2011

Solar Bus Stop

Chang Li
Worcester Polytechnic Institute

Jun Liang
Worcester Polytechnic Institute

Christopher Tibbetts
Worcester Polytechnic Institute

Zhansong Xu
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/gps-posters

Part of the *Architecture Commons, Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons*, and the *Social and Behavioral Sciences Commons*

Recommended Citation

Li, Chang; Liang, Jun; Tibbetts, Christopher; and Xu, Zhansong, "Solar Bus Stop" (2011). *Great Problems Seminar Posters (All Posters, All Years)*. 547.

https://digitalcommons.wpi.edu/gps-posters/547

This poster represents the work of WPI first-year students submitted to the faculty as evidence of completion of a course requirement for the Great Problems Seminar (GPS). WPI routinely publishes these posters on its website without editorial or peer review. For more information about the GPS program at WPI, please see https://www.wpi.edu/academics/undergraduate/great-problems-seminar.
Solar Bus Stop
Chang Li (BC), Jun Liang (CS), Christopher Tibbetts (CS), Zhansong Xu (ME)
Advisor: Professor Kent J. Rissmiller (Social Science & Policy Studies Department)

Abstract
Current bus stops do not have enough shelters, signage, lighting or information. Our solar powered bus stops can provide passengers with lighting and information while they wait, using energy from photovoltaic panels. Our goal is to not only provide convenience to all the passengers by setting up solar bus stop, but also produce clean energy for the environment.

Background
In fact, solar bus shelters connected to the grid have been used in Corona, California. (Solar Bus Shelters From GoGreenSolar 2011) However, this new product is not widely used. Our plan is to design a feasible solar bus stop to provide convenience for passengers by displaying bus schedule on a LED board and lighting at night. Solar panels make it possible to power the bus shelter, so we suggested placing them on the rooftops of the shelters—part of the solar energy could support the energy consumption of the bus stops and excess energy can be transferred back to the grid. Federal cash grant has 10% to 30% payment for renewable green projects. (Treasury.gov)

Project Goals
• To understand the existing technologies and make a workable plan to construct a solar bus stop.
• To evaluate the economic and future prospects for solar bus stop.
• To understand the feasibility of a smart solar bus stop.

Survey Analysis
Since our sample size is 50 passengers in Boston, MA, there may be a few flaws. However, from the first pie chart above, it clearly indicated that a display for real-time schedule is needed for passengers’ convenience. In addition, a lit shelter bus stop will increase ridership according to the second pie chart.

Interview Analysis
Mr. O’Neil, head of the WRTA, told us that they are already implementing some of our ideas; they use GPS to track their busses, as well as data such as where passengers are getting on and off the bus. However, he was unsure of putting technology in the shelters for fear of vandalism.

Calculations

Cost of Each Item:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Model</th>
<th>Cost per Item (USD)</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelter (S - Beaverton)</td>
<td>ACU35600W</td>
<td>4600</td>
<td>1</td>
</tr>
<tr>
<td>Computing device (P)</td>
<td>Photon Linus</td>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>LED Sign (P)</td>
<td>16.9241</td>
<td>70</td>
<td>1</td>
</tr>
<tr>
<td>LED Light Tube (P)</td>
<td>TPI5-050105 LED Tube-Light</td>
<td>75</td>
<td>4</td>
</tr>
<tr>
<td>Solar Panel (P)</td>
<td>AHS ACUnison PM4050A</td>
<td>750</td>
<td>3</td>
</tr>
<tr>
<td>Power Inverter (P)</td>
<td>Microsolar 30</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>Battery (P)</td>
<td>Sun Yankee PV-20</td>
<td>220</td>
<td>2</td>
</tr>
</tbody>
</table>

Energy Consumption of Each Item:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Energy Cost (Wh)</th>
<th>Quantity</th>
<th>Running Time (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computing Device</td>
<td>0.000825</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>LED Sign</td>
<td>0.112</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>LED Light Tube</td>
<td>0.017</td>
<td>4</td>
<td>12 (Night time)</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$15.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power Generation of Solar Panels:

Equipment	Model	Quantity	Generation (W)	Running Time (H)
Solar Panel	AHS ACUnison PM4050A	3	0.24	10 (Daytime)
Total Generation			7.2 (Watt)	

Conclusions
The smart solar bus stop will make profit after 21 years without grants and make profit after 15 years with grants. Since the smart solar bus stop will increase ridership, the public transportation authority will make more profit, and they can spend the profit expanding this project or another project.

Acknowledgments
Thanks for all participants who responded for our survey and WRTA officer Mr. O’Neil, for his valuable suggestion. Furthermore, we want to thank the help of Professor Rissmiller and PLA Bertan Atamer.

References
1. Buses Usually Arrived on Time? 24% Yes 84%
2. Would the Passengers Be More Likely to Ride the Buses If It Is a Shelter Bus Stop? No: 16% Yes: 84%
3. Cost of Each Item:
4. Energy Consumption of Each Item:
5. Power Generation of Solar Panels:
6. Survey Analysis
 - Buses Usually Arrived on Time?
 - Would the Passengers Be More Likely to Ride the Buses If It Is a Shelter Bus Stop?
7. Calculations
8. Acknowledgments
9. Interview Analysis
 - Mr. O’Neil, head of the WRTA, told us that they are already implementing some of our ideas; they use GPS to track their busses, as well as data such as where passengers are getting on and off the bus. However, he was unsure of putting technology in the shelters for fear of vandalism.
10. Smart Solar Bus Stop Structure
 - Shelter with solar panels on the roof
 - A LED display for real-time schedule and other information
 - Lighting system
 - Excess energy is sent back to the grid
11. Conclusions
 - The smart solar bus stop will make profit after 21 years without grants and make profit after 15 years with grants. Since the smart solar bus stop will increase ridership, the public transportation authority will make more profit, and they can spend the profit expanding this project or another project.
 - Smart solar bus stops are feasible with the following advantages:
 - No utility expenses
 - Energy Saving
 - Increase ridership
12. Smart Solar Bus Stop Structure
13. Conclusions
14. Acknowledgments
15. References