Molecular Engineering of Trigonal Octupolar Materials Based on 2,4,6-Diarylamino-1,3,5-Triazines

Taner Gokcen

Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

Repository Citation
Gokcen, Taner, "Molecular Engineering of Trigonal Octupolar Materials Based on 2,4,6-Diarylamino-1,3,5-Triazines" (2005). Masters Theses (All Theses, All Years). 965.
https://digitalcommons.wpi.edu/etd-theses/965

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.
MOLECULAR ENGINEERING OF TRIGONAL OCTUPOLAR MATERIALS

BASED ON 2,4,6-TRIS-DIARYLAMINO-1,3,5-TRIAZINES

By

Taner Gokcen

A Thesis Submitted to the Faculty of

Department of Chemistry and Biochemistry

Worcester Polytechnic Institute

Worcester, MA 01609-2280, USA

In partial fulfillment of the requirements for the

Degree of Master in Science

In Chemistry

By

August 24, 2005

Approved:

Dr. Venkat R. Thalladi, Advisor

Dr. James W. Pavlik, Department Head
Abstract: Molecular engineering of some 2,4,6-(substituted biaryl amino)-1,3,5-triazines and crystal data belonging to the products 2,4,6-\((m,m')\)-ditolylamino)-1,3,5-triazine, 2,4,6-\((p,p')\)-ditolylamino)-1,3,5-triazine and 2,4,6-(phenyl-\(p\)-tolylamino)-1,3,5-triazine were reported. Retrosynthetic analysis of trigonal octupolar networks led to the identification of \textit{tris}-substituted diarylamino-triazines as molecular analogs of Piedfort units formed by cofacial dimers of 2,4,6-triaryl oxy-1,3,5-triazine molecules. Synthesis of mono and diarylamino triazines is achieved by coupling of the corresponding anilines with cyanuric chloride. Synthesis of diarylamines exhibiting different functional groups on two phenyl rings is attempted; the successful attempt in the case of phenyl-\(p\)-tolylamine is described. All the crystals obtained so far belong to centrosymmetric space group \(P2_1/c\). Though none of the molecules retain trigonal symmetry in the crystal structures, pseudo-trigonal assembly of molecules is identified in some cases. The assembly of molecules within the crystals results in columnar structures formed by C-H..N and C-H..\(\pi\) interactions.
Acknowledgements

I would like to sincerely thank my advisor Prof. Venkat R. Thalladi for his outstanding support and patience during this research. I appreciated the opportunity to work with him. The scientific fundamentals that I learned from him will build my future academic career and my life.

I would like to thank to Prof. John C. MacDonald for his support and guidance. I also would like to thank my friends and colleagues Veysel Yigit, Salimgerey Adilov, Marta Dabros, Kasim Biyikli, Katarzyna Koscielska, Jason Cox, Nantanit Wanichacheva, Hubert Nienaber, Somchoke Laohhasurayotin, and Chuchawin Changtong.

Finally I thank all chemistry and biochemistry faculty and graduate students for making my stay at WPI an educational and enjoyable experience.
Table of Contents

