-2.72</td>
</tr>
<tr>
<td>Cu$_2$</td>
<td>-1.89</td>
<td>Pt$_2$</td>
<td>-3.59</td>
<td>Rh</td>
<td>-2.92</td>
</tr>
<tr>
<td>Cu$_2$O</td>
<td>-4.40</td>
<td>Pt$_2$O</td>
<td>-3.05</td>
<td>RhO</td>
<td>-2.71</td>
</tr>
<tr>
<td>Cu$_2$O$_2$</td>
<td>-4.68</td>
<td>Pt$_2$O$_2$</td>
<td>-3.02</td>
<td>RhO$_2$</td>
<td>-2.16</td>
</tr>
<tr>
<td>Cu$_2$O$_3$</td>
<td>-3.43</td>
<td>Pt$_3$</td>
<td>-4.14</td>
<td>Ir</td>
<td>-4.39</td>
</tr>
<tr>
<td>Cu$_3$</td>
<td>-3.95</td>
<td>Pt$_3$O</td>
<td>-3.81</td>
<td>IrO</td>
<td>-3.74</td>
</tr>
<tr>
<td>Cu$_3$O</td>
<td>-4.94</td>
<td>Pt$_3$O$_2$</td>
<td>-4.86</td>
<td>IrO$_2$</td>
<td>-1.95</td>
</tr>
<tr>
<td>Cu$_3$O$_2$</td>
<td>-5.68</td>
<td>Pt$_3$O$_3$</td>
<td>-3.06</td>
<td>Ni</td>
<td>-3.78</td>
</tr>
<tr>
<td>Cu$_3$O$_3$</td>
<td>-4.63</td>
<td>Pt$_3$O$_4$</td>
<td>-3.95</td>
<td>NiO</td>
<td>-3.95</td>
</tr>
<tr>
<td>Cu$_4$</td>
<td>-4.12</td>
<td>Ni</td>
<td>-2.44</td>
<td>NiO$_2$</td>
<td>-1.91</td>
</tr>
<tr>
<td>Cu$_4$O</td>
<td>-4.97</td>
<td>Pd</td>
<td>-2.99</td>
<td>PdO</td>
<td>-2.50</td>
</tr>
<tr>
<td>Cu$_4$O$_2$</td>
<td>-3.71</td>
<td>PdO$_2$</td>
<td>-2.50</td>
<td>Ag</td>
<td>-1.52</td>
</tr>
<tr>
<td>Cu$_4$O$_3$</td>
<td>-4.98</td>
<td>AgO$_2$</td>
<td>-2.15</td>
<td>Au</td>
<td>-0.73</td>
</tr>
<tr>
<td>Cu$_4$O$_4$</td>
<td>-3.55</td>
<td>AgO$_2$</td>
<td>-2.15</td>
<td>AuO$_2$</td>
<td>-1.75</td>
</tr>
</tbody>
</table>

Appendix D

Evaluating Solvent Effects at the Aqueous/Pt(111) Interface

D.1 Introduction

The presence of a liquid, such as water, can have a large effect on the surface chemistry and properties of metals. In heterogeneous catalysis the role of water on metal surfaces can be crucial, such as for oxidation reactions (e.g. alcohol oxidation or CO oxidation), Fischer-Tropsch reactions, biomass reforming, and electrocatalytic reactions. The presence of aqueous phase at the metal surface can increase the rate of reaction, open up new favorable reaction pathways, or increase the selectivity of products. However, water can also negatively affect some catalytic reactions. Hence, understanding the role of water and other liquids in chemical reactions at the metal-liquid interface is of both fundamental and technological interest.

Extracting atomic details of surfaces with in-situ experiments (especially for metal surfaces in the presence of water) is quite challenging, and density functional theory (DFT) sim-
ulations have aided in explaining many details in surface science and catalysis studies. DFT has for instance been useful in providing valuable insights on the nature of aqueous phase reactions over metal surfaces.3,6,17,30–37 Still, while DFT can be used to simulate aqueous phase chemistry, modeling the aqueous phase over metal surfaces has been a challenge owing to the difficulty in accurately describing complex systems that may involve simultaneous metal-water, adsorbate-water, adsorbate-metal, and water-water interactions. The addition of solvent may lead to large systems that have a number of possible thermodynamic and geometrical configurations. Due to these complications, often the aqueous phase for DFT surface simulations is ignored and approximated by vacuum. Better, efficient approaches are needed to more accurately model solid-liquid interfaces.

There are several approaches to treating liquid solvents within DFT. In an explicit solvation model (illustrated in Figure D.1), the solvent (such as water molecules) is simulated as other molecules (e.g. modeling the water molecules at the DFT level). Because of the complexity of modeling water layers near the metal surface, water has often been approximated as having a hexagonal ice-like bilayer structure.19,38–46 Another approach is to only model a few water molecules close to the solute.47–55 Ab initio molecular dynamics (AIMD) simulations have also been used to generate equilibrium water solvation structures around reaction intermediates over periodic solid surfaces.17,33,56–60,60–64 The major challenge with the explicit approach is the computationally expensive task of averaging out the thermodynamic properties over several solvent configurations as well as the increased computational requirements for large systems. Accurate descriptions of the liquid-metal interface using the explicit approach are not trivial.

A second approach is the use of an implicit (or continuum) solvent model,65,66 where the solvent is approximated by a continuum surrounding the solute molecules (see Figure D.1). The solutes are placed in a cavity, and the solvent continuum outside the cavity exhibits the average properties of the solvent. Such a treatment of the solvent can be much more
computationally cheaper compared to explicit models, as it avoids directly modeling solvent molecules. Implicit solvation also mimics the long range electrostatic interactions, which may not be accurately determined in explicit solvation, except possibly for very large simulation sizes. In spite of these advantages, the implicit solvation comes at a potential cost, since specific solute-solvent interactions may not be fully described. For example, hydrogen bond interactions may not be correctly represented by the implicit approach. This means that caution must be exercised when using implicit solvation models. Finally, we mention that there have been some attempts to combine explicit and implicit solvation models through a hybrid (or cluster-continuum) approach.

Figure D.1: Illustration of explicit (left) and implicit (right) solvation models. In this example, CO (shown with a ball and stick model) is surrounded by H₂O molecules (shown with stick models) in the explicit model. In the implicit model, the water molecules are treated by a continuum (blue background) and the CO is placed in a cavity (shown as the union of larger atomic spheres).

The computational advantages of implicit solvation models however warrant their potential application and study in simulating metal-liquid interfaces. Implicit solvation models in molecular codes are mature and flexible, with a number of solvation schemes available (see for instance reviews in references [65,66]). Implicit solvation models are relatively new in periodic DFT codes, and thus need more verification to become standard methods. Metal surfaces are typically modeled using two different schemes: the cluster and periodic approach. In the cluster approach, often using molecular quantum codes, a subset of the surface (the
cluster) is modeled, rather than the entire surface. On the other hand, periodic surface models are more robust in modeling extended surfaces using the slab - supercell approach (which avoids edge effects and possible errors due to a finite number of surface atoms). Recently, based on the work of Fatterbert and Gygi, there have been several implicit solvent models developed for periodic DFT packages. Available codes include: VASP (VASPsol and VASP-MGCM), JDFTx, CP2K, Quantum Espresso, SIESTA, and others. Differences between these models for instance arise from the treatment of relative permittivity across the solute-solvent interface, definition of the solute cavity, or the numerical procedure adopted. Beyond solvation models in periodic DFT codes, we note that Heyden and coworkers developed and used a solvation scheme (iSMS) in which a cluster model is used to determine the implicit solvation energy that is added to the vacuum based results of periodic surfaces. This method allows robust implicit solvation models in molecular codes to be combined with periodic DFT calculations. Since various solvation methods are available in molecular and periodic DFT codes, an evaluation of different solvation methods would be useful in determining their accuracy, and also identifying reasonable approaches to considering implicit solvation.

Several recent reports have described results with implicit solvation models over metal surfaces. Heyden and coworkers used their iSMS approach and found that the solvation effects on Pd(111) and Pd(211) surface were small (not more than 0.25 eV compared to vacuum) in studies involving C-C cleavage of ethylene glycol and hydrodeoxygenation of propanoic acid and methyl propionate. Over Pt(111) surface, Bodenschatz et al. reported that the effect of implicit solvation on the adsorption of large polar molecules was considerably smaller (by up to 0.7 eV) than the corresponding explicit solvation. Solvent effects on the adsorption of common adsorbate like O$_2$, CO, and H$_2$O using implicit solvation models were reported to be less than a magnitude of 0.1 eV. Steinmann et al. compared implicit and explicit solvation models, although only for levulinic acid adsorption.
on Ru(0001). Using SCCS implicit solvation, the oxygen reduction reaction was studied on Pt(111) surface and a solvation effect of up to 0.26 eV was reported.86 Other implicit solvation models such as adaptive Poisson-Boltzmann solver (APBS) or Jaguar’s Poisson-Boltzmann solver87 have shown strong solvent effects of up to 0.9 eV on oxygen reduction reaction on Pt(111) surface.86,88–92 These variously reported solvent effects arise due to the nature of different implicit solvation models. Implicit models require careful evaluation of their accuracy and limitations. Implicit solvation models have also been recently used in modeling electrochemical interfaces and reactions.93–96

Fast, accurate implicit solvation models could potentially lead to better descriptions of metal-liquid interfaces. Even though different implicit solvent models are being used across the literature, there are still questions on the quantitative differences between them and which models may be appropriate for modeling surface chemistry over metals. Particularly we are interested in the VASPsol model73 as implemented in VASP,97,98 since VASP is one of the most common periodic DFT codes used to model metal surfaces. The use of the periodic code JDFTx75,99 and the molecular code NWChem100 (with the COSMO101 solvation model) further allows us to compare the predicted solvent effects as implemented in both periodic and molecular DFT codes. Moreover, in principle solvent corrections obtained from a molecular DFT code could be easily incorporated into periodic DFT results, as following the iSMS approach. In our work we thus compare several implicit solvent models using DFT and attempt to answer the following questions: how do results from such models differ from each other, how accurate are these models, and what is the effect of the liquid phase on metal surface chemistry? Specifically, we consider the Pt(111) surface and focus on water as a solvent. We model adsorption of several species relevant to catalysis, as well as important surface reactions.
D.2 Methodology

In this work we modeled Pt(111) surfaces with three different codes: VASP97,98 (plane wave basis set), JDFTx99,102,103 (plane wave basis set) and NWChem100 (Gaussian basis set). All three codes have different implicit solvation methods that we used in the current work (discussed below). VASP and JDFTx with a plane wave basis set allowed us to model the surface using the slab approach, where a vacuum space was created in the z-direction, and the slab was infinite in the x- and y-directions (subject to periodic boundary conditions). The surface slabs were modeled with a p(3x3) cell (a total of 36 atoms per slab), which had lattice vectors of length 8.44 Å (VASP) and 8.40 Å (JDFTx). The slabs consisted of four layers with the bottom two layers frozen in bulk geometries. A sample slab is shown in Figure D.2. A vacuum separation of 20 Å was set along the surface normal. We calculated the lattice constant for bulk Pt to be 3.98 Å using VASP and 3.96 Å using JDFTx, which is in agreement with previous work (3.996,104 3.980,105 and 3.989,106 Å).

We used NWChem to model Pt clusters that represented the (111) surface. We considered several cluster sizes (see Figure D.2b-d). A small cluster may be inaccurate in describing adsorption due to the presence of a large number of under-coordinated edge metal atoms, while a large cluster may be computationally intractable. Jacob et al.107–109 reported that Pt\textsubscript{35} (with 14, 13, and 8 atoms in the first, second and third layers) was a suitable cluster size with minimal edge effects. It was found that the gas phase adsorption energies of several molecular adsorbates like CH\textsubscript{x}, C\textsubscript{2}H\textsubscript{y}, and oxygen reduction reaction intermediates were described well. However, Faheem et al.80 reported converged solvation energies for the C-C cleavage reaction of ethylene glycol using cluster models having at least two Pt layers with 16 atoms in each layer. In the study by Faheem et al., they reported convergence with respect to solvation energy based on two organic adsorbates - C\textsubscript{2}H\textsubscript{4}O\textsubscript{2} and HCOH. In order to understand the effects of cluster size (both in number of layers of the cluster, and available
cluster surface area), we modeled a broad set of adsorbates over Pt clusters. In our work, we considered a large Pt$_{35}$ cluster, along with two other smaller Pt(111) clusters, Pt$_{19}$ (12 atoms in first and 7 atoms in second layer) and Pt$_{10}$ (7 atoms in first and 3 atoms in second layer).

The generalized gradient approximation Perdew-Burke-Ernzerhof (PBE) exchange correlation functional was used for all the calculations. Using NWChem, Pt atoms were treated by the LANL2DZ basis set with the accompanying relativistic effective core potential that replaced the 60 innermost core electrons leaving 18 outer valence electrons (in an electronic configuration of 5s25p65d96s1) modeled using DFT. We chose a sufficiently large 6-311G** basis set (all electrons treated explicitly) for O, C, and H, as valence triple zeta basis sets can usually describe the valence regions of an atom better than double zeta basis sets. Core electrons are described by the projector augmented wave (PAW) approach using VASP and by ultrasoft pseudopotentials (USPP) obtained from the open-source pseudopotential Garrity-Bennett-Rabe-Vanderbilt (GBRV) library using JDFTx. We performed test calculations using a plane wave kinetic energy cutoff of 800 eV with VASP for several adsorbates. The mean absolute difference in the adsorption energy of 14 different adsorbates for 800 and 450 eV cutoff energies, was found to be 0.04 eV (see Table E.1 in the Supplementary Information). Hence, all the VASP results were obtained with an energy cutoff of 450 eV. With JDFTx, we used a slightly larger cutoff energy of 544 eV, similar to the previous value used by Ozhabes et al.

