




4.5.3 BSA – Con A Comparison 

 

The properties of BSA and Con A were investigated by zeta potential and AFM 

experiments. Comparison of results was useful for future experiments and helped to 

explain the differences between these two proteins. 

 

4.5.3.1 Zeta Potential of Proteins 

 

Proteins are negatively charged above their isoelectric point.  The isoelectric points of 

BSA and Con A are around 4.5 [115,130]. According to zeta potential measurements, 

BSA and Con A were both negatively charged (Table 4.4) in physiological buffer (pH = 

7.4). However, Con A is less negatively charged compared to BSA. The zeta potential 

values were -8.86 ± 1.12 mV for BSA and -1.46 ± 0.35 mV for Con A at pH 7.4. Xu et al. 

showed that the zeta potential of BSA was -9.9 mV at pH 7.0 [156] .  

 

Table 4.4 Zeta potentials of proteins in 
HEPES/DTT buffer at pH 7.4 at room 
temperature. 

 

Samples Zeta Potential (mV) 

BSA -8.86 ± 1.12 (n=6) 

Con A -1.46 ± 0.35 (n=6) 
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4.5.3.2 Comparison of AFM Force Curves of Proteins 

 

Immobilized proteins on glass slides were stable after washing processes by water and 

HEPES/DTT buffer solution, and sustained the pressure exerted by AFM tips during 

imaging. The size of protein clusters, determined by AFM section analysis, was 7.55 ± 

2.94 nm for BSA and 12.04 ± 3.16 nm for Con A in HEPES/DTT based on five different 

images (n=30). The fact that Con A clusters were larger than BSA clusters might be 

explained by 3D protein structure and molecular weight differences since the average 

molecular weight of Con A (102 kDa) is larger than that of BSA (66 kDa) [18]. 

 

According to the approach curves, the repulsive force at zero distance for BSA was 

higher than that of Con A. Since BSA molecules are more negatively charged in 

physiological buffer, the repulsion between the silicon tip and BSA molecules is stronger 

than the repulsion between Con A and the silicon tip. The magnitude of the repulsive 

forces was 0.003 ± 0.002 nN for Con A and 0.029 ± 0.005 nN for BSA (Figure 4.39). The 

decay length was 19 ± 5 nm for Con A and 51 ± 14 nm for BSA (Figure 4.40). When the 

molecules on the glass slide repel the AFM tip, the decay distance is not a good 

representative of the length of the polymers. For example, AFM images of BSA suggest 

that the size is 7.55 ± 2.94 nm, but the BSA decay lengths are larger, at 51 ± 14 nm. 

However, if there is no repulsion, for example Con A-silicon interactions, the decay 

distance is closer to the size of the clusters and can better represent the length of the 

polymers on the surface. Twenty force curves were analyzed, and compared by using t-

test analysis since the mean values could represent the system. According to t-test 
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analysis, the difference in the mean values of each pair is greater than would be expected 

by chance; there is a statistically significant difference between the repulsive forces and 

decay distance (P = <0.001).  
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Figure 4.39 Repulsive force at zero distance for proteins from 
AFM approach curves. 
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Figure 4.40 Decay length for proteins from AFM approach curves. 
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Since different locations on the glass slide contain different active sites of protein 

molecules, the pull-off forces and pull-off distances exhibit a range of values that can be 

presented in a histogram. Since the population size is large, a-non parametric statistical 

test can be used to compare two groups. The difference in the median values of pull-off 

distances of two proteins is greater than would be expected by chance; there is a 

statistically significant difference (P = <0.001) according to the Mann-Whitney Rank 

Sum Test (Figure 4.41). In addition, Figure 4.42 shows the difference in the magnitude of 

pull-off forces, which are also statistically significant when BSA forces is compared to 

Con A forces (P = <0.001). Since Con A has specific sugar sites and can competitively 

adhere to corneal epithelial cells and block P. aeruginosa adhesion, its structure and 

adhesion behavior might be similar to the LPS of P. aeruginosa [136]. 
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Figure 4.41 Pull-off distance histograms (n=50) of BSA and Con A with 
silicon AFM tip (CSC38-B), which indicates the separation of AFM tip from 
the protein surface. Measurements were made in HEPES/DTT buffer at pH 
7.4. 
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Figure 4.42 Pull-off force histograms (n=50) of BSA and Con A with silicon 
AFM tip (CSC38-B), which indicates the magnitude of forces occurred when 
the silicon tip was retracting from the protein surface. Measurements were 
made in HEPES/DTT buffer at pH 7.4. 