- **Abstract** 2
- **Acknowledgements** 3
- **Table of Contents** 4
- **List of Figures** 5
- **List of Tables** 8
- **Introduction** 9
- **Results and Discussion** 20
- **Experimental Section** 55
 - Synthesis of diphenylamines 25
 - Synthesis of tris-phenylamino-triazines 27
 - Synthesis of tris-diarylamino-triazines 28
 - Crystallization 30
 - 2,4-6-\((m,m')\)-ditolylamino)-1,3,5-triazine 32
 - 2,4-6-\((p,p')\)-ditolylamino)-1,3,5-triazine 39
 - 2,4-6-\((p--)\)-ditolylamino)-1,3,5-triazine 47
- **Summary and Conclusion** 58
- **References** 74
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Schematic representation of dipolar organic NLO materials</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2</td>
<td>(a) Geometry of second-harmonic generation. (b) Energy-level diagram describing second-harmonic generation</td>
<td>12</td>
</tr>
<tr>
<td>Figure 3</td>
<td>p-Nitroaniline (p-NA): prototype of a dipolar organic NLO molecule</td>
<td>12</td>
</tr>
<tr>
<td>Figure 4</td>
<td>3-Methyl-4-nitropyridine-1-oxide (POM)</td>
<td>13</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Guanidinium route typeoctupolar molecule: crystal violet</td>
<td>14</td>
</tr>
<tr>
<td>Figure 6</td>
<td>TATB route type octupolar molecule: 1,3,5-triamino-2,4,6-trinitrobenzene</td>
<td>14</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Schematic representation of idealized octupole</td>
<td>15</td>
</tr>
<tr>
<td>Figure 8</td>
<td>H-Bonding in the trigonal network of 1,3,5-tricyanobenzene</td>
<td>16</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Figure 9. N,N,N-trimethylisocyanurate</td>
<td>17</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Retrosynthetic analysis of trigonal octupolar network</td>
<td>18</td>
</tr>
<tr>
<td>Figure 11</td>
<td>List of triazines studied by Desiraju et al</td>
<td>19</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Examples of trigonal octupolar materials</td>
<td>21</td>
</tr>
<tr>
<td>Figure 13</td>
<td>2,4,6-Triaryloxy-1,3,5-triazines</td>
<td>22</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Retrosynthetic analysis for triaryloxy-triazines</td>
<td>23</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Retrosynthetic analysis for tridiphenylamino-triazines</td>
<td>24</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Schematic representation of synthesis of diphenylamines</td>
<td>25</td>
</tr>
</tbody>
</table>
Figure 17 List of diphenylamines used 26
Figure 18 Schematic representation of synthesis of tris-substituted-triazines 27
Figure 19 List of amines used 28
Figure 20 List of phenols used 28
Figure 21 Schematic representation of synthesis of tris-diphenylamino-triazines 29
Figure 22 List of tridiphenylamino-triazines obtained 29
Figure 23 Picture of MDMETZ molecule in crystal 32
Figure 24 Hexagonal structure formed by MDMETZ molecules 34
Figure 25 Picture of MDMETZ crystal view down [100] 35
Figure 26 Picture of MDMETZ crystal view down [010] 36
Figure 27 Picture of MDMETZ crystal view down [001] 37
Figure 28 Picture of MDMETZ interactions view down [100] 38
Figure 29 Picture of MDMETZ view down [001] 39
Figure 30 Picture of PDMETZ molecule in crystal 41
Figure 31 Picture of PDMETZ crystal view down [100] 41
Figure 32 Picture of PDMETZ crystal view down [010] 42
Figure 33 Picture of PDMETZ crystal view down [001] 43
Figure 34 Picture of PDMETZ view down [001] 44
Figure 35 Picture of C-H..N bonding in PDMETZ crystal view down [100] 45
Figure 36 Picture of interactions in PDMETZ crystal view down [100] 46
Figure 37 Picture of PMETZ molecule in crystal 49
Figure 38 Picture of PMETZ crystal view down [100] 50
Figure 39 Picture of PMETZ crystal view down [010] 51
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Picture of PMETZ crystal view down [001]</td>
</tr>
<tr>
<td>41</td>
<td>Picture of zig-zag shape formed by PMETZ view down [001]</td>
</tr>
<tr>
<td>42</td>
<td>Picture of interactions in PMETZ crystal</td>
</tr>
<tr>
<td>43</td>
<td>1H Spectrum of MDMETZ</td>
</tr>
<tr>
<td>44</td>
<td>13C Spectrum of MDMETZ</td>
</tr>
<tr>
<td>45</td>
<td>1H Spectrum of PDMETZ</td>
</tr>
<tr>
<td>46</td>
<td>13C Spectrum of PDMETZ</td>
</tr>
<tr>
<td>47</td>
<td>1H Spectrum of PMETZ</td>
</tr>
<tr>
<td>48</td>
<td>13C Spectrum of PMETZ</td>
</tr>
<tr>
<td>49</td>
<td>1H Spectrum of MMETZ</td>
</tr>
<tr>
<td>50</td>
<td>13C Spectrum of MMETZ</td>
</tr>
<tr>
<td>51</td>
<td>1H Spectrum of POHTZ</td>
</tr>
<tr>
<td>52</td>
<td>13C Spectrum of POHTZ</td>
</tr>
<tr>
<td>53</td>
<td>1H Spectrum of MMOTZ</td>
</tr>
<tr>
<td>54</td>
<td>13C Spectrum of MMOTZ</td>
</tr>
</tbody>
</table>
List of Tables

Table 1. Geometrical parameters for C-H..π interactions found in the structures of 1-3 30

Table 2. Geometrical parameters for C-H..N interactions found in the structures of 1-3 31

Table 3. Crystallographic data for the structures of 1-3 31

Table 4. Dihedral angles between phenyl rings of MDMETZ molecule in crystal 33

Table 5. Dihedral angles between phenyl rings and central ring of MDMETZ molecule in crystal 33

Table 6. Dihedral angles between phenyl rings PDMETZ molecule in crystal 40

Table 7. Dihedral angles between phenyl rings and central ring of PDMETZ molecule in crystal 40

Table 8. Dihedral angles between phenyl rings of PMETZ molecule in crystal 47

Table 9. Dihedral angles between phenyl rings and central ring of PMETZ molecule in crystal 47
Introduction

Design and synthesis of organic materials exhibiting large second harmonic generation (SHG) for the applications in the field of nonlinear optics (NLO) attracted intense interest since Davydov and co-workers\(^1\) reported strong SHG from organic compounds having electron donor and acceptor groups attached to a benzene ring in 1970. After screening a wide variety of substituted benzenes for their SHG activity they came to the conclusion that *dipolar* aromatic molecules possessing electron donor and electron acceptor groups resulted in large SHG activity due to the intramolecular charge transfer between the two groups with opposing electronic properties. It has become evident from this study that a \(\pi\)-conjugated system possessing electron donor and acceptor groups will exhibit strong SHG activity if it does not have an inversion center as represented in Figure 1. This symmetry restriction is imposed upon even order NLO effects (such as SHG); materials exhibiting odd order nonlinearities are not restricted by a center of symmetry.