With VASP we used the first-order Methfessel Paxton smearing method with a smearing width of 0.15 eV. The convergence criteria in VASP for the electronic self consistent field (SCF) and ionic forces were set to 10$^{-5}$ eV and 0.05 eV/Å respectively. In the case of JDFTx, we used a smearing width of 0.27 eV. The convergence criteria using JDFTx for electronic SCF was 2.72x10$^{-5}$ eV (1x10$^{-6}$ Ha), and the geometry optimizations were performed till the root mean square of ionic forces were less than 0.005 eV/Å (or 0.1 mH/Bohr), respectively.
Figure D.2: Pt(111) surface models used in the current work. The top and side views of the Pt(3x3) periodic surface is shown in (a). Pt\textsubscript{10}, Pt\textsubscript{19}, Pt\textsubscript{35} clusters are shown in (b), (c), (d), respectively. All models were drawn using VESTA-3.117

The reciprocal space for the VASP and JDFTx calculations were sampled with k-meshes of 3x3x1. We also tested finer k-meshes of 4x4x1 and 5x5x1 in VASP for the adsorption energies of O\textsubscript{2}, H\textsubscript{2}O, and HCOOH. The largest deviation in the adsorption energies of these three adsorbates calculated between 3x3x1 and 4x4x1 meshes (or 3x3x1 and 5x5x1 meshes) was 0.02 eV (or 0.09 eV). See Table E.2 in the Supplementary Information for complete data comparing different k-point meshes. NWChem calculations were performed with an electronic SCF convergence criteria of 1.36x10-4 eV (5x10-6 Hartree) and the geometry optimization was performed until the ionic forces were less than 0.02 eV/Å (close to a previously-used value of 0.02 eV/Å119). To obtain better convergence, we also included a smearing width of 0.027 eV (close to a previously-used value of 0.01 eV119) for these metallic systems using NWChem.

For the adsorption of species on the Pt(111) clusters, Pt atoms may either be frozen in bulk geometry positions (similar to previous work120,122) or selected Pt atoms in the surface layer may be relaxed while keeping edge atoms frozen (also similar to previous work102,108,109). We found that the adsorption energy of OH, O\textsubscript{2}, CO, and H\textsubscript{2}O on the
Pt\textsubscript{10} cluster with and without relaxing the central Pt atom of the surface layer changed by less than 0.05 eV. We also tested OH adsorption on the Pt\textsubscript{35} cluster with and without relaxing the central four Pt atoms of the surface layer, and found that the adsorption energy only changed by 0.03 eV. Hence, we froze the clusters with Pt-Pt bulk bond distances of 2.807\textdegree A in all our calculations. A lattice parameter of 3.97\textdegree A (average of VASP and JDFTx lattice parameters) gives such Pt-Pt bond distances.

The Pt(111) clusters potentially have a number of unpaired electrons.108,123 In our present work, we found the ground state of different Pt clusters to have several unpaired electrons. The values we obtained for the ground state spin (S) were 3, 3, and 8 for Pt\textsubscript{10}, Pt\textsubscript{19}, and Pt\textsubscript{35} respectively; recall that a spin value of S=1 implies two unpaired electrons. These values were lower than those obtained by Jacob and Goddard108 (S of 6 and 11 for Pt\textsubscript{19} and Pt\textsubscript{35} respectively). This difference could be a result of the different exchange correlation functional used by Jacob and Goddard (B3LYP). We ran test calculations that indeed showed that for a given cluster, the PBE exchange correlation functional typically predicts a lower number of unpaired electrons to be energetically more stable than that predicted by B3LYP (see Table E.3). When an adsorbate is present on the cluster, electron pairing may occur, which may lower the number of unpaired electrons for a Pt cluster.109 We again tested several spin states for each adsorbate/cluster combination and report herein the results using the lowest energy structures. Our analysis of spin states allows us to be more confident that we have obtained the proper ground-state energies for the cluster systems.

With all three DFT codes we studied implicit solvation. Implicit / continuum solvent models are characterized by the presence of a cavity containing the solute surrounded by a continuum representing the solvent. Here, VASPsol73 (the implicit solvation model implemented in VASP) and JDFTx75 were used to model implicit solvation for the periodic Pt(111) surfaces, while the COnductor-like Screening MOdel (COSMO)101 in NWChem was used to model implicit solvation for the Pt cluster models. All these solvation models are
based on the concept of the Polarizable Continuum Model (PCM), where the response of the presence of solvent on the solute electronic density is captured through polarization charges at the solute-solvent interface. Although all the solvation models are based on the PCM approach, there are some differences among each of them. In COSMO the shape of the cavity enclosing the solute is determined by the union of rigid atomic spheres, unlike in VASPsol and JDFTx where the self consistent determination of cavity shape is based on the solute electronic density. We use the optimized atomic radii reported by Klamt et al.: H = 1.30 Å, C = 2.00 Å, O = 1.72 Å, and Pt = 2.223 Å for the COSMO calculations. Another difference between COSMO and VASPsol/JDFTx is with respect to the description of the dielectric constant at the solute-solvent interface. The switching of dielectric constant from solute to solvent regime is discontinuous in the case of COSMO, while it switches smoothly as a functional of solute electron density in JDFTx and VASPsol. All three solvation models however modify the Hamiltonian in the Kohn-Sham equations within the self consistent cycle to determine the ground state energy of the combined-solute solvent system. In the case of implicit solvation in VASPsol and JDFTx, both adopt the theoretical framework from joint density functional theory. In joint density functional theory, the usual Kohn-Sham electron density functional is appended with functionals describing the bulk solvent and the solute-solvent interactions such that, now a combined solute-solvent system is described. Here, the bulk solvent surrounding the solute is described using a classical DFT picture in terms of molecular density of the solvent (see for example Ref), while the solute-solvent interaction is taken into account through the solvent polarization. In COSMO, the polarization charges on the cavity surface are used to construct the corresponding potential that enters the Kohn-Sham equations.

In vacuum (Equation D.1) or using implicit solvation (Equation D.2), adsorption energies can be calculated as,

$$\Delta E_{\text{ads}}^\text{vac} = E(X*) - E(*) - E(X)$$ \hspace{1cm} (D.1)
\[\Delta E_{\text{ads}}^{\text{imp}} = E(X*^{\text{imp}}) - E(*) - E(X^{\text{imp}}) \] \hspace{1cm} (D.2)

where, * refers to the bare Pt surface, X* to the Pt surface with adsorbate, and X to the free molecule or atom. The superscript "imp" indicates the energies are calculated using implicit solvation. In Equation \[D.2 \] we chose to define the adsorption energy in the presence of solvent to indicate a real-solvated situation, where a solvated free species (\(X^{\text{imp}} \)) adsorbs on a solvated metal surface (\(*^{\text{imp}} \)) to form the solvated metal-adsorbate system (\(X*^{\text{imp}} \)). Typically, the free species are modeled without solvent, but we chose to solvent these species in our work in order to better mimic reality where such species are likely in bulk solvent. The difference in Equation \[D.2 \] between using solvated free species and gas-phase free species is simply the solvation energy of the lone molecule or atom. The energies with superscript "imp" contain both the electrostatic and the non-electrostatic (cavitation and dispersion) contributions upon solvation. All the energies reported using implicit solvation were calculated with the default numerical settings in all the three DFT codes. Steinmann et al.\(^8\) reported results using \(\tau = 0 \), or no cavitation energy, due to convergence issues. We experienced no such issues in our study and report all results with cavitation energies. For atomic adsorbates like H, O, and N, the energy of the free adsorbate we used was \(1/2 \) the energy of the gas-phase dimer. In the case of C and S also we choose \(1/2 \) the energy of the gas-phase dimer as the energy of free adsorbate to be consistent with the definition of other elemental adsorbates. The difference in the adsorption energies for the solvated case (equation \[D.2 \]) and the vacuum case (equation \[D.1 \]) represents the change in adsorption energy upon applying solvation, a term we call the 'adsorption solvation energy', or \(\Delta \Delta E_{\text{ads}}^{\text{solv}} \).

\[\Delta \Delta E_{\text{ads}}^{\text{solv}} = \Delta E_{\text{ads}}^{\text{imp}} - \Delta E_{\text{ads}}^{\text{vac}} \]

\[= \Delta E_{\text{solv}}(X*) - \Delta E_{\text{solv}}(X) - \Delta E_{\text{solv}}(*) \] \hspace{1cm} (D.3)
This value quantifies the effect of solvation on adsorption energy values. Negative values of $\Delta \Delta E_{solv}^{ads}$ indicate that solvation is more favorable in the presence of solvent, while positive values indicate that solvation is more favorable in gas phase.

Scheme D.1: Thermodynamic cycle for the solvation process during adsorption of a species on a metal surface.

Another way to consider the solvation process during adsorption is shown in Scheme D.1. The top process shows adsorption of species X from the gas-phase, while the lower reaction shows adsorption of species X in the presence of solvent. The vertical energy changes in the thermodynamic cycle correspond to (from left to right) the solvation energy of the clean surface [$\Delta E_{solv}^{(*)}$], solvation energy of the free adsorbate [$\Delta E_{solv}(X)$], and solvation energy of the combined adsorbate/metal surface [$\Delta E_{solv}(X^*)$]. Analysis of these three solvation energies can provide useful insight on what solvation effects dominate the adsorption process.

For instance, if $\Delta E_{solv}(X^*)$ is very negative, while $\Delta E_{solv}^{(*)}$ and $\Delta E_{solv}(X)$ are both close to zero, the solvation energy of adsorption will be very negative, implying that solvation of the combined adsorbate/surface system is dominant for the adsorption process.

D.3 Results and Discussion

D.3.1 Comparison of Implicit Solvated Cluster Models

Motivated by the work of Heyden and coworkers, which used metal clusters with implicit solvation to treat solvation effects, we modeled several different Pt clusters to represent the
surface. We sought to determine solvation effects on the adsorption of common ORR intermediates, as well as CO (a common catalyst poison or intermediate). In the literature, properties like adsorption and reaction energies in the gas phase have often been used to assess cluster-size effects. However, relatively limited amount of work is available on understanding the effect of cluster size on surface processes in the presence of implicit solvation. We first sought to determine which Pt cluster would be appropriate for this work.

On the different Pt clusters, we considered the following adsorbates and adsorption sites: H(top), O(fcc), OH(top), O$_2$(bridge), CO(fcc), and H$_2$O(top). See Figure E.1 in the Supplementary Information for illustrations of the different adsorption sites. These adsorption sites for H, O, OH, O$_2$, CO, and H$_2$O are the most stable sites as found in previous literature (see references 104,106,129,130). Due to the small size of the Pt$_{10}$ cluster, the adsorption of O atom at the fcc site resulted in a shifting of the O atom to the top site upon optimization. We thus relaxed the O atom at the fcc site only along the surface normal direction (the O atom was frozen in x and y directions) to find the minimum geometry for O adsorbed at the fcc site. A similar approach was also used by Jacob et al. We show the adsorption energies for the different clusters in vacuum and with implicit solvation in Figure D.3. The adsorption energies are predominantly found to converge to common values with increasing Pt cluster size. It can also be seen that for adsorbates like H, OH, and H$_2$O, the adsorption energies converge relatively smoothly with increasing cluster size when compared to adsorbates like O, O$_2$, and CO.

We find that the adsorption energies of different clusters depend on the local environment around the adsorption site. When adsorbates bind at fcc (O and CO) or bridge sites (O$_2$), the local environment over Pt$_{10}$ and Pt$_{19}$ clusters are significantly different from Pt$_{35}$ clusters. For the Pt$_{10}$ and Pt$_{19}$ clusters, the adsorbates at fcc/bridge sites bond to edge Pt atom(s) because of the small cluster sizes. In contrast no edge Pt atoms are involved in bonding.
Figure D.3: Calculated adsorption energies in the presence of vacuum (a) and implicit solvation (b) as a function of Pt cluster size. COSMO was used to treat solvation with the NWChem DFT code.

over Pt$_{35}$ clusters. In addition to these edge effects, indirect effects due to the absence Pt atoms in the third layer may also affect the adsorption energies calculated using the two layer Pt$_{10}$/Pt$_{19}$ clusters. Jacob et al.\footnote{107} also found that two-layer cluster surfaces may not represent the adsorption properties well. Pt$_{35}$ is three layers thick and may better describe the bulk-like nature of the Pt surface. Furthermore adsorbate-Pt bond distances differ by up to 0.1 Å for the Pt$_{10}$/Pt$_{19}$ clusters compared to the Pt$_{35}$ cluster. The mean absolute difference between Pt$_{35}$ and Pt$_{19}$ clusters for both the adsorption energies in vacuum ($\Delta E_{\text{ads}}^{\text{vac}}$) and in the presence of implicit solvation ($\Delta E_{\text{ads}}^{\text{imp}}$) was 0.09 eV. In the remainder of the work, we use the Pt$_{35}$ cluster as it showed minimal edge and layer effects when compared to the Pt$_{19}$ and Pt$_{10}$ clusters.
D.3.2 Comparison of Implicit Solvation Models for Adsorption

In this section we consider the effect of implicit solvation on the adsorption of several adsorbates using Pt clusters with NWChem, as well as two other implicit solvation models as implemented in the periodic DFT codes, VASP and JDFTx. We simulated adsorption of a number of possible adsorbates, such as atomic species, organic molecules, and inorganic molecules. We chose such adsorbates as they represent common adsorbates that may be present for typical catalytic reactions. Figure D.4 shows the calculated adsorption solvation energies as calculated using VASP, NWChem, and JDFTx. We calculated these energies with Equation D.3. We used the following adsorption sites: H (top), O (fcc), C (fcc), S(fcc), N(fcc), OH (top), CH (fcc), CH₂(bridge), CH₃ (top), NH (fcc), NH₂(bridge), NH₃(top), NO (fcc), CO (fcc), O₂ (bridge), and H₂O (top). These sites were chosen as they were reported to be the most stable adsorption sites based on the previous DFT studies (see Table E.5 in the Supplementary Information for more details).

