Small Hydrokinetic Power- VIVACE

Alyssa Flaherty
Worcester Polytechnic Institute

Ben List
Worcester Polytechnic Institute

Larry McGillicuddy
Worcester Polytechnic Institute

David Modica
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/gps-posters

Part of the Architecture Commons, Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

Flaherty, Alyssa; List, Ben; McGillicuddy, Larry; and Modica, David, "Small Hydrokinetic Power- VIVACE" (2011). Great Problems Seminar Posters (All Posters, All Years). 546.
https://digitalcommons.wpi.edu/gps-posters/546

This poster represents the work of WPI first-year students submitted to the faculty as evidence of completion of a course requirement for the Great Problems Seminar (GPS). WPI routinely publishes these posters on its website without editorial or peer review. For more information about the GPS program at WPI, please see https://www.wpi.edu/academics/undergraduate/great-problems-seminar.
Small Hydrokinetic Power VIVACE

Alyssa Flaherty Ben List Larry McGillicuddy David Modica
Advisor: Professor Brian Savilonis

Abstract

The purpose of this research is to examine the potential advantages and issues of implementing a recent development in small hydrokinetic power known as Vortex Induced Vibrations for Aquatic Clean Energy (VIVACE). The objective of this project is to investigate whether VIVACE hydrokinetic energy systems are capable of powering towns, as well as being low impact, cost-effective power generators. The analysis in this research includes 1) a review of VIVACE technology, 2) energy estimates for the (test) region of Barcelos, Brazil in the Amazon, 3) calculations per kilowatt hour generated by a VIVACE system for the Barcelos region.

Project Goals/Objectives

• Study potential global applications of VIVACE to provide renewable, environmentally friendly energy solutions
• Develop test case for the purpose of examining feasibility and cost-effectiveness of VIVACE power systems
 • For Barcelos, producing electricity local to city would decrease costs

Results/Outcomes

• Power Formula
 • Used following formula to determine power output per cylinder
 \[P = \frac{1}{2} \rho D^2 L U^3 \times \text{efficiency} \]
 • Minimum number of cylinders required: 1036.
 • Number of cylinders recommended: 1100.
• Total Area Required
 • 4866 square meters.
 • 2 megawatts would require a 50 meter x 97 meter farm.
• Environmental Impact
 • Minimal impact on river bottom.
 • Does not kill fish or other aquatic animals.
 • Corrosion resistant materials prevent rusting and pollution.
• Impact on watercraft
 • As long as modules are more than 15 meters underwater, they are safe from boat traffic.
 • Swimmers would have a very difficult time diving deep enough to hit a module; professional diving gear would be required to swim that deep.

Conclusions

• A 2MW array would cost $8 million to install.
• It would take a little over 10 years to recoup the capital.
• The array is expected to make over $12 million in profit over its lifetime of 25 years.
• VIVACE will provide a clean and renewable source of energy for Barcelos which is not intrusive to the environment or economy.

References

[3]: http://sealandaire.com/wp-content/files_mf/each/81_39651670e820b30182e5a0e53774b3_vortex_shed-e1307475147414.jpg