![Figure 1. Schematic representation of dipolar organic NLO materials.](image)

It should be mentioned here that SHG activities of organic compounds were first reported in 1964 by Rentzepis and Pao\(^2\) in 3,4-benzopyrene and Heilmer *et al*\(^3\) in hexamethylene-tetraamine. Since then, the field of nonlinear optics has emerged as a major area of research bringing together such faculties as physics, chemistry, and materials science towards applications in photonics\(^4-9\) and optoelectronics.\(^7,10,11\)
Nonlinear optical effects arise when an intense electromagnetic field (in general laser light) is illuminated on a material system. This intense radiation induces electrical polarization within the material that results in new electromagnetic fields altered in phase, frequency, or amplitude; that is, in optically nonlinear properties.

A relationship between the polarization \(p \) induced of a molecule and the applied electric field \(E \) of incident electromagnetic wave at frequency \(\omega \) can be written by:

\[
p(\omega) = \alpha E^1 + \beta E^2 + \gamma E^3 + \ldots
\]

where \(p(\omega) \) is the induced polarization in a microscopic medium (e.g., a molecule or ion) at laser frequency \(\omega \); \(\alpha \) is the linear polarizability; \(\beta \) is the first hyperpolarizability; \(\gamma \) is the second hyperpolarizability; and \(E \) is the applied electric field component.

Analogously, the macroscopic polarization \(P \) induced in bulk media under intense electromagnetic fields of a laser beam can be expressed in a power series as:

\[
P(\omega) = \chi^{(1)} E^1 + \chi^{(2)} E^2 + \chi^{(3)} E^3 + \ldots
\]

Here \(\chi^{(1)} \), \(\chi^{(2)} \), and \(\chi^{(3)} \) are the first-, second-, and third-order NLO susceptibilities, respectively. The macroscopic second-order optical nonlinearities are related to their corresponding microscopic terms \(\beta \) as follows:

\[
\chi^{(2)}_{IJK} = N \beta_{ijk} f_I f_J f_K
\]

where \(N \) is the molecular number density, \(f \) is the local field factor due to intermolecular interactions, and \(ijk \) and IJK represent directions along molecular and macroscopic axes.
First NLO phenomenon was reported by Franken et al.12 in a quartz crystal one year after the first laser was developed by Maiman13 in 1960. In the beginning, most interest in NLO materials was focused on inorganic materials;14-17 interest in organic materials spurred after the work of Davydov et al.1 on dipolar aromatic compounds. The major advantage of using organic materials for NLO applications lies in the inherent flexibility in their synthesis; a large number of compounds possessing a range of geometries and functional groups can be readily made using well-established synthetic chemistry. It should be noted, however, that organic materials, in general, have limited thermal and electrical stability.

This work describes materials that are designed to exhibit second-order NLO effects; higher order effects are difficult to measure because higher order susceptibilities are usually several orders of magnitude smaller than lower order ones. Much of current interest in NLO materials is focused on the second- and third-order effects.

Figure 2 shows a prototypical second order NLO effect.18 When a noncentrosymmetric material possessing second-order susceptibility ($\chi^{(2)}$) is illuminated with a laser light, the output radiation contains waves of not just input frequency, but also doubled frequency. This phenomenon is generally referred to as frequency doubling or SHG.
After the report of Davydov et al.1 most of the interest in organic NLO materials was on p-nitroaniline-like19 (p-NA) (Figure 3) dipolar organic NLO molecules. Today p-NA is accepted as the prototypical dipolar organic NLO material.

Even though dipolar organic NLO molecules exhibit large SHG activity, some problems concerning NLO applications have been identified: (a) problems during crystallization of long molecules; (b) problems in noncentrosymmetric self-assembly of molecules in crystals due to favored anti-parallel stacking; (c) limited electrooptic configurations due to high anisotropy in these molecules.
The second problem outlined above has been tackled in several ways such as introducing directional hydrogen bonding interactions or chiral substituents. One eminent example that uses a different strategy to generate acentric assembly includes POM (3-methyl-4-nitropyridine-1-oxide)20 (Figure 4); in this molecule the nitroxide and nitro groups exhibit similar push-pull characteristics but the molecule as a whole shows significant β values, and the material shows large $\chi^{(2)}$ values.

\begin{center}
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0,1) -- (0,0);
\draw (0,0) -- (0,1);
\draw (1,0) -- (1,1);
\draw (0,0) -- (1,1);
\draw (0.5,0) -- (0.5,0.5);
\draw (0.5,0.5) -- (1,0.5);
\draw (0.5,0.5) -- (0.5,1);
\draw (0.5,0.5) -- (1,0.5);
\draw (0.5,1) -- (0.5,1.5);
\draw (0.5,1.5) -- (1,1.5);
\draw (0.5,1.5) -- (0.5,2);
\draw (0.5,1.5) -- (1,1.5);
\draw (0.5,2) -- (0.5,2.5);
\draw (0.5,2.5) -- (1,2.5);
\draw (0.5,2.5) -- (0.5,3);
\draw (0.5,2.5) -- (1,2.5);
\draw (0.5,2.5) -- (0.5,3);
\draw (0.5,3) -- (0.5,3.5);
\draw (0.5,3.5) -- (1,3.5);
\draw (0.5,3.5) -- (0.5,4);
\draw (0.5,3.5) -- (1,3.5);
\draw (0.5,3.5) -- (0.5,4);
\draw (0.5,4) -- (0.5,4.5);
\draw (0.5,4.5) -- (1,4.5);
\draw (0.5,4.5) -- (0.5,5);
\draw (0.5,4.5) -- (1,4.5);
\draw (0.5,4.5) -- (0.5,5);
\node at (0.5,0.5) [left] {H$_3$C};
\node at (0.5,1.5) [right] {NO$_2$};
\node at (0.5,2.5) [right] {N--O};
\end{tikzpicture}
\end{center}

Figure 4. 3-Methyl-4-nitropyridine-1-oxide (POM).