The effect of implicit solvation on adsorption as shown in Figure D.4 can be classified into three types based on the relative solvation effect: weak (≤ 0.05 eV), moderate (~ 0.1 eV), and strong (≥ 0.20 eV). Several adsorption solvation energies fall into the weak regime using all three implicit solvation models. VASP results show that solvation energies for OH and CH are moderately positive, while solvation energies for NH and NH₂ are moderately negative. Adsorption of ammonia showed a strong solvent effect, with an adsorption solvation energy of -0.32 eV using VASPsol. We find that JDFTx results are very close to those calculated using VASPsol (mean absolute difference of 0.02 eV). In the case of COSMO, most solvation energies were weak. Moderate negative adsorption solvation energies were found for O, CO, and O₂ using COSMO, while weak solvation effects were calculated for these same species using VASP/JDFTx. However, COSMO also predicts strong solvent effects for ammonia (-0.20 eV) consistent with VASP/JDFTx results.

To better understand the differences between these three solvent models, we analyzed
Figure D.4: Adsorption solvation energies for several adsorbates calculated using VASP, JDFTx, and NWChem. The results with NWChem were obtained using Pt$_{35}$ clusters.

The different solvation energy terms shown in Scheme D.1. We note that solvation energies of free adsorbates, or the energy to place a gas-phase molecule in solvent, $\Delta E_{\text{solv}}(X)$, calculated using the three different solvent models are in good agreement with each other: the mean absolute difference between VASP and JDFTx was 0.01 eV, VASP and NWChem was 0.03 eV and JDFTx and NWChem was 0.03 eV. These results show that all three implicit solvent models describe solvation of free species in a similar manner. The experimental solvation energies for free adsorbates like molecular nitrogen, ammonia, carbon monoxide, water, methane, ethanol, methanol, acetone, benzene, toluene, and aniline were reported earlier.132,133 The mean absolute difference in implicit solvation energy between our results and the experimental data for the above adsorbates was found to be 0.04 eV, giving confidence to our approach. Likewise, our results for implicit solvation energies also agree well (mean absolute difference of 0.04 eV) with the values obtained by Marenich et al.,134 who used the SMD implicit solvation model. Marenich et al. modeled molecular hydrogen, ammonia, water, water dimer, acetic acid, methane, isopropyl alcohol, ethanol, methanol, acetone, benzene, toluene, and aniline.

All the solvation energy terms in Scheme D.1 [$\Delta E_{\text{solv}}(X)$, $\Delta E_{\text{solv}}(^*)$, and $\Delta E_{\text{solv}}(X^*)$] calculated using VASPsol and JDFTx are almost identical to each other (see for example
Table D.1). We attribute this small difference to the similarity of the solvation models implemented in these codes, as well as other similar parameters (e.g. basis set). Therefore, in the following discussion we will focus on comparing results between NWChem/COSMO and VASP/VASPsol. Values of $\Delta E_{\text{solv}}(X)$ calculated by using the three codes are similar (see Table E.4), with a mean absolute difference of 0.03 eV between VASP and NWChem. The largest difference between the two codes was 0.10 eV. The $\Delta E_{\text{solv}}(*)$ values of 0.04, 0.05, and -0.02 eV for VASP, JDFTx, and NWChem, respectively, indicating a difference of 0.06 eV between VASP and NWChem. It follows that when the differences in the adsorption solvation energies estimated by VASP and NWChem are considerable, for example, around 0.1 eV for OH, $\text{NH}_x(x=13)$, and H_2O, this difference was largely due to different $\Delta E_{\text{solv}}(X*)$ values calculated by VASP and NWChem.

We note that VASP/VASPsol tends to produce more positive solvation energies than NWChem/COSMO for systems with metal surfaces. This small difference in solvation energies between VASP and NWChem could potentially be attributed to the finite size of the Pt cluster used in NWChem, or differences in the two implicit solvation models. These differences include how the shape of the cavity is determined and how the bulk dielectric constant of the solvent is treated across the solute solvent interface (see the Methods Section for more details). For several metal/adsorbate systems (e.g. O, OH, CO, O_2, and N), VASP shows solvation energies $\Delta E_{\text{solv}}(X*)$ to be around 0.1 eV more positive compared to NWChem. On the other hand, for adsorbates such as NH$_2$, NH$_3$, and the weakly adsorbed water molecule, VASP results in solvation energies that are around 0.1 eV more negative compared to NWChem. The mean absolute difference between the solvation energies of VASP and NWChem for the adsorbates listed in Table 1 is 0.06 eV, with the largest deviation (0.13 eV) for OH. Overall, VASP and NWChem solvation energies are consistent with each other for several adsorbates. More importantly, the adsorbates that showed large solvation energies in Table 1, such as water and ammonia, were predicted in a consistent manner with
Table D.1: Solvation energies $\Delta E_{\text{solv}}(X^*)$ in eV for Pt surface with different adsorbates. Values of $\Delta E_{\text{solv}}(*)$ and $\Delta E_{\text{solv}}(X)$ for the different codes are discussed in the text. Scheme D.1 and Equation D.3 provide a description of these different variables.

<table>
<thead>
<tr>
<th></th>
<th>VASPsol</th>
<th>COSMO</th>
<th>JDFTx</th>
</tr>
</thead>
<tbody>
<tr>
<td>H*</td>
<td>0.03</td>
<td>-0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>O*</td>
<td>0.03</td>
<td>-0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>C*</td>
<td>0.04</td>
<td>-0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>S*</td>
<td>0.03</td>
<td>0.02</td>
<td>0.07</td>
</tr>
<tr>
<td>N*</td>
<td>0.03</td>
<td>-0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>OH*</td>
<td>-0.10</td>
<td>-0.23</td>
<td>-0.08</td>
</tr>
<tr>
<td>CH*</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>CH$_2$*</td>
<td>-0.01</td>
<td>-0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>CH$_3$*</td>
<td>0.02</td>
<td>-0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>NH*</td>
<td>-0.13</td>
<td>-0.09</td>
<td>-0.12</td>
</tr>
<tr>
<td>NH$_2$*</td>
<td>-0.21</td>
<td>-0.14</td>
<td>-0.20</td>
</tr>
<tr>
<td>NH$_3$*</td>
<td>-0.47</td>
<td>-0.38</td>
<td>-0.46</td>
</tr>
<tr>
<td>NO*</td>
<td>0.02</td>
<td>-0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>CO*</td>
<td>0.00</td>
<td>-0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>O$_2$*</td>
<td>0.01</td>
<td>-0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>H$_2$O*</td>
<td>-0.34</td>
<td>-0.26</td>
<td>-0.34</td>
</tr>
</tbody>
</table>

the two solvation models.

The adsorption solvation energies, $\Delta \Delta E_{\text{solv}}$, for several adsorbates are generally small (less than 0.1 eV) as Figure D.4 indicates. Small adsorption solvation energies (less than 0.1 eV) using COSMO for intermediates like O$_2$, O, OH, CO and H$_2$O were also reported on Pt(111) and a Al-Pt core shell cluster. Behtash et al. modeled the Pd(111) surface and used a slightly different definition of adsorption solvation energy, where they considered the free adsorbate to be in the gas phase, rather than solvated like we have done. This definition is equivalent to using $\Delta E_{\text{solv}}(X)$ equal to zero in Equation D.3. We used our data to recalculate adsorption solvation energies using their modified approach and find the adsorption solvation energies to be 0.01, -0.20, -0.05, -0.23, 0.01, 0.01 eV for H, OH, CO, H$_2$O, CH$_2$, and CH$_3$, respectively. Behtash et al. calculated the values to be -0.01, -0.05, -0.08, -0.12, 0.02, 0.03 eV for these same species. While our work used the Pt(111) surface and Behtash et al. used the Pd(111) surface, the adsorption solvation energies are of very
similar magnitude. Using VASPsol, Sakong et al.57 reported the adsorption solvation energy of water on Pt(111) to be -0.08 eV, which is in good agreement with our value of -0.06 eV. Bodenschatz et al.32 also reported a modified adsorption solvation energy (Equation D.3 with $\Delta E_{\text{solv}}(X)$ equal to zero), using VASPsol, for CO at the top site on Pt(111) to be -0.02 eV. We recalculated the modified adsorption solvation energy value to be -0.02 eV for CO, which is in close agreement with their value.

Our results, however, are in contrast to work which used the Jaguar87 Poisson-Boltzmann solver, where they reported an adsorption solvation energy of up to 1.3 eV for ORR intermediates on Pt(111).91,92,136 We surmise that the strong solvation effects in these other results could be due to the electrostatic potential (ESP) fitting to obtain atomic charges used in calculating the electrostatic contribution of the solvation energy. Our results also differ from the APBS solvation model used by Sha et al.,88 who reported a larger adsorption solvation energy for the adsorption of H (-0.07), O (-0.70), OH (-0.54), O$_2$ (-0.32), and H$_2$O (-0.36 eV). As described in Section D.2, COSMO, VASPsol, and JDFTx calculate the solvent effects based on a self-consistent approach. Solvent effects calculated by Sha et al. involve a post-hoc correction to a gas-phase electron density. As also mentioned by Behtash et al.,82 solvation energies in the work of Sha et al. included only the electrostatic component of solvation energy, which may perhaps be another source of discrepancy between our results and that of Sha et al. Although cavitation and dispersion energies are important for obtaining accurate solvation energies, our results showed that the cavitation energies were generally small (around 0.1 eV). Sha et al. used Gaussian basis functions along with norm-conserving pseudopotentials, and a (2x2) unit cell. These simulation parameters are different from the parameters used in our present work, which may also explain the contrasting solvation energies between our work and theirs. Nonetheless, the adsorption solvation energies calculated in our work over Pt surfaces are consistent with a large number of previous data.32,57,82,84,135
D.3.3 Comparison of solvation energies for different classes of adsorbates using VASPsol

Periodic DFT modeling is a standard method for simulating metal surfaces. The advantage of using periodic DFT is that realistic surface structures can be simulated, which can often lead to very good agreement with experimental data. Our results suggest that the two codes with periodic basis functions, JDFTx and VASP, give very similar solvation results. We thus focus in this section on studying a broad number of adsorbates using VASP in order to better understand how its solvation scheme (i.e. VASPsol) performs. We chose a wide variety of adsorbates that may find applications in, for instance, the catalytic conversion of hydrocarbons, catalytic poisoning, oxygen reduction reaction, formic acid/methanol/ethanol oxidation reactions, and aromatic hydrogenation or dehydrogenation. Our results cover a broad class of adsorbates such as atomic adsorbates, organic/inorganic radicals, water clus-
ters, carbonyls, alcohols, aromatics, and other hydrocarbons. We chose the adsorption sites over Pt based on the most stable geometries in vacuum as reported in the literature (see Table E.5 in Supplementary Information for further details of the adsorbates studied). In Figure D.5 we show the calculated adsorption solvation energies, $\Delta\Delta E_{\text{ads}}^{\text{solv}}$, of many adsorbates using VASPsol. In order to understand the trends in adsorption solvation energies, we classified the adsorbates into five categories: I (atomic), II (weakly polar), III (radicals), IV (closed shell species with lone pair bonding to the Pt surface), and V (aromatics).

The category I adsorbates are atomic species. For all the five atomic adsorbates studied, the implicit water solvation shows negligible effect on adsorption energies. Although small in magnitude, the adsorption solvation energies of the atomic adsorbates tend to be slightly negative (-0.04 eV to 0.00 eV). Weakly polar adsorbates (category II) include non-polar molecules such as CH$_4$, CO$_2$, and O$_2$ and weakly polar diatomic molecules such as CO, and NO. The gas phase dipole moment of any adsorbate within these category does not exceed 0.22 D. Similar to category I results, the magnitude of adsorption solvation energies are weak (-0.05 eV to 0.01 eV). Most of these adsorption solvation energies are slightly negative. Both Category I and II species interact weakly with the solvent, likely due to small cavity size, leading to small solvent-solute interactions, and/or small electronic polarizability/dipole moment, also leading to small solvent-solute interactions.

