A Renewable Energy Program for Bishop Kodji, Nigeria

Arial Goldner
Worcester Polytechnic Institute

Travis Roth
Worcester Polytechnic Institute

Gunnar Tornberg
Worcester Polytechnic Institute

Alexandra Wheeler
Worcester Polytechnic Institute

Jackson Whitehouse
Worcester Polytechnic Institute

Follow this and additional works at: http://digitalcommons.wpi.edu/gps-posters

Part of the Architecture Commons, Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
http://digitalcommons.wpi.edu/gps-posters/510

This Text is brought to you for free and open access by the Great Problems Seminar at DigitalCommons@WPI. It has been accepted for inclusion in Great Problems Seminar Posters (All Posters, All Years) by an authorized administrator of DigitalCommons@WPI. For more information, please contact algold@wpi.edu.
Illuminating Bishop Kodji, Nigeria
Alexandra Wheeler (RBE), Ariel Goldner (BME), Gunnar Tornberg (ECE), Travis Roth (AE), Jackson Whitehouse (AE)
Advisors: Professor Kristin Boudreau (HUA), Professor Robert Krueger (SSPS)

Project Goals
- Bring sustainable, and clean energy to the village of Bishop Kodji;
- Renovate and maintain the existing solar power system;
- Educate the community in the renovation to bring about knowledge of the system;
- Allow for sustainability by teaching the community to maintain the system on their own;
- Evaluate the project over a five year span through periodic inspections, testing, and surveys.

Background
- In 2006 a solar system was installed in Bishop Kodji by the Nigerian government;
- Months later the system failed due to ignorance on the system, causing a lack of community involvement in its maintenance;
- The people of Bishop Kodji have been using kerosene lamps to light their homes and biomass products to make food. Both of these energy sources create unhealthy conditions in the home;
- The system has been out of service since.

Proposed Solution
- Renovate the existing panels that were implemented by the government in 2006;
- Reach out to community members for assistance, and find local volunteers;
- Educate volunteers in solar panel maintenance with short but informative seminars, and understandable pamphlets;
- Electricity will be used to power a local school, a community building, a clinic, a water pump, and a fish dryer. Some of these buildings will need to be further modernized;
- Inspire volunteers to teach others, and to take ownership of the project;
- Eventually expand the project to neighboring communities and other isolated regions in need of electricity.

Expected Outcomes
- Improvements in education and healthcare;
- General improvement of health in the household
- Higher degree of freedom and responsibility of women and children as they will be the main caretakers of the system;
- Stimulate the economy with the new born electricity, especially the electric fish drier;
- Prove the usefulness and sustainability of solar power.

References

Acknowledgments
Rebecca Zilins, Research and Instruction Librarian at WPI
Stephanie Bucio, Peer Learning Assistant at WPI
Isabella Schiavone, Peer Learning Assistant at WPI
Jessica Baez, Academic Technology Center at WPI