Despite the progress made in the dipolar NLO, the dipolar molecules are not best-suited for NLO applications since their high anisotropy does not provide polarization independence.21,22 Based on the experimental evidence23 as well as on general tensorial and quantum-mechanical considerations,24 Zyss proposed that instead of dipolar molecules more symmetrical molecules can self-assemble into more isotropic yet noncentrosymmetric networks in two- and three-dimensions. He determined that these molecules must have octupolar symmetry, and argued that these molecules can alleviate the problems posed by dipolar molecules.25
Zyss also proposed that octupolar materials can be prepared through three important routes26-28: (a) Guanidinium Route (e.g. Crystal Violet, Figure 5); (b) σ-linkage (e.g. Si); and (c) TATB route (e.g. 1,3,5-triamino-2,4,6-trinitrobenzene, TATB, Figure 6).

Since our interest is in “TATB route” type materials, it is represented schematically (Figure 7). Molecular level octupoles are non-dipolar and non-centrosymmetric but one has to ensure that noncentrosymmetric assembly is demonstrated in the crystal in other words bulk noncentrosymmetry must be maintained. Octupoles show the polarization independence and favor noncentrosymmetric assembly. Another advantage of octupoles over dipolar molecules is that their β values increase as the extent of the charge transfer increases, whereas in dipoles they increase to a maximum and then decrease as the bond-length alternation increases.
There are four factors affecting second-order optical nonlinearity: (a) conjugation length; (b) strength of donor and acceptor groups; (c) nature of π-bonding sequence; (d) substitution. Therefore main work in organic octupolar NLO materials is centered on manipulating these four factors and further crystal engineering of such a molecule into a noncentrosymmetric network. To design such acentric network one can identify retrosynthetic routes as stated in the previous work reported by Thalladi et al.30 It must be stated that following this trend is not trivial since majority of trigonal molecules routinely adopt close-packed crystal structures of low symmetry, according to Kitaigorodskii’s19 theory of close-packing. Also today, the importance of H-bonding in crystal engineering is well known.20 Hydrogen bonds can enforce a preferred orientation better than charge-charge or van der Waals interactions since they are moderately strong and directional.21
Etter has proposed the rules about the selectivity of different functional groups for hydrogen bonding. Examples of hydrogen bonding making two-dimensional trigonal symmetric networks are shown below (Figures 8 and 9).

Figure 8. 1,3,5-Tricyanobenzene.
Since three-dimensional structural control is difficult, we concentrated our interest in two-dimensional noncentrosymmetric networks. A typical symmetry pattern is that of trigonal molecules self-assembled into noncentrosymmetric structures as shown in Figures 8 and 9. When Thalladi et al. used retrosynthetic analysis of a two-dimensional noncentrosymmetric network A (Figure 10) to identify its structural units that are assembled with intermolecular interactions, they discovered the desired microscopic architecture B. They have identified crystalline triaryloxy substituted 1,3,5-triazines forming stacked diads called Piedfort units, as their starting supramolecular synthons C.
On the basis of expected specific electrostatic interactions between phenyl rings, by further retrosynthetic analysis they identified 2,4,6-triphenoxy-1,3,5-triazines D as starting molecules for the generation of noncentrosymmetric trigonal octupolar networks. In summary they reported crystal structures and NLO properties of molecules of a series 2,4,6-triaryloxy-1,3,5-triazines, 1-6 (Figure 11) that are stabilized by weak intermolecular interactions such as C-H…O and C-H…N hydrogen bonding.

Figure 10. Retrosynthetic Analysis of trigonal octupolar network
(A) Trigonal network; (B) Recognition of trigonal species; (C) Stacked molecular diads of triazines; (D) 2,4,6-triaryloxy-1,3,5-triazine.
In this work, based on the studies above, we proposed to create a molecular analog (2,4,6-tris-(diphenylamino)-1,3,5-triazines) of the conceptual dimer formed from two 2,4,6-triphenylamino-1,3,5-triazines by stacking on each other.

Figure 11. List of triazines studied by Thalladi et al.
Results and Discussion

In the area of trigonal organic octupolar NLO materials, most of the studies focused on the molecular level optimization, synthesis and characterization of the compounds. Both by experimental results and also theoretical calculations it has been verified that hyperpolarizability of an organic compound is related to several factors such as: 1) conjugation; 2) length of \(\pi \)-conjugation; 3) strength of electron donor and acceptor groups; and 4) substitution. Therefore, many researchers focused on the molecular level chemistry of trigonal organic compounds in by manipulating these four factors.