Unlike category I and II results, the radical adsorbates in category III show adsorption solvation energies that have a variety of values. The absolute values range from weak (\leq0.05 eV), to moderate (around 0.1-0.2 eV), and to strong (\geq0.2 eV). Several adsorbates like CH$_x$CO (x=1-3), CH$_x$ (x=2-3), and HCOO$_M$ (the 'M' subscript indicates HCOO bonding to Pt through one O-Pt bond in monodentate configuration) show weak solvation effects. Adsorbates exhibiting moderate solvation effect include NH$_x$ (x=1-2), CH, OH, OOH, and HCOO$_B$ (the 'B' subscript indicates HCOO bonding to Pt through two O-Pt bonds in bidentate configuration). Among these adsorbates, only NH and NH$_2$ show a negative adsorption
solvation energy of around -0.1 eV. A strong adsorption solvation energy of 0.20 eV was found for COOH (an intermediate in CO oxidation and formic acid oxidation) and is similar to a recent value reported by Steinmann et al. of 0.28 eV for levulinic acid bound to Ru(0001) surface through the COOH group. The adsorption solvation energy of formate with different binding modes (HCOOM and HCOOB) differing by 0.06 eV indicates that the solvent effect is dependent on the adsorbate moieties exposed to the implicit solvent. A similar observation in DMF solvent and water solvent on different binding modes of oxalate and levulinic acid on Ni(111) and Ru(0001) respectively was reported earlier. All the adsorbed species, other than weakly solvated CHx (x=1-3), show a favorable solute-solvent interaction due to a large solute polarizability/dipoles and/or large solute cavity.

The next set of adsorbates are category IV, which are closed-shell molecules that bond to the Pt surface primarily through lone pair electrons. We considered a few inorganic (e.g. ammonia and water clusters) and organic adsorbates (e.g. ketone, alcohol, and acid). Figure D.5 shows that adsorption of ammonia in the presence of water is more favorable with an adsorption solvation energy of -0.32 eV. The adsorption solvation energy is weakly favorable for a water monomer (-0.06 eV). We modeled water dimer and water trimer on Pt similar to the work of Sakong et al. The adsorption geometry of water dimer (or trimer) involves one chemisorbed water molecule interacting directly with the Pt surface, while the other water molecules are around 3.3 Å above the metal surface and hydrogen bond to the chemisorbed water. For modeling adsorption of dimer and trimer, similar to Sakong et al., we used a single water molecule as the reference, or reactant state. When the size of the water cluster increases from monomer to dimer and trimer, the adsorption in the presence of water becomes unfavorable with adsorption solvation energies of 0.06 and 0.14 eV respectively. The organic adsorbates in category IV comprise a ketone (acetone), alcohols (methanol, ethanol, and isopropanol), and acid adsorbates (formic and acetic acid). Acetone and alcohol adsorbates show favorable adsorption in the presence of water. However, our results show
that acetone binds stronger in the presence of water compared to the alcohol adsorbates. The similar adsorption solvation energies of around -0.05 eV for different alcohols indicates that the change in alkyl chain length or the chain type (primary and secondary alcohol) does not affect the solvation of the adsorbed species, since these chains are hydrophobic. Montemore et al.[68] also found similar solvation effects for alkyl adsorbates of differing chain lengths adsorbed on Cu(111). The adsorption solvation energies of formic and acetic acid however, are strongly positive (around 0.15 eV) in the presence of water. Again, the increase in chain length from formic to acetic acid did not affect the adsorption solvation energies. All the adsorbates in this category show strong solute-solvent interactions.

The category V adsorbates are aromatic compounds: nitro- benzene, benzonitrile, benzaldehyde, chlorobenzene, aniline, toluene, phenol, and benzene (from left to right in Figure 5). For all these adsorbates, the aromatic rings lie flat on the Pt surface, which was earlier reported to be the most stable adsorption configuration.[21][138][139] The negative adsorption solvation energies for all the adsorbates indicate a favorable effect of water on their adsorption. Nitrobenzene, benzonitrile, and benzaldehyde have moderate adsorption solvation energies of around -0.1 eV. For the rest of the adsorbates, however, high adsorption solvation energies were calculated in the range of -0.26 to -0.44 eV, and aniline has the highest solvation energy. The high polarity (as reported below in terms of Bader charges, which are 0.10, 0.28, 0.17, 0.21, and 0.17, respectively) that is induced when aromatic adsorbates such as chlorobenzene, aniline, toluene, phenol, and benzene are adsorbed in the presence of water result in strong polarization of the surrounding solvent. Furthermore, the larger cavity of these aromatic adsorbates results in stronger interactions with the surrounding solvent, which lead to significant solvation energies. In the continuum solvent model these interactions are determined by integrating over the surface area of the solute molecule. All the adsorption solvation energies of the aromatic species are negative, indicative of favorable adsorption in the presence of an aqueous phase. These molecules prefer to be in the adsorbed
state, rather than in water. Furthermore, the hydrophobic aromatic rings drive them onto the Pt surface.

We now discuss the calculated adsorption solvation energies of the various categories, and analyze the trends and reasons for these solvation energies. Recall Scheme D.1 which shows the relationship between the adsorption solvation energy, and other various defined solvation energies. Equation D.3 indicates the mathematics of this process, where $\Delta \Delta E_{\text{solv}}^{\text{ads}} = \Delta E_{\text{solv}}(X^*) - \Delta E_{\text{solv}}(X) - \Delta E_{\text{solv}}(*)$. In other words, each of the calculated solvation energies contributes to the final adsorption solvation energy. The solvation energy of the Pt surface, $\Delta E_{\text{solv}}(*)$, is small (0.04 eV), which indicates that the adsorption solvation energies in Figure D.5 can be largely understood by comparing the solvation energies of adsorbed and free species as shown in Equation D.4.

$$\Delta \Delta E_{\text{solv}}^{\text{ads}} \sim \Delta E_{\text{solv}}(X^*) - \Delta E_{\text{solv}}(X) \quad (D.4)$$

The second term on the right hand side of Equation D.4, the solvation energy of a free adsorbate, simply describes the energy to solvate the gas-phase species. We find that the solvation energy of a given atom/molecule is correlated to its gas-phase dipole moment (calculated at the PBE/6-311G** level and taken from the NIST Computational Chemistry Database142). A larger dipole moment tends to lead to more favorable solvation. Similar correlations have been observed before.143,144 A larger dipole moment on a molecule indicates that the surrounding solvent medium could be strongly polarized, which in turn leads to a favorable solute-solvent interaction causing favorable solvation of the molecule.

Category I adsorbates (atomic) have no dipole moments while Category II (weakly polar) have small dipole moments (less than around 0.2 D). Correspondingly, all the free adsorbate solvation energies are small for these two categories, with absolute values of around 0.1 eV or smaller. Radical adsorbates (category III) include molecules with very low to very large
Figure D.6: Correlations between calculated solvation energies and parameters of the relevant molecules. (a) Solvation energies of gas phase molecules compared to calculated (PBE/6-311G**) gas phase dipole moments. Plots (b), (c), and (d) show the solvation energies of adsorbed molecules compared to calculated Bader charges of these adsorbed species. The dashed lines indicate the best linear fits.
dipole moments. Here, CH\textsubscript{3} (no dipole) and CH\textsubscript{2} (0.6 D) have low free adsorbate solvation energies of -0.01 and -0.03 eV, respectively. On the other hand NH\textsubscript{2}, HCOO, OOH, CH\textsubscript{3}CO, and COOH possess large dipole moments of more than 1.9 D, with larger solvation energies up to -0.35 eV. The remainder of the radical molecules have dipole moments in the range of 1.3 to 1.7 D, corresponding to free molecule solvation energies near -0.1 to -0.2 eV.

In category IV, inorganic adsorbates like ammonia (1.7 D) and water (2.0 D) have solvation energies of -0.18 and -0.31 eV, respectively. Organic adsorbates such as acid and alcohols have dipole moments of 1.4 to 1.6 D, while the dipole moment of acetone is 2.7 D. The solvation energies of the alcohol and acetone free molecules are around -0.2 eV, but the acid adsorbates have free molecule solvation energies near -0.3 eV. The acid species have more negative solvation energies that strongly deviate from the best linear fit line in Figure D.6a. This deviation may be related to the presence of the COOH group, which is strongly solvated in formic and acetic acid. For example, methyl (CH\textsubscript{3}) and carboxylic acid (COOH) moieties (the constituents of acetic acid) have calculated solvation energies of -0.01 and -0.35 eV. Thus for acetic acid, which has these two moieties, the solvation effect is strong due to the presence of COOH group, rather than solvation of the methyl group. Finally, for category V species, benzene and toluene have low dipole moments and low free solvation energies (-0.05 eV each). However, aniline has a larger dipole moment of 1.8 D and shows a larger solvation energy of -0.24 eV. In summary, category I and II species all tend to have very low dipole moments, and thus have small free species solvation energies. Category III consisted of molecules with a range of small to large dipole moments and correspondingly a range of small to large free molecule solvation energies. Category IV species tend to have larger dipole moments, and thus large free molecule solvation energies. Category V molecules show both large and small dipole moments. Our results show that a key parameter for interpreting the free molecule solvation energy is the dipole moment of the gas-phase species.

Next we examined the first term on the right hand side of Equation D.4 the solvation
energy of adsorbed species. We relate the solvation energies of the adsorbed species to
their calculated Bader charges145,146 (q) in (Figure D.6b,c,d). A positive (negative) q value
indicates a positively (negatively) charged adsorbed species. We expect that a large charge
on an adsorbed species could lead to the surrounding solvent being strongly polarized, which
may lead to strong solvent effects. The Bader charges of adsorbed species and the different
solvation energy terms are given in Table E.5 in the Supplementary Information. In a similar
fashion, Jacob and Goddard52 explained that the favorable solvation effects they observed
for H_2 and O_2 adsorption in the presence of implicit solvation could be related to the charge
transferred to adsorbed H_2 and O_2.

We find that for categories I and II (atomic and weakly polar species) the adsorbate
solvation energies of the atoms and molecules are nearly independent of the Bader charge on
the adsorbate. These solvation energies of adsorbed species are also not strong. This small
solvation energy is either due to the small cavity size of the adsorbates (e.g. atoms) or due
to the small dipole moment of the adsorbates (e.g. atoms or weakly polar molecules). The
small cavity size or small dipole moment (i.e. weak polarity) results in a small interaction
between the adsorbate and surrounding implicit solvent, regardless of the charge of the
adsorbed species. Combined, both the small solvation energies of adsorbed species and the
small solvation energies of free adsorbates (see Figure D.6a) resulted in small adsorption
solvation energies for category I and II species, since their difference is approximately the
adsorption solvation energy (see Eq. D.4).

The solvation energies of adsorbed species in category III also appear to be weakly cor-
related with the Bader charge of the adsorbed species (see Figure D.6c). We do however
observe that as charge decreases to more negative values, the solvation energy tends to be
become slightly more negative. Although the charges can be as large as -0.46, the solvation
energies of these adsorbed species in category III only range from 0.02 to -0.21 eV. This weak
correlation between q and solvation energy may be due to the radical adsorbates binding to
the Pt surface with strong adsorption (see adsorption energies in Table E.5 in the Supplementary Information). Because of the strong binding, the Pt surface electronic states may partly screen the favorable solvation effects for the category III radical adsorbates, leading to a weak correlation with the Bader charges. The solvation energies of adsorbed radical species tend to be in the range of 0.02 eV to -0.21 eV. However, the solvation energies of corresponding free adsorbates (Figure D.6a) ranged from around -0.01 eV to -0.35 eV. Thus, as per Equation D.4, several adsorbates in category III showed a positive adsorption solvation energy (see Figure D.5), while a few species had small negative adsorption solvation energies.

Figure D.6d shows a strong correlation between the solvation energy and adsorbate charge for categories IV and V. All these species become positively charged upon adsorption, in contrast to other category I, II, and III species. We find that as charge increases to more positive values, the solvation energies become larger in magnitude. As the adsorbed species become more charged, stronger interactions between the surrounding solvent occur, which results in the more favorable solvation effects. The solvation energies of adsorbed ammonia and water were found to be -0.47 and -0.34 eV. Since the solvation energies of free ammonia and water were -0.18 and -0.31 eV, the adsorption solvation energy of ammonia was strongly negative while that for water was weakly negative (see Figure D.5). As the size of the water cluster increased, the total charge on the water monomer, water dimer, and water trimer slightly decreased from +0.26 to +0.24 to +0.22 respectively. Since only one water molecule in the water sets interacts with the Pt surface, adding more water molecules does not significantly change the total water cluster charge. The adsorbed monomer (-0.34 eV) is most favorably solvated, followed by the dimer (-0.21 eV) and then trimer (-0.14 eV). The solvation energy of the free water monomer, which was the reference state for all water cluster adsorbates, was -0.31 eV. Thus, the adsorption solvation energy for water monomer was negative and as the cluster size was increased, the adsorption solvation energy resulted
In the case of organic adsorbates, the solvation energies of adsorbed acids were around -0.1 eV, while solvation energies of free adsorbates were around -0.3 eV. This led to strongly negative adsorption solvation energies for the acids. The solvation energies of adsorbed and free alcohols were close to each other (around 0.2 eV), giving adsorption solvation energies with small magnitude (-0.06 to -0.04 eV). In the case of acetone, the solvation energy of adsorbed acetone (around -0.3 eV) was more favorable than free acetone (around -0.2 eV) which resulted in a negative adsorption solvation energy. Overall for category IV species, we find that the solvation energies of adsorbed species are correlated to the charge on the adsorbate, and that adsorbed inorganic species, like water and ammonia, tend to have more pronounced solvation energies than organic adsorbates.