 

 

4.6. Protein - Pseudomonas aeruginosa Interactions 

 

P. aeruginosa strains cause serious infections, especially in immunocompromised 

patients [20,33]. On the other hand, they are effective isolates in biodegradation of 

hazardous contaminants in the environment, so they can be used for bioremediation of 

contaminated soils or wastewater [79,84]. These bacteria find receptors on epithelial cells 

and use different ligands to attach to various substrates [33]. For example, some proteins 

on the epithelial cells are found to be responsible for bacterial adhesion to the corneal 

epithelial cells. Proteins play an important role in bacterial adhesion and recognition of 

pathogens [27]. Moreover, proteins are one group of recognizable organic matter from 

the environment, and play an important role in bacterial transport in natural environments 
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[31]. Therefore, it is important to understand the interactions between proteins and 

bacterial cells. In the present study, bovine serum albumin (BSA) and concanavalin A 

(Con A) are model proteins chosen to represent protein molecules that might affect 

adhesion of the two P. aeruginosa strains, PAO1 and AK1401.  

 

4.6.1 SEM Imaging 

 

The silicon AFM tips were modified with poly-l-lysine and coated with bacterial cells to 

probe protein molecules. We verified adhesion of the cells on the cantilevers after 

preparation of the bacteria coated AFM tips. Examination of the AFM tips with SEM 

showed the bacterial cells bound to the cantilever with multiple cells present on the tip 

(Figure 4.43). Since we could only image dry samples with SEM, the cantilevers were 

dried after probing the protein molecules. In addition to SEM imaging, the AFM force 

curves are a good indicator of difference between clean tip and bacteria coated tip 

probing the protein molecules. When the AFM tip is successfully coated with bacterial 

cells, we can see long range interactions between the probe and the protein molecules. It 

can also been observed that how long the bacterial cells stay on the surface of the AFM 

tip and probe the surface. If the bacterial cells detach from the tip, there are no long range 

interactions between the tip and the protein molecules. This is a good control for the 

system because the presence of bacterial cells on the AFM tip at the time of the 

experiment can be verified. Others also used poly-l-lysine (PLL) [143] and different 

binding materials such as polyethyleneimine (PEI) and glutaraldehyde [148,157], and 1- 

Hexadecanethiol (HDT) [43] to immobilize microbial cells on different AFM tips. 
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Velegol and Logan showed that treating bacteria with 2.5% glutaraldehyde stiffens the 

cell and changes the adhesion behavior of the bacterial cells [14]. Therefore, PLL was 

chosen over PEI and glutaraldehyde. 

 

A B

C D

E F

 

Figure 4.43 SEM images of silicon Mikromasch CSC38-B cantilever coated with P. 
aeruginosa AK1401 (A, B) and PAO1 (C, D), and PLL (E, F).  
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4.6.2 BSA – P. aeruginosa Interactions 

 

The AFM force curves show differences between the clean tip and bacteria coated tip 

probing the surface. The bacteria coated AFM tip has stronger and longer interactions 

with BSA molecules compared to the clean silicon AFM tip, suggesting that the bacterial 

cell surface polymers can interact with the protein molecules (Figure 4.44). Figure 4.45 

shows that the pull-off distances for BSA and silicon interactions are between 0 to 200 

nm. However, when BSA interacts with P. aeruginosa strains, the pull-off distances can 

extend up to 900 nm.  Figure 4.46 shows that the pull-off (adhesive) forces for BSA and 

silicon interactions are smaller than 0.03 nN. However, when BSA interacts with P. 

aeruginosa strains, the adhesive forces are up to 0.09 nN for PAO1 and 0.2 nN for 