Figure 12 (below) shows some examples that belong to the trigonal octupolar compounds family. In molecular level they are all octupolar, noncentrosymmetric and show nonlinear optical properties. One important issue is to carry over this molecular noncentrosymmetry, to the bulk noncentrosymmetry, in other words to the supramolecular level.
Figure 12. Examples of trigonal octupolar molecules.
Being octupolar, these molecules have a zero ground-state dipole moment, so they are predicted to favor the formation of noncentrosymmetric networks.

Thalladi et al. reported a series of 2,4,6-triphenoxy-1,3,5-triazines (Figure 13). These molecules are very good examples of molecular level design by using crystal engineering principles to obtain octupolar NLO materials. This study is also a good example of how to carry over molecular noncentrosymmetry into two-dimensional bulk noncentrosymmetry in crystal structure, where compound 1 (Figure 13) adopts a noncentrosymmetric crystal structure with a measurable SHG powder signal.

Using retrosynthetic analysis they identified appropriate precursor trigonal molecules (D) (Figure 14) based on the concept of the dimeric Piedfort unit (C) where two TAOT molecule are stacked on each other.
In our work we intended to create molecular analogs of the conceptual dimer C that are optimized both at molecular and supramolecular level. It has been reported by Thalladi et al. that a typical symmetry pattern that leads to noncentrosymmetric two-dimensional networks can be developed by using molecules having trigonal symmetry as templates.

We propose herein the retrosynthesis (Figure 15) of a two-dimensional network generated by the conceptual dimer through herringbone interactions between aryl rings.

Further retrosynthesis let us identify tris-diarylamino-triazines as starting materials.

Figure 14. Retrosynthetic analysis of 2,4,6-triaryloxy-1,3,5-triazines.
Figure 15. Retrosynthetic analysis for tris-diaaryl amino-triazines.
Our next goal was to synthesize this type of molecules and decide what type of R groups to use. We aimed at polar, nonpolar, mono substituted, symmetrical disubstituted (both R groups are same) and nonsymmetrically disubstituted (R1 and R2 are different) R groups to get different varieties and also to observe the effects of substitution and the effects of different R groups. Unfortunately, due to various constraints we were only able to synthesize few of them.

Attempted Synthesis of Diphenylamines

The best way to obtain the desired triazines is to couple cyanuric chloride with substituted diphenylamines. We began our work with an attempt to synthesize the desired diarylamines by coupling of aryl halides with anilines (Figure 16). Figure 17 shows the diarylamines we have been able to synthesize; most of these were made only in small quantities due to a range of synthetic and purification difficulties described below.

![Figure 16. Schematic representation of synthesis of diphenylamines.](image-url)
There are many papers in the literature reporting the synthesis of substituted diphenyl amines; in general they follow the strategy (Figure 16) of using a mixture of catalyst, base and solvent. We used mostly the copper based catalysts; others used palladium or nickel with complex ligands and tedious reaction conditions. We attempted various conditions with copper catalyst by using copper iodide, copper sulfate or copper bronze, as well as changing base (K₂CO₃, KOᵗ-Bu, KOH) and solvent. We also tried the synthesis in pressure vessels without any catalyst in the presence of potassium ᵄ-butoxide. It should be noted that for the mono-substituted diphenyl amines, there are two options: desired functional group can be either on aryl halide or on aniline, in particular for the synthesis of phenyl-ₚ-tolylamine we tried the both ways. In addition, we attempted the synthesis of ᵃ,ₚ'-dihydroxydiphenyl amine from the acid catalyzed condensation of ᵃ-aminophenol in the presence of benzenesulfonic acid. Unfortunately, most reactions resulted in low yields and many byproducts, except in the case of the phenyl-ₚ-tolylamine.
Synthesis of Triarylamino-Triazines

Our aim was to synthesize tris-phenylamino-triazines and to use them as intermediates for further synthesis of tri-substituted diarylamino-triazines, but we also considered the opportunity to synthesize them as another family.

Synthesis of triarylaminotriazines can be achieved by coupling cyanuric chloride with anilines (Figure 18). The anilines that were used are listed below (Figure 19), we also tried some phenols (Figure 20) instead of anilines. In the case of 4-aminophenol and 3-aminophenol, since they bear both amine and hydroxy functional groups, we found a way in the literature to just react with amine group. We also tried to convert methoxy group of the products 4-methoxyaniline and 4-methoxyphenol to hydroxy group using BBr₃.

Figure 18. Schematic representation of synthesis of tris-substituted-triazines.
Synthesis of *tris*-Diarylamino-Triazines

Triazine family is well known in terms of synthesis. The reaction scheme (Figure 21) is similar to triarylamino-triazines: coupling of substituted diarylamine with cyanuric chloride at high temperatures (even though it is reported as first substitution occurs at 0 °C, second one at 25 °C and the third and last one at 67 °C, we got success over 200 °C) results in the formation of the triazine product with vigorous formation of HCl as the reaction progressed.