Solvation energies of category V adsorbates are very negative, and these aromatics have large positive charges. Adsorbed benzene and toluene show solvation energies around -0.3 eV, which is significantly more negative than their free molecule counterparts (-0.05 eV each). This in turn leads to very negative adsorption solvation energies. Adsorbed aniline has a very positive charge (+0.63) and a solvation energy of -0.64 eV, leading to a highly negative adsorption solvation energy, since free aniline has a solvation energy of only -0.24 eV. The charge on adsorbed aniline is more positive than benzene and toluene by around 0.2. The more positive charge in aniline is due to the presence of electron rich center (–NH₂ group with a lone pair electron) that results in larger charge transfer from aniline to the metal surface, whereas in benzene and toluene such an electron rich center is absent.

The results described in this section cover a broad spectrum of various kinds of adsorbates, and provide valuable insights into understanding the performance of implicit solvation models. Using VASPsol, the effect of solvent on the adsorption process could be explained by comparing the solvation energies of free and adsorbed species. We found that the solvation energies of free adsorbates could be related to the gas phase dipole moments. The
solvation energies of certain adsorbed species were found to be related to their charges upon adsorption (radical, lone-pair bonding, and aromatic adsorbates). Thus our results indicate when the solvation effects may be important and may even rationally predict such effects.

Our results generally agree with published DFT results using implicit solvation models. Behtash et al. modeled CH$_x$CH$_y$CO (x=1-3, y=0-2), CH$_3$, and CH$_2$ on Pd(111) and used a slightly different solvation energy method than we report. They used free molecules in vacuum as reference (rather than solvated molecules), such that $E_{\text{solv}}(X)$ in Equation D.3 is zero. As explained in our methodology, we chose to solvate free species, as this closer mimics the real-world adsorption process. Our re-calculated corresponding solvation energy values using the vacuum free species reference state are in the range of -0.02 to -0.12 eV for CH$_x$CO and CH$_x$ (x=1-3), which are close to the values reported by Behtash et al. Our calculated adsorption solvation energies of water and methanol (using vacuum reference molecules) are also close to the earlier VASPsol work of Garcia-Rátes and López, with differences in adsorption solvation energies of less than 0.1 eV. The adsorption solvation energies of acetic acid and alcohols (ethanol and methanol) were reported to be 0.2 and \sim0.3 eV earlier. Our calculated values agree well (difference of 0.03 eV) for acetic acid but deviate for the alcohol adsorbates by around 0.3-0.4 eV, perhaps due to the atomic orbital basis set used by Wang and Liu when compared to the plane wave basis set used in VASPsol. Finally, the works of Sha et al. showed some differences from our current results. The mean absolute difference between our work and theirs for adsorption solvation energies of six ORR intermediates (H, O, OH, O$_2$, OOH, H$_2$O) was 0.36 eV with the largest difference being around 0.7 eV for atomic oxygen adsorption. As described earlier in Section D.3.2, we hypothesize that the large solvent effects obtained by Sha et al. may be due to the non-self-consistent determination of solvation energies. Other possible reasons for the differences may be the simulation parameters used by Sha et al., such as Gaussian basis set, norm-conserving pseudopotentials, and a smaller (2x2) unit cell, which are different from the settings used in
our current work.

We also compared our implicit solvation results to explicit solvation results and found good agreement in adsorption solvation energies for several adsorbates. The adsorption solvation energy (with gas phase free adsorbate reference) of -0.23 and -0.21 eV for ethanol and isopropyl alcohol using implicit solvation compares well with that reported explicit adsorption solvation values of -0.27 and -0.26 eV.148,149 The adsorption solvation energy (again with gas phase free adsorbate reference) of acetone using implicit solvation was calculated in our present work to be -0.37 eV, which is more negative than the -0.18 eV value calculated using explicit solvation on Ru(0001).110 It is unclear if this difference is due to the solvation model, or the different metal surfaces (Pt versus Ru). In the presence of explicit liquid water, Bodenschatz et al.32 reported a favorable solvation energy (again with gas phase free adsorbate reference) of -0.12 for the adsorption of CO on Pt(111). Our corresponding implicit solvation energy of -0.04 eV is in reasonable agreement with their explicit liquid solvation results. Rossmeisl et al.13 reported solvent effects for the adsorption of H, O, and OH species on Pt(111) by modeling the surrounding explicit water as an ice-like bilayer. Rossmeisl et al. reported adsorption/dissociation energies in their work according to the following processes:

\[\frac{1}{2}H_2 + * \rightarrow H^*, \quad H_2O + * \rightarrow O^* + H_2, \quad \text{and} \quad H_2O + * \rightarrow OH^* + \frac{1}{2}H_2. \]

The reference state in these reactions was chosen to be gas phase H$_2$O and H$_2$ for both solvated and unsolvated reactions. The corresponding reaction solvation energies (for the above steps, defined as the reaction energy in solvent minus the reaction energy in vacuum) was reported to be 0.00, -0.03, and -0.59 eV respectively. Our respective corresponding reaction solvation energies using implicit solvation were calculated to be 0.00, -0.01, and -0.15 eV. Our results appear to underestimate solvation effects for OH*.

One aspect that is not well described by implicit solvation models is hydrogen bonding, as the literature highlights.32,66,67,150 Hydrogen bonding, which may occur when using explicit solvation, for instance leads to new adsorption geometries for alcohols as reported by Chibani.
et al.148 and Loffreda et al.149 Both works reported that the presence of water can change the most stable adsorbed ethanol geometry. Chibani et al.148 and Loffreda et al.149 found that the most stable explicitly solvated ethanol does not bind to Pt directly but rather hydrogen bonds with a chemisorbed water molecule. This ethanol geometry was reported to bind 0.27 eV stronger than the unsolvated ethanol.148 In contrast we observed no such configuration and find that in implicit solvent, ethanol prefers to bind directly to the Pt surface.

Implicit solvation however describes solvent effects for the non-polar adsorbates H* and O* well (with largest deviation of 0.02 eV), as compared to the explicit solvation results of Rossmeisl et al.13 The good performance of implicit solvation may possibly be due to relatively small interactions between H*/O* with surrounding water. This is in contrast to OH*, which strongly interacts with surrounding water through multiple hydrogen bonds, as several papers using explicit solvation showed.13,151–153 In order to directly compare the solvent effects predicted by our implicit solvation with explicit solvation of a strongly hydrogen bonding adsorbate like OH*, we modeled OH* in the presence of four water ice-bilayer similar to previous work.13,32,152 The adsorption solvation energy calculated using explicit solvation for OH* was determined to be -0.33 eV, which is more negative by -0.39 eV compared to implicit solvation (more details in Supplementary information). These comparisons suggest that explicit models may describe solvation differently than implicit models for certain molecules, such as OH* or alcohols, where hydrogen bonding between water and such molecules is important.

D.3.4 Estimation of Adsorption Solvation Energies by using an Artificial Neural Network

We further analyzed our data using machine learning techniques to develop a model to predict adsorption solvation energies $\Delta E_{\text{solv}}^{\text{ads}}(X^*)$. We used the Weka program[162] with
artificial neural network (ANN) algorithms implementing the feed-forward multilayer perceptron learning method. Our dataset was split so that 66% of our calculated data points were used as a training dataset, and the other 33% as a testing dataset. We considered a number of descriptors as potential inputs to the artificial neural network, including the Bader charge q of adsorbed species in the absence of solvent, gas-phase solvation energy $\Delta E_{\text{solv}}(X)$, gas-phase dipole moment, gas-phase polarizability, adsorption energy in vacuum $\Delta E_{\text{ads}}^\text{vac}$, and molecular surface area. We calculated q, $\Delta E_{\text{ads}}^\text{vac}$, and $\Delta E_{\text{solv}}(X)$ using VASP/VASPsol, and we obtained the molecular surface area using the COSMO solvation model in NWChem. The gas-phase dipole moment and polarizability were obtained from the NIST computational chemistry database at the PBE/6-311G** level of theory. We created several ANN models, each of which had a different number of potential descriptors as inputs. In each of these models, we tested up to two hidden layers between the input and output layers, each of which contained up to six nodes. We determined that one hidden layer with two nodes showed the least errors in predicting the adsorption solvation energy (further details can be found in the Supporting Information). Our final model that we report had the least number of descriptors while still giving a good fit to our data.

Figure 7 show the results of our best ANN model, in which q, $\Delta E_{\text{solv}}(X)$, dipole moment, and surface area were used as input descriptors. This model had a correlation coefficient R of 0.93 with a mean absolute error of 0.037 eV. We also tried other combinations of input descriptors and found that another model with q, $\Delta E_{\text{solv}}(X)$, dipole moment, and polarizability as inputs had a correlation coefficient of 0.89 with a mean absolute error of 0.037 eV. The relative absolute error was 37.5% for the model in Figure 7. This relatively large absolute error could be attributed to several potential factors. The mean absolute errors are small (<0.04 eV), but the target $\Delta E_{\text{ads}}^{\text{solv}}$ values are also small (-0.29 to 0.17 eV), and hence relative absolute errors are on the order of 37%. Moreover, our training dataset only contains 41 data points, and a more robust dataset may lead to a better model. Finally,
it is possible that there may be other, unspecified effective input descriptors. Nonetheless, our model does obtain a suitable fit to the DFT data and indicates that several gas-phase descriptors (as well as adsorbate charge) may be useful in determining adsorption solvation effects. These descriptors (e.g. charge of adsorbed molecules, dipole moment, and molecular surface area) are all expected to influence solvation energies. This work gives insight into how molecular properties can influence solvation effects for adsorbed species, and these properties can even be used to predict these effects, as shown in Figure 7.

D.3.5 Implicit Solvation for Reactions

The role of aqueous phase for reactions on metal surfaces could be crucial, as the presence of water could affect the reaction energy landscape significantly. We looked at the effect of water on various reactions compared to simply ignoring the water phase. We considered several reactions that were relevant for fuel cells, such as oxygen reduction reaction (ORR), formic acid oxidation, and alcohol oxidation (C-H and C-C cleavage steps). We also studied the effect of liquid-phase on the water gas shift reaction, which finds important applications in H₂
production and Fischer-Tropsch synthesis. All the reported solvent effects were determined using VASP/VASPsol with water solvent. Figure D.8 shows a summary of our results for vacuum and water-solvated surfaces. All the surface species appearing in the reactions shown in Figure D.8 were adsorbed in the most stable adsorption sites based on previous literature. More information on these adsorption sites can be found in Table E.5 in the Supplementary Information.

Oxygen Reduction Reaction The oxygen reduction reaction is a widely studied and important electrocatalytic reaction. The ORR can occur through several different pathways such as direct dissociation of O$_2$, formation of intermediates like OOH (hydroperoxy), or formation of HOOH (hydrogen peroxide) which undergoes O-O bond cleavage to form hydroxyl/atomic oxygen. Tripkovic et al. reported that the ORR mechanism involving the formation of the hydroperoxy radical is thermodynamically and kinetically more favorable compared to other mechanisms. We thus chose this pathway involving hydroperoxy radical in our work to study the effect of the presence of water on ORR.

The potential energy surface (PES) of the ORR through the hydroperoxy intermediate is shown in Figure D.8a. The zero energy level corresponds to the state of free H$_2$, free O$_2$, and clean Pt(111) surface, which are either unsolvated or solvated depending upon the PES in vacuum or in water respectively. The clean surface formed in a reaction (e.g. O$_2$*+4H* → OOH*+3H*+) is not shown for clarity. The reaction starts by the adsorption of O$_2$ and 2H$_2$ with 2H$_2$ dissociating into 4H*. For simplicity these two reactions are combined and represented as O$_2$*+4H*. These surface H* species are consumed during the reduction of O$_2$*. The following reaction involves hydrogenation of O$_2$* to form a hydroperoxy (OOH*) radical. The hydroperoxy radical then undergoes O-O cleavage to form O* and OH*. The OH* intermediate is subsequently reduced to form H$_2$O*, which eventually desorbs. The O* intermediate forms OH* in reaction step 6, which is further reduced to H$_2$O*, and finally
desorbed H$_2$O. We found our results in vacuum to be in good agreement with the work of Xiao et al.135 The mean absolute difference between the reaction energies for the above listed reactions that we calculated and Xiao et al. was found to be 0.12 eV.

For the current discussion we use the term reaction energy to mean the difference in energy of one energy level in the PES (e.g. OOH*+3H*) and the previous energy level (e.g. O$_2$*+4H*), or the energy for a specific reaction step (O$_2$* + 4H* \rightarrow OOH*+3H*+*).

We quantify the solvent effect on a reaction energy by calculating the difference in reaction energy in vacuum and in solvent for a given reaction step i, as given in Equation D.5.

$$\Delta\Delta E_{\text{solv}}^{\text{rxn--i}} = \Delta E_{\text{rxn--i}}^{\text{(solv)}} - \Delta E_{\text{rxn--i}}^{\text{(vacuum)}} \quad (D.5)$$

A negative value of $\Delta\Delta E_{\text{rxn--OOH*}}^{\text{solv}}$ indicates the reaction step is more favorable in the presence of water, while a positive value indicates an unfavorable effect on the reaction step in the presence of water. Since different reactants may be at different energy levels in vacuum and solvent, $\Delta\Delta E_{\text{rxn--OOH*}}^{\text{solv}}$ values allow a direct comparison of how solvent effects a particular reaction. The effect of water on the PES and on the reaction energies within the PES is shown in the left and right columns of Figure D.8 respectively. Individual energy levels (relative to the appropriate reference states) may change in vacuum or solvent, as the left plots show. The reaction energies (differences in energies for intermediate states) may also change in solvent, as the right plots in Figure D.8 show.