AK1401.  Since there are different orientations of BSA molecules on the glass slides 

interacting with bacteria, and the bacterial surface is also heterogeneous, the adhesive 

force and pull-off distance vary over a wide range. 
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Figure 4.44 Representative retraction curves of BSA on glass slides probed by P. 
aeruginosa strains immobilized on AFM tip in HEPES/DTT buffer at pH 7.4. 
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to the results of the test, there was a statistically significant difference (P =< 0.001) 

between the magnitude of adhesion forces when they interact with Con A molecules, but 

the median values of pull-off distances for the interactions of both strains with Con A 

molecules were not statistically different (P =< 0.001). Since the interactions are not very 

strong, the bacterial surface polymers do not become become extended to large distances, 

so the difference in the length of LPS is not clearly observed by AFM. However, PAO1 

still shows longer pull-off distances and weaker pull-off forces than AK1401. Therefore, 

even though the structure and surface charge of the LPS molecules of the two strains may 

play an important role on the magnitude of adhesive forces, the length of the LPS does 

not appear to have a significant role when they are interacting with Con A molecules. The 

magnitude of average adhesive forces for AK1401 was larger than that of PAO1 (Figure 

4.51). In other words, adhesion of AK1401 to Con A molecules was relatively stronger 

than the adhesion of PAO1 to Con A, which was consistent with the trend of BSA 

interactions. 
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Figure 4.49 Pull-off distance histograms (n=50) of Con A with clean and 
modified AFM tip. Measurements were made in HEPES/DTT buffer at pH 7.4. 
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Figure 4.50 Pull-off force histograms (n=50) of Con A with clean and modified 
AFM tip. Measurements were made in HEPES/DTT buffer at pH 7.4. 
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Our results show that both two P. aeruginosa strains have weak interactions with Con A 

molecules.  Avni et al. also showed that P. aeruginosa did not bind to fluorescein-

conjugated Con A [123]. Since it was shown that Con A could competitively bind to the 

receptors of P. aeruginosa LPS on epithelial cells and block P. aeruginosa attachment 

[127,135,136], our results are consistent with the literature.  Gad et al. have shown that 

the binding force between Con A and mannose ranged from 75-200 pN [125]. Our results 

show that the binding force between Con A and LPS of P. aeruginosa is up to 40 pN. 

Therefore, we can suggest that the P. aeruginosa strains do not express mannose 

molecules in their LPS.  
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Figure 4.51 A comparison of average adhesive forces of Con A interacting 
with various probes. Measurements were made in HEPES/DTT buffer at pH 
7.4. 
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4.6.4 Comparison of P. aeruginosa Interactions with BSA and Con A 

 

The AFM force curves show the differences between the interactions of two P. 

aeruginosa strains with BSA and Con A molecules. Figure 4.52 shows the AFM 

retraction curves of AK1401. The adhesive forces of AK1401 for BSA are much stronger 

than the ones for Con A. The AK1401 coated AFM tip has long range interactions with 

protein molecules. The median value of the BSA – AK1401 pull-off forces are an order 

of magnitude greater than that of the Con A – AK1401 pull-off forces. Therefore, P. 

aeruginosa AK1401 has stronger interactions with BSA compared to Con A. 
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Figure 4.52 Representative retraction curves of Con A and BSA on the glass slides 
probed by P. aeruginosa AK1401 immobilized on AFM tip, in HEPES/DTT buffer at pH 
7.4. 
 

Figure 4.53 shows the AFM retraction curves for PAO1 interacting with each protein. 

The adhesive forces of PAO1 for BSA are much stronger than the ones for Con A. The 
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PAO1 coated AFM tip has long range interactions with protein molecules. The median 

value of the BSA – PAO1 pull-off forces are also an order of magnitude greater than that 

of the Con A – PAO1 pull-off forces. Therefore, P. aeruginosa PAO1 has stronger 

interactions with BSA compared to Con A. 
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Figure 4.53 Representative retraction curves of Con A and BSA on the glass slides 
probed by P. aeruginosa PAO1 immobilized on AFM tip, in HEPES/DTT buffer at pH 
7.4. 
 