1) Aniline
2) *p*-toluidine
3) *p*-chloroaniline
4) *p*-bromoaniline
5) 4-aminopyridine
6) 2-amino-5-methyl-aniline
7) *p*-amino-acetophenone
8) 3-chloro-4-methyl-aniline
9) 4-methoxyaniline

1) 4-aminophenol
2) 3-aminophenol
3) methoxyphenol
4) phenylphenol
5) *p*-cresol

Figure 19. List of anilines.
Figure 20. List of phenols.
Since our aim was both to synthesize triazines and also analyze the effects of substitution we decided to synthesize triazines with all kinds of functional groups, both symmetrical (R1 and R2 are same) and unsymmetrical (R1 and R2 are different). But due to some constraints we were only able to synthesize few of them, and they are listed below (Figure 22). Products 1-6 have been purified, the remaining ones are still in process.

1) 2,4,6-(m,m’-ditolylamino)-1,3,5-triazine
2) 2,4,6-(p,p’-ditolylamino)-1,3,5-triazine
3) 2,4,6-(p-methyldiphenylamino)-1,3,5-triazine
4) 2,4,6-(m-methyldiphenylamino)-1,3,5-triazine
5) 2,4,6-(p-hydroxydiphenylamino)-1,3,5-triazine
6) 2,4,6-(m-methoxydiphenylamino)-1,3,5-triazine
7) 2,4,6-(N-phenyl-1-naphthylamino)-1,3,5-triazine
8) 2,4,6-(N-phenyl-2-naphthylamino)-1,3,5-triazine
9) 2,4,6-(p-nitrosodiphenylamino)-1,3,5-triazine
10) 2,4,6-(p-nitrodi phenylamino)-1,3,5-triazine
11) 2,4,6-(m-hydroxydiphenylamino)-1,3,5-triazine

Figure 22. List of tridiphenylamino-triazines obtained.
Crystallization

We tried to obtain crystals of the pure compounds by slow evaporation technique with different solvents. All crystals we got belong to the monoclinic space group $P2_1/c$. Even though they all belong to centrosymmetric space group, trigonal or pseudotrigonal symmetry can be seen in the crystal structures. All possible C-H..π interactions are listed in Table 1, C-H..N interactions are listed in Table 2, and also crystallographic data for the triazines 1-3 are listed in Table 3.

Table 1. Geometrical parameters for C-H..π interactions found in the structures of 1-3.

<table>
<thead>
<tr>
<th></th>
<th>H..Cg (Å)</th>
<th>C..Cg (Å)</th>
<th>C-H..Cg (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.979</td>
<td>3.670</td>
<td>129.20</td>
</tr>
<tr>
<td></td>
<td>2.855</td>
<td>3.509</td>
<td>125.57</td>
</tr>
<tr>
<td></td>
<td>2.906</td>
<td>3.680</td>
<td>138.36</td>
</tr>
<tr>
<td></td>
<td>2.768</td>
<td>3.717</td>
<td>170.63</td>
</tr>
<tr>
<td></td>
<td>2.722</td>
<td>3.614</td>
<td>153.05</td>
</tr>
<tr>
<td>2</td>
<td>2.675</td>
<td>3.381</td>
<td>131.50</td>
</tr>
<tr>
<td></td>
<td>2.979</td>
<td>3.715</td>
<td>135.24</td>
</tr>
<tr>
<td></td>
<td>2.866</td>
<td>3.784</td>
<td>156.17</td>
</tr>
<tr>
<td>3</td>
<td>2.899</td>
<td>3.452</td>
<td>118.31</td>
</tr>
<tr>
<td></td>
<td>2.647</td>
<td>3.482</td>
<td>146.82</td>
</tr>
<tr>
<td></td>
<td>2.650</td>
<td>3.52</td>
<td>147.89</td>
</tr>
</tbody>
</table>
Table 2. Geometrical parameters for C-H...N hydrogen bonds in the structures of 1-3.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.68</td>
<td>3.35</td>
<td>127</td>
</tr>
<tr>
<td>2</td>
<td>2.94</td>
<td>3.66</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>2.96</td>
<td>3.69</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>2.40</td>
<td>3.34</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>2.66</td>
<td>3.52</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>2.87</td>
<td>3.63</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>2.88</td>
<td>3.69</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>2.49</td>
<td>3.40</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>2.72</td>
<td>3.61</td>
<td>157</td>
</tr>
</tbody>
</table>

Table 3. Crystallographic Data for Triazines 1-3.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emp. Formula</td>
<td>C_{45}H_{42}N_{6}</td>
<td>C_{45}H_{42}N_{6}</td>
<td>C_{45}H_{36}N_{6}</td>
</tr>
<tr>
<td>Formula Wt.</td>
<td>666.85</td>
<td>666.85</td>
<td>624.77</td>
</tr>
<tr>
<td>Crystal System</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space Group</td>
<td>p21/c</td>
<td>p21/c</td>
<td>p21/c</td>
</tr>
<tr>
<td>a (Å)</td>
<td>14.2520(18)</td>
<td>12.7264(3)</td>
<td>12.3563(8)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>20.377(3)</td>
<td>25.8845(7)</td>
<td>24.1723(13)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>13.7982(18)</td>
<td>11.3953(3)</td>
<td>11.5861(7)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (deg)</td>
<td>113.493(2)</td>
<td>103.402(2)</td>
<td>102.021(4)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>3674.5(9)</td>
<td>3651.58(17)</td>
<td>3384.7(4)</td>
</tr>
<tr>
<td>(D_{\text{calc}}) (Mg/m³)</td>
<td>1.2054(3)</td>
<td>1.2130(1)</td>
<td>1.2261(1)</td>
</tr>
</tbody>
</table>
1. 2,4,6-(\textit{m, m'}-ditolylamino)-1,3,5-triazine (MDMETZ)