We observe that generally the PES levels for ORR are all more negative in solvent when compared to vacuum, as indicated by the red lines (solvent) being lower in level than black lines (vacuum). The solvated PES is strongly downhill compared to vacuum energy levels after reaction step 4 when adsorbed or free water appear as products. This large solvation effect on the latter reaction steps is largely a result of the strong solvation energy for the free water (-0.31 eV) and the adsorbed water (-0.34 eV). Whenever water is a product, this
Figure D.8: Potential energy surfaces (left plots) in the presence of implicit water (red lines) and vacuum (black lines), and solvation energies for individual reaction steps (right plots). Each row corresponds to one reaction: (a) and (e) oxygen reduction reaction, (b) and (f) formic acid decomposition, (c) and (g) C–C cleavage of a C\textsubscript{2} organic molecule, and (d) and (h) water gas shift reaction. The reaction steps i in the right plots correspond to the numbered reactions in the left plots. The energies corresponding to zero eV are described in the text.
solvent effect lowers the solvated energy levels, which is why the later steps of the PES are much lower in energy in solvent compared to in vacuum. In the PES only certain reaction steps such as 2, 4, 6, and 7 are affected strongly by water as shown in Figure D.8. OOH* formation (reaction step 2), H2O* formation (reaction steps 4 and 7), and OH* formation (reaction step 6) were all found to be more favorable in water with $\Delta \Delta E_{solv}^{rxn-i}$ values of -0.18, -0.23, and -0.13 eV respectively. The effect of water solvent on all the other reaction steps was small, with magnitudes of \leq 0.08 eV. In addition to the formation of adsorbed or free water as products, formation of OOH* and OH* as products in the presence of water resulted in favorable $\Delta \Delta E_{solv}^{rxn-i}$ values since OOH* and OH* adsorbates are favorably solvated in water. These three adsorbates are polar adsorbates that result in favorable solute-solvent interactions leading to favorable solvation effects on the oxygen reduction reaction.

The solvent effects predicted by our work are in good agreement with results reported by Fortunelli et al. using the SCCS solvation model. The mean absolute difference in $\Delta \Delta E_{solv}^{rxn-i}$ values for a set of reactions was found to be 0.04 eV. These reactions included O2 dissociation ($O_2^* \rightarrow 2O^*$), OOH formation, OOH dissociation, H2O formation, OH formation, and O hydration ($O^* + H_2O^* \rightarrow 2OH^*$). However, the solvent effects that we observed are significantly smaller compared to the results obtained from the APBS solvation model and Jaguar’s Poisson Boltzmann solver, possibly for reasons mentioned in Section D.3.2. We also compared the reaction energies of the above listed reactions with results by Zope et al. who modeled the reactions in the presence of explicit solvation consisting of four layers of ice-like bilayers. For the reactions O2 dissociation, OH formation, H2O formation, OOH formation, O2 hydration ($O_2^* + H_2O^* \rightarrow OOH^* + OH^*$), and OOH dissociation, the mean absolute difference between their explicit and our implicit $\Delta \Delta E_{solv}^{rxn-i}$ energies is 0.15 eV. Here, $\Delta \Delta E_{solv}^{rxn-i}$ for the above listed reactions from our work (and the results of Zope et al.) in order are 0.01 (0.04), -0.13 (-0.34), -0.23 (-0.29), -0.18 (-0.32), 0.05 (-0.34), and 0.06 (0.02) eV. The solvent effects calculated using the implicit solvation is
comparable for several reactions except O_2 hydration that differs by 0.39 eV from the explicit solvation results of Zope et al. In contrast, the $\Delta \Delta E_{\text{solv}}^{\text{rxn}-i}$ energy for O_2^* dissociation was found to be -1.2/-1.4 eV by APBS/Poison implicit solvation models. The close agreement between our implicit and Zope et al.’s explicit solvation results for O_2 dissociation maybe due to non-polar O_2^* and O^* appearing in this reaction, which are described well by implicit solvation. In the case of H_2O formation ($OH^*+H^* \rightarrow H_2O^*$) and OOH dissociation ($OOH^* \rightarrow OH^*+H^*$), the very close solvent effects between our implicit solvation model and explicit solvation results of Zope et al. may be due to cancellation of strong solvent effects of explicitly solvated OH^*/H_2O^* and OOH^*/OH^* in each reaction. Such a cancellation of strong solvent effects does not occur in the case of O_2 hydration ($O_2^*+H_2O^* \rightarrow OOH^*+OH^*$), as all the adsorbates other than O_2 are capable of forming strong hydrogen bonds under explicit solvation. The hydrogen bonding of reactants and products thus do not cancel and there is a larger number of hydrogen bonds for products. This indicates one potential shortcoming of implicit solvation in describing chemical species where hydrogen bonding may be involved.

Formic acid oxidation We next consider formic acid oxidation, which is an important electrocatalytic reaction in formic acid fuel cells. Experimental results have shown adsorbed formate on Pt surface to be an important intermediate that is formed during the oxidation of formic acid.154 DFT studies focused on the formic acid oxidation pathway involving the formation of formate species suggested that oxidation of formic acid to a bidentate formate and subsequent rotation to a monodentate formate followed by dehydrogenation to CO_2 was the favorable reaction pathway.155-157 Based on these experimental and DFT results, we consider the reaction pathway involving bidentate and monodentate formate in our present work.

The PES for formic acid oxidation is shown in Figure D.8b. The zero energy level corresponds to the sum of the energy of free formic acid and clean Pt(111) surface. Formic acid
oxidation begins with the adsorption of HCOOH on Pt(111), which is exothermic with a value of -0.30 eV in vacuum. The adsorption is followed by a slightly endothermic dehydrogenation step (0.09 eV) leading to the formate species adsorbed through two O-Pt bonds in a bidentate configuration (HCOO\textsubscript{B}). The next reaction step is thermodynamically unfavorable as this step is uphill by 0.96 eV in vacuum, where the bidentate configuration rotates to form a monodentate configuration (HCOO\textsubscript{M}) with a single O-Pt bond. The subsequent reaction step is dehydrogenation of HCOO\textsubscript{M} to form CO\textsubscript{2}* , which easily desorbs to form the final product CO\textsubscript{2}. Our reaction energies for the adsorption of formic acid, dehydrogenation reactions, rotation of monodentate to bidentate formate, and CO\textsubscript{2} formation in vacuum are in close agreement with the work of Hu et al157 with a mean absolute difference of 0.05 eV.

Water solvent increases the energy levels in the PES relative to vacuum. Of all the reaction steps however, only reaction step 1 (HCOOH adsorption) is strongly affected by water solvent, with a $\Delta \Delta E_{\text{solv}}^{\text{rxn-i}}$ value of 0.17 eV, as shown in Figure D.8f. For all the subsequent reactions, the effect of solvent on the reaction energies is negligible. The absolute mean $\Delta \Delta E_{\text{solv}}^{\text{rxn-i}}$ value for the steps involving adsorbed species (i.e. surface reactions) was 0.04 eV. The smallest $\Delta \Delta E_{\text{solv}}^{\text{rxn-i}}$ value was 0.01 eV (for H\textsubscript{2} formation), while the largest $\Delta \Delta E_{\text{solv}}^{\text{rxn-i}}$ value was -0.06 eV (for HCOO\textsubscript{M} formation). The small solvent effect from reaction step 2 shows that the offset in the PES between vacuum and solvent results is due to the first step, HCOOH adsorption. Essentially our results show that reaction steps on the surface involving formate, CO\textsubscript{2}, and H species are all weakly affected by any aqueous phase. The large HCOO* molecule has weak interactions with the solvent, as the favorable solvent-solute interactions between the polar part of the molecule (O-C-O) and surrounding solvent may be screened by the Pt surface. CO\textsubscript{2}* and H* also weakly interact with the solvent due to a combination of low dipole moment and small size of solute cavity.

Other DFT work using an explicit solvation approach to study formic acid oxidation69,155,156 however showed stronger solvation effects. The $\Delta \Delta E_{\text{solv}}^{\text{rxn-i}}$ values reported by Gao et al155,156
using one ice-like bilayer for the C-H cleavage of adsorbed monodentate formate or O-H cleavage of adsorbed formic acid were reported to be 0.34 eV and -0.33 eV respectively. For the latter reaction (O-H cleavage of formic acid), $\Delta \Delta E_{\text{rxn}-i}^{\text{solv}}$ values of -0.1 to -0.2 eV were reported by Wang and Liu using a hybrid solvation model (a combination of implicit and explicit solvation) with up to six water molecules. On the contrary, the $\Delta \Delta E_{\text{rxn}-i}^{\text{solv}}$ values for O-H cleavage of adsorbed monodentate and C-H cleavage of adsorbed formic acid are estimated in the current work using implicit solvent to be 0.05 (reaction step 2) and 0.06 eV (reaction step 4), respectively. Our implicit solvation effects are thus different from previous work using explicit solvation for O-H and C-H cleavage reactions. Strong hydrogen bonding was reported to occur, and such hydrogen bonding is not well described by implicit solvation approaches.

C-C cleavage in alcohol oxidation The next reaction we studied is C-C cleavage, which can be an important step in higher alcohol oxidation. C-C cleavage is believed to be the rate determining step in electrocatalytic ethanol oxidation, which may occur at the anode of a fuel cell. On Pt(111), the C-C bond of ethanol has been reported to break through intermediates such as CH_xCO^* ($x=1-3$). We consider the effect of water on C-C cleavage through a CHCO^* intermediate (starting with CH_3CO which dehydrogenates to form CHCO), which was reported to have a lower activation barrier compared to other CH_xCO intermediates for ethanol decomposition.

We started the reaction process with an adsorbed intermediate CH_3CO; previous steps involving ethanol were ignored in our comparison. The PES’s of CH_3CO^* formation of coadsorbed (CH+CO)* in the presence of vacuum and water are shown in Figure D.8. The zero energy level corresponds to the sum of energies of CH_3CO^* and clean Pt(111) surface. The PES of the C-C cleavage reaction consists of two endothermic steps where C-H bonds of CH_xCO^* species are cleaved successively, with reaction energies of 0.17 and 0.09 eV in
vacuum. C-C cleavage of CHCO* to form coadsorbed CH*(hcp site) and CO*(top site) was exothermic with a vacuum reaction energy of -0.54 eV. Our values are in close agreement with Sheng et al., with the largest deviation being 0.04 eV for the dehydrogenation of CH₂CO*. The effect of water does not affect the PES much, as both solvated and vacuum PES’s lie very close in energy. This small solvent effect is also shown in terms of \(\Delta \Delta E_{\text{rxn-i}}^{\text{solv}} \) values, which are all less than a magnitude of 0.02 eV, as shown in Figure D.8g. We attribute this small solvent effect to the weakly polar nature of CHₓ and CO species. Figure D.5 shows that CH₃ and CH₂ have small adsorption solvation energies, as does CO. Our results are similar to the work of Behtash et al., who reported a small implicit solvent effect (less than 0.1 eV) on the C-H and C-C cleavage reactions of propanoic acid on Pd(111).

The literature suggests that the type of chemical group of an adsorbate that is exposed to the aqueous environment for hydrogen bonding may affect reaction energies. Herron et al. reported dehydrogenation of methanol in the presence of explicit solvation on Pt(111) using AIMD. Under explicit solvation, the hydroxyl group (OH) in both adsorbed methanol and hydroxymethyl (CH₂OH*) was exposed to the aqueous environment and formed a hydrogen bond with the neighboring water molecule. Adsorbed methoxy on the other hand, with exposed methyl group away from the surface into the aqueous environment, showed no hydrogen bonds with neighboring water molecules. The small solvent effect (\(\Delta \Delta E_{\text{rxn-i}}^{\text{solv}} = 0.06 \text{eV} \)) in the dehydrogenation of adsorbed methanol to hydroxymethyl is a result of similar solvent effects on both the reactant and the product species, which all have one hydrogen bond. However, the solvent effect on the dehydrogenation of adsorbed methanol to methoxy was strong (\(\Delta \Delta E_{\text{rxn-i}}^{\text{solv}} = 0.77 \text{eV} \)), which Herron et al. attribute to the reactant being more stabilized by the hydrogen bond compared to the product species that does not form a hydrogen bond. To directly compare the performance of implicit solvation, we calculated the same reaction and found the \(\Delta \Delta E_{\text{rxn-i}}^{\text{solv}} \) to be 0.20 eV, which predicts the trend correctly but it underestimates the solvation effect by 0.57 eV compared to the values of Herron et al.
Zope et al.[3] reported explicit solvation results of oxygen reduction reaction, which also showed strong solvent effects on reactions when the stabilization through hydrogen bonding of reactants compared to products is different. For example, the $\Delta \Delta E_{\text{solv}}^{\text{rxn-i}}$ for the reaction $O^*+H^* \rightarrow OH^*$ was -0.34 eV, while $\Delta \Delta E_{\text{rxn-i}}^{\text{solv}}$ for the reaction $OOH^* \rightarrow OH^*+O^*$ was 0.02 eV. Zope et al. did not discuss hydrogen bonding, but in the two reactions OH^* and OOH^* are likely strongly stabilized through hydrogen bonds as shown by Jinnouchi et al.[151] and Tripkovic et al.[37] Other reaction species are less stabilized by hydrogen bonding which results in a favorable solvation effect for the OH^* formation reaction while the favorable solvent effects cancel out in the OOH^* dissociation reaction. It appears that implicit solvation may work well for reactions where the stabilization of the reactant and product species by aqueous phase are similar. However, as shown above for the dehydrogenation of methanol to methoxy, when the aqueous phase stabilization of one reactant or product differs from that of the other reactants or products, implicit solvation may underestimate the solvent effects.