 
The Kruskal-Wallis One Way Analysis of Variance (ANOVA) test was used to check if 

the adhesion behavior of both P. aeruginosa strains to protein molecules was statistically 

different. There was a statistically significant difference (P = < 0.05) between the 

magnitude of adhesion forces when both strains interact with BSA molecules, but  the 

magnitude of adhesion forces for the interactions of both strains with Con A molecules 

were not statistically different, although they were different when the sensitivity 

increased to P = < 0.001. The difference between the pull-off distances of both strains 

was statistically significant (P < 0.05, Dunn’s method) for BSA interactions, but it was 
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not significant for Con A interactions with either strain. However, PAO1 still shows 

longer pull-off distances and weaker pull-off forces than AK1401 while interacting with 

Con A (Figure 4.54 and Figure 4.55). Therefore, the length and surface charge of 

different LPS molecules of two strains play an important role on the magnitude of 

adhesive forces for Con A, but it is difficult to appreciate because of the very weak 

interactions between P. aeruginosa and Con A.  When we compare the interactions of 

both strains with BSA, the distributions of forces show different behavior. The 

interactions of PAO1 with BSA can be up to 0.1 nN, but the interactions of AK1401 with 

BSA can be up to 0.3 nN. Therefore, AK1401 can adhere to BSA molecules three times 

more strongly than PAO1. 
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Figure 4.54 Pull-off distance histograms (n=50) of proteins probed by P. 
aeruginosa cells immobilized on the AFM tip (CSC38-B). Measurements were 
made in HEPES/DTT buffer at pH 7.4. 
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Figure 4.55 Pull-off force histograms (n=50) of proteins probed by P. aeruginosa 
cells immobilized on the AFM tip (CSC38-B). Measurements were made in 
HEPES/DTT buffer at pH 7.4. 

 
 
 
The adhesion of AK1401 to BSA molecules was much stronger than that of PAO1 to 

BSA (Figure 4.56). Moreover, the adhesion of AK1401 to Con A molecules was 

relatively stronger than the adhesion of PAO1 to Con A.  When we compare the 

interactions of each P. aeruginosa strain with both proteins, AK1401 has higher 

attraction to both BSA and Con A than PAO1. Overall, the strongest protein interactions 

are the ones between BSA and AK1401. Therefore, AK1401 adheres to protein 

molecules stronger than PAO1 does. The neutral surface charge of AK1401 might play 

an important role in strong adhesion since BSA and Con A are both negatively charged in 

physiological buffer [90,99,115,116]. 
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Figure 4.56 A comparison of average adhesive forces of P. aeruginosa 
strains. Measurements were made in HEPES/DTT buffer at pH 7.4. 

 
 
 
The infections in CF patients are mostly caused by rough mutants of P. aeruginosa 

[70,108]. Even if the bacterial cells are smooth in the beginning stages, they can mutate 

and become semi-rough or rough under clinical conditions [40]. Strain AK1401 and 

clinical CF strains have similar LPS structures, considering O-antigens [99,109]. Recent 

studies suggest that the CFTR protein may influence P. aeruginosa lung infections 

directly through its role as an epithelial cell receptor for this organism [20]. We found 

that the ability of semi-rough mutant, AK1401, to attach to protein molecules or protein 

coated surfaces is much greater than that of the wild type smooth strain, PAO1. Our 

results suggest that the semi-rough or rough strains can adhere to the protein receptors of 

the epithelial cells or protein coated implants stronger than the smooth strains, and can 

cause serious infections.  
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These results will also impact several environmental applications. The natural organic 

matters (NOM) such as sediment organic matter (SOM) and dissolved organic matter 

(DOM) affect bacterial transport through porous media by adhering and increasing the 

negative surface charge and electrophoretic motility of bacteria, which also alters 

bacterial retention on the porous media [32]. However, one study found that this 

magnitude of facilitated transport was considered insufficient for the purpose of 

enhancing subsurface delivery for bioremediation [32]. Since proteins are also considered 

as recognizable organic matter, our results can explain the role of proteins on bacterial 

adhesion and transport. The maximum adhesion force, 300 pN, was obtained between P. 