This molecule has the formula C_{45}H_{42}N_{6} and formula weight of 666.85. Crystal structure belongs to the space group \(P2_1/c \). We obtained the crystals from ethanol. Relevant crystallographic parameters are listed in Table 3. As it can be seen from the picture (Figure 23) the molecule does not retain trigonal symmetry in the crystalline form.

![Figure 23. Picture of MDMETZ molecule in crystal.](https://example.com/figure23)

Here phenyl rings are neither planar nor perpendicular to the central ring. Dihedral angles between the planes belonging to phenyl rings attached to same nitrogen atom are given in
Table 4, and dihedral plane angles between the phenyl rings and central ring are given in Table 5.

Table 4. MDMETZ dihedral angles between phenyl rings.

<table>
<thead>
<tr>
<th>Cg</th>
<th>Cg</th>
<th>Alpha (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>63.92</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>87.41</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>83.58</td>
</tr>
</tbody>
</table>

Table 5. MDMETZ dihedral angles between phenyl rings and central ring.

<table>
<thead>
<tr>
<th>Cg</th>
<th>Cg</th>
<th>Alpha (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>76.11</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>51.23</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>69.48</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>57.73</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>33.71</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>72.42</td>
</tr>
</tbody>
</table>

Figure 24 shows the arrangement of molecules within the crystal. To show the packing of the crystals, pictures belonging to layers from all sides, view down [100] (Figure 25), view down [010] (Figure 26), view down [001] (Figure 27) are shown in the following pictures.
Figure 24. MDMETZ Hexagonal Structure.
Figure 25. MDMETZ crystal view down [100].
Figure 26. MDMETZ crystal view down [010].
As shown in Figure 28, each MDMETZ molecule participates in two C-H…N contacts and four C-H...π interactions. It should be noted that from this figure only two of the four C-H...π can be seen. C-H..N interactions are shown in blue and C-H…π interactions are shown in red color.
Below is the picture of the molecules that are connected by C-H...π bonding view down [001] (Figure 29). Central molecule is related to the other four molecules by screw axis. Even though it looks like they are all in the same plane, planes belonging to the central rings of the central molecule and others are creating a 31-degree angle. In the plane of paper, view down [100], they are all connected to one molecule above and one molecule below by C-H..N H-bonding (can be seen from Figure 25). Also the angle between the central molecule and the others and the zig-zag shape of the layer can be seen in same picture.

Figure 28. MDMETZ interactions view down [100] (C-H..N:blue; C-H..π: red).
2. 2,4,6-(p,p’-ditolylamino)-1,3,5-triazine (PDMETZ)

PDMETZ molecule has the formula $C_{45}H_{42}N_6$ and formula weight of 666.85. It also belongs to centrosymmetric space group $P2_1/c$. Relevant crystallographic data is given in Table 3. Crystals were obtained from DMF in the form of tiny needles. As it can be seen from Figure 30, this molecule also does not retain the trigonal symmetry in the crystalline form. Here again the phenyl rings are not in the same plane as the central ring. Dihedral angles between the planes belonging to phenyl rings attached to same nitrogen atom are given in Table 6, and dihedral angles between the phenyl rings and central ring are given in Table 7. Ring 3 is unusually bent unlike other rings, presumably because of the interactions it is making; C-H..N and C-H..π bondings in [001] direction.
Table 6. PDMETZ dihedral angles between phenyl rings.

<table>
<thead>
<tr>
<th>Cg</th>
<th>Cg</th>
<th>Alpha (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>72.03</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>73.17</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>80.26</td>
</tr>
</tbody>
</table>

Table 7. PDMETZ dihedral angles between phenyl rings and central ring.

<table>
<thead>
<tr>
<th>Cg</th>
<th>Cg</th>
<th>Alpha (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>54.48</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>75.83</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>47.17</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>69.20</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>55.44</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>47.70</td>
</tr>
</tbody>
</table>

Offset stacked layers of molecules can be seen in Figure 31. The centroid to centroid distance of central rings between nearest molecules in adjacent layers is 6.921 Å; the angle between the planes of these central rings is 14° indicating that the layers are nearly flat. These nearest neighbors are connected to each other through three C-H...N bonds; each molecule donates two bonds and accepts one along [001]. These two molecules are translationally stacked along [001] and produce a columnar structure. Figures 32 and 33 show the packing of molecules along two other crystallographic axes. A view down 001 (Figure 34) shows the molecules along the column are in a zigzag arrangement. Figures 35 and 36 display the C-H...N and C-H...π contacts in the crystal structure.
Figure 30. PDMETZ molecule.