A similar explanation based on change in number of hydrogen bonds between the reactant and transition state was reported by Zope et al.[3] for explaining the solvent effect on the activation energies of alcohol oxidation.

\textbf{Water gas shift} \quad Finally we considered the role of solvation on the water gas shift reaction. Grabow et al.[164] examined several pathways for the water gas shift reaction on Pt(111). They reported that the most energetically favorable mechanism proceeds through a COOH* intermediate assisted by OH* to form CO\,\,2 and H\,\,2\,\,O. We therefore modeled this reaction mechanism. In Figure D.8d, the zero energy level corresponds to CO* and 2H\,\,2\,\,O*. In vacuum, the reaction proceeds via H\,\,2\,\,O\,* dissociation to form OH* and H*, which was uphill by 0.80 eV. The water-dissociated OH* reacts with CO* to form COOH* in reaction step 2, which is exothermic by -0.35 eV. Once COOH* forms, the other H\,\,2\,\,O\,* dissociates in reaction step 3 to provide OH* that reacts with COOH* to form CO\,\,2\,\,* in reaction step 4. Reaction
step 4 was exothermic by -0.81 eV indicating the reaction of OH* with COOH* to form CO₂* is favorable. The 2H* and CO₂* subsequently desorbs as H₂ and CO₂ in reaction step 5 and 6 with a reaction energy of 0.77 and 0.01 eV respectively.

Figure D.8d shows the effect of implicit water on the PES. Overall, the PES solvated energy levels lie above vacuum levels, indicating a potential unfavorable solvent effect. However, only certain reaction steps are significantly affected by the presence of water. The reaction steps 1, 3, and 4 are the most affected by the presence of water with ∆∆Eₘₐₓ solvrxn–i values of 0.23, 0.23, and -0.19 eV, respectively, as shown in Figure D.8h. The reaction steps 1 and 3 are both water dissociation steps, where the energy levels of the products (OH*+H*) are higher in the presence of water compared to vacuum. In the case of reaction step 4, COOH* oxidation in the presence of water is more favorable than vacuum as the solvated energy levels are lower. Since the polar adsorbate H₂O* induces strong solvent effects, H₂O* appearing as a product (or a reactant) in reaction step 4 (or reaction steps 1 and 3) makes the reaction more (or less) favorable in water compared to vacuum.

Gong et al. modeled the water gas shift reaction proceeding through the COOH intermediate in the presence of explicit water. The ∆∆Eₘₐₓ solvrxn–i value for CO*+OH* → COOH* in the presence of explicit water was reported to be positive by around 0.5 eV. Our results on the reaction energy for the same reaction using implicit solvation was found to be almost thermoneutral (0.04 eV) indicating that our implicit solvation effects are underestimated compared to the reported explicit solvation values. The reported positive solvent effect may be due to the stronger stabilization of the reactant OH* through strong hydrogen bonding compared to the stabilization of the solvated product COOH*. Such an effect associated with strong hydrogen bonding seems to be not captured well by implicit solvation.
D.3.6 Role of Different Implicit Solvents

Up to this point we have only reported results using water as the solvent. We now briefly examine how the implicit solvation model treats other solvents. While water is the most common liquid phase present in catalysis, other liquids may also be used. For instance, it was recently reported by Fortunelli et al.\(^{86,165}\) that tuning the solvent dielectric constant can result in a faster ORR rate. We considered three different characteristic solvents: CCl\(_4\) (non-polar), CH\(_3\)CN (polar aprotic), and H\(_2\)O (polar protic). A primary parameter controlling the solvent model in the implicit approach is the solvent dielectric constant. The dielectric constants used for these solvents were 2.2, 38.8, and 78.4 for CCl\(_4\), CH\(_3\)CN, and H\(_2\)O, respectively.

Figure D.9 shows the effect of changing the solvent dielectric constant on the adsorption of different species over Pt. The magnitude (or absolute value) of adsorption solvation energies monotonously increase from the low dielectric solvent (carbon tetrachloride) to the high dielectric solvent (water). The results show that adsorption solvation energies that are positive in CCl\(_4\) tend to become more positive with increasing dielectric constant, while adsorption solvation energies that are negative in CCl\(_4\) tend to become more negative with increasing dielectric constant. Moreover, the adsorption solvation energies at a moderate dielectric constant (38.8) are very similar to these energies at higher dielectric constant (78.4). The mean absolute difference between adsorption solvation energies in water and acetonitrile is 0.04 eV.

The differences in the adsorption solvation energies at low and high dielectric constant can be explained in part by the extent to which the solvent polarizes the solute. The polarization of a solute, such as an adsorbed or free adsorbate, in a low dielectric constant solvent, such as carbon tetrachloride, is weak. To understand this further, as before, the adsorption solvation energy can be decomposed into solvation energy of the free species \(\Delta E_{\text{solv}}(X)\), clean Pt(111) surface \(\Delta E_{\text{solv}}(*)\), and adsorbed species \(\Delta E_{\text{solv}}(X^*)\) (see Scheme D.1 and Equation D.3). We
found that in carbon tetrachloride absolute values for the free adsorbate solvation energies and clean surface solvation energies were less 0.06 eV and 0.07 eV, respectively. This small effect of the solvent is due to the non-polar nature of carbon tetrachloride, which does not polarize the solute significantly. The solvation energies of any adsorbed species in carbon tetrachloride were calculated to be near -0.2 eV or smaller, which in comparison to water as solvent is relatively weak. In water, for instance solvation energies of adsorbates are as large as -0.64 eV (see Figure D.6d).

We do also observe a change in the electronic properties of the adsorbates when comparing one solvent versus another. For instance, some adsorbates showed strong solvent effects in water. We found that the Bader charges of adsorbed ammonia, toluene, and aniline decreased from -0.39, -0.41, -0.63 to -0.30, -0.20, -0.31 electrons, respectively, when the solvent changed from high dielectric constant (water) to low dielectric constant (carbon tetrachloride).

The trends obtained in our work related to different solvents are consistent with the previous work of Gunceler et al.75 using JDFTx, who reported a monotonously increasing effect of solvent on ionic surfaces with increasing solvent dielectric constant. A stronger solvent effect for solvents with higher dielectric constant compared to solvents with lower dielectric constant.
constant has also been reported earlier.81,82,166 Adsorption solvation energies calculated in our work agree with the values reported by Fortunelli et al.165 (who used the APBS solvation model) at the lower dielectric limit (∼2). However, at higher dielectric values, they observe a significantly larger solvation effect compared to our results. A possible cause of this discrepancy is discussed in Section D.3.2. Zuo et al.166 in contrast to our work reported a reduction in the magnitude of Mulliken charge by around 0.2 electrons for CO adsorbed on Cu surfaces when solvent changed from low dielectric constant (liquid paraffin) to higher dielectric constant (chloroform). This may possibly be due to the Mulliken charge analysis in their work, which is sensitive to the choice of basis set.

D.4 Conclusions

We have assessed how solvation models can be used to describe chemistry and catalysis on a Pt(111) surface in contact with an aqueous phase. The implicit solvent models implemented in VASP (VASPsol), JDFTx, and NWChem (COSMO) were compared, and all of these solvent models predict fairly consistent solvation effects for adsorption. Studying the role of solvation in the adsorption of 41 representative adsorbates on Pt(111) using VASP allowed us to find correlations and trends in the solvation energies. We found that both dipole moment and charge of adsorbed species could explain solvation behavior on adsorption for several types of atomic and molecular species. Our results may thus indicate when solvent effects may be important and when they may be negligible on the basis of the adsorbate and its chemical nature. We further found good prediction of adsorption solvation energies by using an artificial neural network with descriptors such as Bader charge, solvation energy of the free adsorbate, dipole moments, and molecular surface area/polarizability. We also examined the role of solvation in several reactions: oxygen reduction, formic acid oxidation, C-C cleavage, and water gas shift. Our results show that solvation changes reaction energies by up to 0.23
eV. Implicit solvation results agree with explicit solvation results from the literature when
adsorption or a reaction involves nonpolar adsorbates. However, our results do suggest that
certain cases in which hydrogen bonding may be important are not described well by implicit
solvation models. When implicit solvation fails for hydrogen bonding, a possible way to
account for the hydrogen-bonding effects may be by including a few explicit water molecules
along with implicit solvation (a hybrid approach). Finally, we briefly studied solvents other
than water and found that solvation effects decrease with decreasing dielectric constant. Our
work not only provides useful insights into and guidelines on how to better model aqueous
phases over metals, which are important for a number of catalytic and industrially relevant
systems, but also assesses the utility of computationally cheap implicit solvation models
implemented in several popular DFT codes.

Bibliography

6812.

[6] D. D. Hibbitts, B. T. Loveless, M. Neurock and E. Iglesia, Angewandte Chemie - Inter-

273

Appendix E

Supporting Information - Evaluating Solvent Effects at the Aqueous/Pt(111) Interface

We have performed several tests in order to verify that our simulation parameters were reasonably converged. We compared a cutoff energy of 450 eV and 800 eV in VASP for the calculating the adsorption energies in the presence of implicit solvation using VASPsol in Table E.1. The results show that a cutoff energy of 450 eV was sufficient to obtain converged adsorption energies compared to a cutoff energy of 800 eV. The mean absolute difference in adsorption energies was 0.04 eV between the two cutoff energies.
Table E.1: Adsorption energies (in eV) of different species calculated with VASPsol at two cutoff energies.

<table>
<thead>
<tr>
<th>Adsorbate</th>
<th>450 eV</th>
<th>800 eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-3.51</td>
<td>-3.47</td>
</tr>
<tr>
<td>S</td>
<td>-2.49</td>
<td>-2.45</td>
</tr>
<tr>
<td>N</td>
<td>0.42</td>
<td>0.46</td>
</tr>
<tr>
<td>OH</td>
<td>-2.10</td>
<td>-2.06</td>
</tr>
<tr>
<td>CH</td>
<td>-6.55</td>
<td>-6.51</td>
</tr>
<tr>
<td>CH₂</td>
<td>-4.04</td>
<td>-4.02</td>
</tr>
<tr>
<td>CH₃</td>
<td>-1.97</td>
<td>-1.93</td>
</tr>
<tr>
<td>NH</td>
<td>-4.04</td>
<td>-4.00</td>
</tr>
<tr>
<td>NH₂</td>
<td>-2.47</td>
<td>-2.43</td>
</tr>
<tr>
<td>NH₃</td>
<td>-1.17</td>
<td>-1.14</td>
</tr>
<tr>
<td>NO</td>
<td>-1.73</td>
<td>-1.69</td>
</tr>
<tr>
<td>CO</td>
<td>-1.77</td>
<td>-1.73</td>
</tr>
<tr>
<td>C₆H₅CH₃</td>
<td>-0.99</td>
<td>-0.94</td>
</tr>
<tr>
<td>CH₃CHOHCH₃</td>
<td>-0.28</td>
<td>-0.18</td>
</tr>
</tbody>
</table>

Adsorption energies for select adsorbates in vacuum and in the presence of an implicit water solvent using different k-point meshes with VASP are shown in Table 2. The mean absolute difference in the adsorption energies calculated using 3x3x1 and 4x4x1 kpoints in vacuum (implicit water) was 0.02 eV (and 0.01 eV). The largest difference in adsorption energy using 3x3x1 and 4x4x1 meshes was 0.02 eV (for H₂O adsorption in vacuum). The mean absolute difference in the adsorption energies for 3x3x1 and 5x5x1 meshes in vacuum (implicit solvent) was 0.04 eV (0.05 eV). The largest difference in adsorption energy using 3x3x1 and 5x5x1 meshes was 0.08 eV for the adsorption of O₂ in both vacuum and implicit
water. The adsorption energies calculated using 3x3x1 kpoints are close to results with denser k-point meshes of 4x4x1 or 5x5x1, and we used a 3x3x1 k-point mesh in our work.

Table E.2: Adsorption energies (in eV) in vacuum and implicit solvation calculated using different k-point meshes with VASP.