aeruginosa AK1401 and BSA. The interactions of P. aeruginosa PAO1 with BSA were 

smaller than 100 pN. The interactions of each of the two P. aeruginosa strains with Con 

A were weak, with a maximum value of 50 pN. Overall, the interactions of these two P. 

aeruginosa strains with two model proteins are weaker compared to how the bacteria 

interact with humic acids [158]. Therefore, the role of protein molecules may be 

insufficient for the purpose of enhancing subsurface delivery for bioremediation. 
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5 - Conclusions 

 

We investigated the surface properties of two P. aeruginosa strains and their interactions 

with two model proteins, BSA and Con A. Topographical images were helpful to identify 

the size and shape of bacterial cells and EPS molecules. AFM force curve analyses were 

used to understand the adhesion behavior of the bacterial cells. The magnitude of 

adhesive forces for two P. aeruginosa stains was not statistically significant when they 

interact with silicon. Although it is not clear if the pull-off distances are accurate 

representatives of the absolute length of bacterial surface molecules, the trend indicates 

that the surface molecules of strain AK1401 are shorter than those of strain PAO1.  

 

The semi-rough strain AK1401 was more hydrophobic than the smooth strain PAO1, 

according to the water contact angle measurements. However, surface free energy 

components and zeta potential values were not significantly different for both strains. 

Zeta potential of bacterial cells decreased when they were suspended in HEPES/DTT 

buffer instead of pure water. In other words, the electrostatic double layer was smaller 

when the bacteria were in HEPES/DTT buffer. Although the macroscopic 

physicochemical properties show that the two P. aeruginosa strains have similar 

properties, the AFM results demonstrate the importance of nano-scale properties and 

interactions between bacterial cells and various molecules, such as silicon and proteins.  

 

Interactions between surfaces pre-conditioned with organic matter (i.e. proteins) and 

bacteria can give clues about the initial steps of bacterial adhesion and biofilm formation. 
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Studying the specific interactions is important to understand the effect of organic 

molecules on bacterial adhesion.  The AFM results demonstrate the importance of nano-

scale interactions between proteins and bacterial cells. Our results show that the lipid A 

and core oligosaccharides are the most important molecules influencing the interactions 

of P. aeruginosa with protein molecules.  

 

The interactions of P. aeruginosa with model proteins in our study were weaker than the 

interactions previously observed with humic acids. Therefore, the role of protein 

molecules may be inadequate for the purpose of enhancing subsurface delivery for 

bioremediation. We found that the ability of semi-rough mutant, AK1401, to attach to 

protein molecules or protein coated surfaces is much greater than that of the wild type 

smooth strain, PAO1. Our results suggest that the semi-rough or rough strains can adhere 

to the protein receptors of the epithelial cells or protein coated implants stronger than the 

smooth strains, and therefore can cause serious infections.  Additional experimentation 

with a controlled orientation of protein molecules can be useful to identify the adhesion 

of bacteria to different sites of protein molecules. 
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6 - Future Work 

 

Interactions between bacteria and sugar molecules, organic acids such as DNA and humic 

acids can be investigated in the future to understand the role of NOM on the adhesion of 

bacterial cells. Since the orientation of protein molecules on the glass slides and 

orientation of bacterial surface polymers are not clearly known, computer simulations 

(i.e. molecular dynamics) may help to obtain more information on the conformation of 

bacterial polymers and give a deeper insight into polymer adsorption. Moreover, it is hard 

to determine the contribution of a certain class of surface polymers to bacterial adhesion 

since steric influences of different polymers interfere with each other. Contribution of 

different polymers can be better understood by performing both the AFM experiments 

and computer simulations with isolated cell surface polymers.  

 

P. aeruginosa strains produce membrane vesicle and capsules, which may play an 

important role in bacterial adhesion. Therefore, these molecules can be examined by 

using appropriate staining techniques. Identifying the size and contents of the capsules 

and membrane vesicles might be used to explain the long range interactions of 

Pseudomonas strains. Vaccines used against pathogenic Gram-negative bacteria consist 

of a mixture of O-antigens from different serotypes of the same species. Therefore, better 

understanding of O-side chains can be helpful for vaccine development against P. 

aeruginosa infections. 
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