<table>
<thead>
<tr>
<th></th>
<th>3x3x1 vacuum</th>
<th>3x3x1 implicit</th>
<th>4x4x1 vacuum</th>
<th>4x4x1 implicit</th>
<th>5x5x1 vacuum</th>
<th>5x5x1 implicit</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂*</td>
<td>-0.50</td>
<td>-0.55</td>
<td>-0.49</td>
<td>-0.54</td>
<td>-0.58</td>
<td>-0.63</td>
</tr>
<tr>
<td>H₂O*</td>
<td>-0.22</td>
<td>-0.28</td>
<td>-0.20</td>
<td>-0.28</td>
<td>-0.24</td>
<td>-0.32</td>
</tr>
<tr>
<td>HCOOH*</td>
<td>-0.30</td>
<td>-0.13</td>
<td>-0.29</td>
<td>-0.13</td>
<td>-0.33</td>
<td>-0.17</td>
</tr>
</tbody>
</table>

We also analyzed the ground spin states of the Pt clusters in our work. Jacob et al. reported a ground state spin of 7 and 11 for Pt₁₉ and Pt₃₅ clusters respectively. In our work however, we found the ground state spin to be 3, 3, 8 for Pt₁₀, Pt₁₉, Pt₃₅ clusters, respectively. The reason for the discrepancy between our work and Jacob et al. is due to the use of different exchange correlation functional. Indeed, when we calculated the ground state spin using the B3LYP functional, we obtained the same ground state spin as reported by Jacob et al. (see Table E.3). The PBE exchange correlation functional results in a lower number of unpaired electrons compared to the B3LYP functional.
Table E.3: Total energies (in Hartree) of Pt(111) clusters calculated using the B3LYP and PBE exchange-correlation functionals at different spin states.

<table>
<thead>
<tr>
<th>Spin</th>
<th>B3LYP</th>
<th>PBE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pt₁₀</td>
<td>Pt₁₉</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1191.68091</td>
<td>-2264.40638</td>
</tr>
<tr>
<td>3</td>
<td>-1191.67962</td>
<td>-2264.41584</td>
</tr>
<tr>
<td>4</td>
<td>-1191.68966</td>
<td>-2264.40653</td>
</tr>
<tr>
<td>5</td>
<td>-1191.67207</td>
<td>-2264.42855</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-2264.44144</td>
</tr>
<tr>
<td>7</td>
<td>-2264.44441</td>
<td>-4171.68917</td>
</tr>
<tr>
<td>8</td>
<td>-2264.41614</td>
<td>-4171.68969</td>
</tr>
<tr>
<td>9</td>
<td>-2264.40173</td>
<td>-4171.70272</td>
</tr>
<tr>
<td>10</td>
<td>-2264.39599</td>
<td>-4171.71023</td>
</tr>
<tr>
<td>11</td>
<td>-2264.34428</td>
<td>-4171.71385</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>-4171.71719</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>-4171.70949</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>-4171.69654</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>-4171.68175</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>-1190.47622</td>
</tr>
</tbody>
</table>
Table E.4: Solvation energies of free adsorbate ($\Delta E_{\text{solv}}(X)$) using three different solvation models. All three solvation models show comparable solvation energies.

<table>
<thead>
<tr>
<th></th>
<th>VASP</th>
<th>NWChem</th>
<th>JDFTx</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$</td>
<td>0.00</td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>O$_2$</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>C$_2$</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>S$_2$</td>
<td>0.01</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>N$_2$</td>
<td>0.00</td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>OH</td>
<td>-0.21</td>
<td>-0.14</td>
<td>-0.20</td>
</tr>
<tr>
<td>CH</td>
<td>-0.15</td>
<td>-0.05</td>
<td>-0.14</td>
</tr>
<tr>
<td>CH$_2$</td>
<td>-0.03</td>
<td>-0.01</td>
<td>-0.03</td>
</tr>
<tr>
<td>CH$_3$</td>
<td>-0.01</td>
<td>0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>NH</td>
<td>-0.10</td>
<td>-0.08</td>
<td>-0.10</td>
</tr>
<tr>
<td>NH$_2$</td>
<td>-0.17</td>
<td>-0.16</td>
<td>-0.22</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>-0.18</td>
<td>-0.18</td>
<td>-0.18</td>
</tr>
<tr>
<td>NO</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>CO</td>
<td>-0.01</td>
<td>0.03</td>
<td>-0.01</td>
</tr>
<tr>
<td>O$_2$</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>-0.31</td>
<td>-0.26</td>
<td>-0.31</td>
</tr>
</tbody>
</table>

Figure E.1 shows the different adsorption sites that were used in our work over the Pt$_{35}$ cluster. We have provided a summary of our adsorption results in Table E.5. Adsorbate sites were taken from literature sources. Adsorption energies in vacuum ($\Delta E_{\text{ads}}^{\text{vac}}$), calculated Bader charges (q) of adsorbates, solvation energies of adsorbed species ($\Delta E_{\text{solv}}(X^*)$), solvation energies of unadsorbed species ($\Delta E_{\text{solv}}(X)$), and adsorption solvation energies ($\Delta \Delta E_{\text{ads}}^{\text{solv}}$) are all provided.
Figure E.1: Pt$_{35}$ cluster model of the Pt(111) surface showing the top, fcc, bridge, and hcp adsorption sites.
Table E.5: A summary of adsorbate states and properties as calculated in our work. All energies are in eV, except for the calculated Bader charge (q).

<table>
<thead>
<tr>
<th>Category</th>
<th>Adsorbates</th>
<th>Adsorption site</th>
<th>$\Delta E^\text{vac}_{\text{ads}}$</th>
<th>q</th>
<th>$\Delta E_{\text{solv}}(X^*)$</th>
<th>$\Delta E_{\text{solv}}(X)$</th>
<th>$\Delta \Delta E_{\text{solv}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>O</td>
<td>fcc</td>
<td>-1.10</td>
<td>-0.69</td>
<td>0.03</td>
<td>0.01</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>fcc</td>
<td>0.43</td>
<td>-0.59</td>
<td>0.03</td>
<td>0.00</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>fcc</td>
<td>-3.51</td>
<td>-0.23</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>fcc</td>
<td>-2.46</td>
<td>-0.11</td>
<td>0.03</td>
<td>0.01</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>top</td>
<td>-0.39</td>
<td>0.07</td>
<td>0.03</td>
<td>0.00</td>
<td>-0.01</td>
</tr>
<tr>
<td>II</td>
<td>O$_2$</td>
<td>bridge</td>
<td>-0.50</td>
<td>-0.54</td>
<td>0.01</td>
<td>0.02</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>fcc</td>
<td>-1.72</td>
<td>-0.41</td>
<td>0.02</td>
<td>0.00</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>fcc</td>
<td>-1.73</td>
<td>-0.22</td>
<td>0.00</td>
<td>-0.01</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>CO$_2$</td>
<td>phyisorbed</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.07</td>
<td>-0.11</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>CH$_4$</td>
<td>phyisorbed</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td>III</td>
<td>HCOO$_3$</td>
<td>bridge</td>
<td>-1.56</td>
<td>-0.46</td>
<td>-0.13</td>
<td>-0.20</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>HCOO$_3$</td>
<td>bridge</td>
<td>-2.52</td>
<td>-0.39</td>
<td>-0.08</td>
<td>-0.20</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>OH</td>
<td>top</td>
<td>-2.14</td>
<td>-0.36</td>
<td>-0.10</td>
<td>-0.21</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>OOH</td>
<td>top</td>
<td>-1.06</td>
<td>-0.29</td>
<td>-0.17</td>
<td>-0.32</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>NH</td>
<td>fcc</td>
<td>-3.98</td>
<td>-0.29</td>
<td>-0.13</td>
<td>-0.10</td>
<td>-0.07</td>
</tr>
<tr>
<td></td>
<td>CHCO</td>
<td>fcc</td>
<td>-3.38</td>
<td>-0.10</td>
<td>-0.06</td>
<td>-0.12</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>COOH</td>
<td>top</td>
<td>-2.69</td>
<td>-0.08</td>
<td>-0.11</td>
<td>-0.35</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>CH</td>
<td>fcc</td>
<td>-6.64</td>
<td>-0.07</td>
<td>-0.01</td>
<td>-0.15</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>CH$_3$</td>
<td>top</td>
<td>-1.95</td>
<td>0.00</td>
<td>0.02</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>NH$_2$</td>
<td>bridge</td>
<td>-2.38</td>
<td>0.01</td>
<td>-0.21</td>
<td>-0.17</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>CH$_2$</td>
<td>bridge</td>
<td>-4.03</td>
<td>0.02</td>
<td>-0.01</td>
<td>-0.03</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>CH$_2$CO</td>
<td>bridge</td>
<td>-1.41</td>
<td>0.05</td>
<td>-0.08</td>
<td>-0.10</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>CH$_3$CO</td>
<td>top</td>
<td>-2.22</td>
<td>0.09</td>
<td>-0.06</td>
<td>-0.13</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>HCOOH</td>
<td>top</td>
<td>-0.30</td>
<td>0.10</td>
<td>-0.13</td>
<td>-0.34</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>CH$_3$COOH</td>
<td>top</td>
<td>-0.34</td>
<td>0.13</td>
<td>-0.13</td>
<td>-0.32</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>CH$_3$OH</td>
<td>top</td>
<td>-0.24</td>
<td>0.17</td>
<td>-0.22</td>
<td>-0.20</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>CH$_3$CH$_2$OH</td>
<td>top</td>
<td>-0.23</td>
<td>0.18</td>
<td>-0.19</td>
<td>-0.18</td>
<td>-0.04</td>
</tr>
<tr>
<td>IV</td>
<td>CH$_3$CHOHCH$_3$</td>
<td>top</td>
<td>-0.24</td>
<td>0.19</td>
<td>-0.18</td>
<td>-0.17</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>CH$_3$COCH$_3$</td>
<td>top</td>
<td>-0.10</td>
<td>0.22</td>
<td>-0.33</td>
<td>-0.20</td>
<td>-0.17</td>
</tr>
<tr>
<td></td>
<td>3H$_2$O</td>
<td>top</td>
<td>-0.41</td>
<td>0.22</td>
<td>-0.14</td>
<td>-0.31</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>2H$_2$O</td>
<td>top</td>
<td>-0.36</td>
<td>0.24</td>
<td>-0.21</td>
<td>-0.31</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>H$_2$O</td>
<td>top</td>
<td>-0.22</td>
<td>0.26</td>
<td>-0.34</td>
<td>-0.31</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>NH$_3$</td>
<td>top</td>
<td>-0.85</td>
<td>0.39</td>
<td>-0.47</td>
<td>-0.18</td>
<td>-0.32</td>
</tr>
<tr>
<td></td>
<td>C$_6$H$_6$</td>
<td>bridge</td>
<td>-0.79</td>
<td>0.40</td>
<td>-0.30</td>
<td>-0.05</td>
<td>-0.29</td>
</tr>
<tr>
<td>V</td>
<td>C$_6$H$_5$CH$_3$</td>
<td>bridge</td>
<td>-0.67</td>
<td>0.41</td>
<td>-0.32</td>
<td>-0.05</td>
<td>-0.32</td>
</tr>
<tr>
<td></td>
<td>C$_6$H$_5$NH$_2$</td>
<td>bridge</td>
<td>-0.88</td>
<td>0.63</td>
<td>-0.64</td>
<td>-0.24</td>
<td>-0.44</td>
</tr>
</tbody>
</table>
In order to assess the solvation effects of a hydrogen bonding species (OH*) in the presence of explicit water, we modeled a Pt surface with four ice-bilayers, similar to previous work.14-16 An ice-bilayer consisted of a hexagonal hydrogen-bonded network of water molecules, where the water molecules have their molecular planes lying either parallel or perpendicular to metal surface in an alternating pattern. A common approach of modeling ice-bilayer solvation is by using an ice-bilayer structure where the O-H bonds of water point away from the surface as shown in Figure E.2.16,17 To solvate OH*, one of the water molecules with its molecular plane lying perpendicular to the surface was replaced by OH since this geometry was 0.25 eV more stable than when OH replaced the water molecule that lies with its molecular plane parallel to the surface. OH* replaces a water molecule in the first bilayer because the OH* prefers a Pt top site, which is where the water molecules also adsorb. Our model had 24 water molecules, and the adsorption energy in the presence of explicit solvation, similar to previous work,18 becomes the following.

\[
\Delta E_{\text{ads}}^{\text{exp}} = E_{\text{OH*}[23\text{H}_2\text{O}]} + \frac{1}{24}(E_{*}[24\text{H}_2\text{O}] - E_*) - E_{*}[24\text{H}_2\text{O}] - E_{\text{OH}^{\text{imp}}}
\]

In this equation \(E_{\text{OH*}[23\text{H}_2\text{O}]}\) is the energy of OH* solvated by the ice-bilayers which contain 23 water molecules, \(\frac{1}{24}(E_{*}[24\text{H}_2\text{O}] - E_*)\) is the average energy of a solvated water molecule in an adsorbed ice-bilayer, \(E_{*}[24\text{H}_2\text{O}]\) is the energy of an adsorbed ice-bilayer with 24 water molecules, and \(E_{\text{OH}^{\text{imp}}}\) is the energy of implicitly solvated free OH. The second term in the above equation, \(\frac{1}{24}(E_{*}[24\text{H}_2\text{O}] - E_*)\), contains the energy of four adsorbed ice-bilayers \(E_{*}[24\text{H}_2\text{O}]\) minus the energy of a clean surface without any adsorbed molecules \((E_*)\). This term gives the average energy of an adsorbed solvent water molecule. The difference between \(\Delta E_{\text{ads}}^{\text{exp}} - \Delta E_{\text{ads}}^{\text{vac}}\) is the explicit adsorption solvation energy.
Figure E.2: Four ice-bilayers adsorbed on Pt(111) in side (a) and top (b) views. Dotted lines represent the unit cell. Periodic images are shown to visualize the hydrogen bonding network. Pt, O, and H atoms are shown as gray, red, and white spheres, respectively.
Bibliography