Figure 31. PDMETZ crystal view down [100].
Figure 32. PDMETZ crystal view down [010].
Figure 33. PDMETZ crystal view down [001].
Figure 34. PDMETZ view down [001].
Figure 35. PDMETZ C-H..N bonds view down [100].
Figure 36. PDMETZ all interactions view down [100] (C-H..N: blue; C-H..Cg: red).
3. **2,4,6-tris-(p-methyldiphenylamino)-1,3,5-triazine (PMETZ)**

PMETZ molecule has the formula $C_{42}H_{36}N_6$ and formula weight of 666.85. It crystallizes in the centrosymmetric space group $P2_1/c$. The crystal is obtained from methanol in the form of tiny needles. Relevant crystallographic data is given in Table 3. This crystal structure is not completely solved yet. According to the data we obtained, molecule does not carry over the trigonal symmetry to the crystal (Figure 37). Instead of altering phenyl rings (one tolyl one benzyl), two tolyl rings are next to each other (numbered as 3 and 4 in Figure 37). The phenyl rings are not perpendicular to the central ring. Dihedral angles between the planes belonging to phenyl rings attached to same nitrogen atom are given in Table 8, and also dihedral plane angles between the phenyl rings and central ring are given in Table 9.

<table>
<thead>
<tr>
<th>Cg</th>
<th>Cg</th>
<th>Alpha (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>83.32</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>80.99</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>85.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cg</th>
<th>Cg</th>
<th>Alpha (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>41.54</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>64.83</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>63.71</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>60.47</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>60.68</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>67.69</td>
</tr>
</tbody>
</table>

Table 8. PMETZ dihedral angles between phenyl rings.

Table 9. PMETZ dihedral angles between phenyl rings and central ring.
The crystal structure of PMETZ is very similar to PDMETZ. Figures 38, 39, and 40 show the molecular packing along three crystallographic axes. The view down [001] (Figure 40), illustrates that two molecules are on top of each other as in PDMETZ. These molecules are making an angle of 16.84° between the planes of central rings. They have 6.064 Å of centroid to centroid distance belonging to central rings. Figure 41 illustrates that molecules are in a zigzag arrangement in the column as seen in PDMETZ.

In Figure 38, molecules on top of each other are connected by C-H..N and C-H..π interactions: along [001] it is accepting two C-H..N bonding; and in the reverse direction it is donating two C-H..N and also donating one C-H..π (Figure 42). Through these bonds, molecules are assembling a columnar structure as in PDMETZ.
Figure 37. PMETZ molecule.
Figure 38. PMETZ crystal view down [100].
Figure 39. PMETZ crystal view down [010].
Figure 40. PMETZ crystal view down [001].
Figure 41. Zig-zag shape formed by PMETZ molecules view down [001].
Figure 42. PMETZ all interactions
Experimental Section

1. General Procedure for the Synthesis of Substituted Diphenylamines

In a pressure tube with stir bar, bromobenzene (8 mmol) and amine (4 mmol) were dissolved in 20 ml Toluene. After the addition of KOt-Bu (8 mmol), purged with Nitrogen and then the pressure tube was sealed and heated to 135 °C in an oil bath. After 36 hours, the reaction mixture was allowed to cool to room temperature and was quenched with 20 ml of water. The aqueous phase was extracted three times with 20 ml dichloromethane. The combined organic phases were dried over magnesium sulfate, and the solvent was removed in vacuo. The resulting crude product was purified by column chromatography.

p-methyldiphenylamine. Bromobenzene (1.2562 g, 8 mmol), aniline (0.36 ml, 4 mmol) and KOt-Bu (0.8977g, 8mmol) were reacted according to the general procedure. After column chromatography (Hexane: Ethyl acetate= 19:1) product was isolated as solid in 10% yield. Characterized by \(^1\)H NMR and \(^{13}\)C NMR.

2. General Procedure for the Synthesis of tris-(substituted diphenylamino)-triazines

Commercially available cyanuric chloride and the appropriate amines were used as received without further purification. Cyanuric chloride (4 mmol) and appropriate amine (12 mmol) were dissolved in 10 ml benzene and stirred for 2 hours. The benzene was distilled as the sand bath temperature was raised to 200+ °C. Hydrogen Chloride was smoothly evolved in this temperature range and the reaction was complete in 1.5 hours.
2,4,6-(\textit{m},\textit{m}′-ditolylamino)-1,3,5-triazine (MDMETZ). Cyanuric chloride (0.922 g, 5 mmol) and \textit{m},\textit{m}′-ditolylamine (2.959 g, 15 mmol) were reacted according to the general procedure. The flask containing the reactants was gradually heated to 290 °C in a sand bath. Once the temperature is stabilized, the flask was gradually cooled down to room temperature and the crude reaction product was extracted with boiling ethanol leaving a residue of crude MDMETZ. The product was characterized by 1H NMR (Figure 43.) and 13C NMR (Figure 44.) spectroscopy.

2,4,6-(\textit{p},\textit{p}′-ditolylamino)-1,3,5-triazine (PDMETZ). Cyanuric chloride (0.3116 g, 1.69 mmol) and \textit{p},\textit{p}′-ditolylamine (1.000 g, 5.07 mmol) were reacted according to the general procedure. Temperature raised to 310 °C. Cooled down to room temperature and crude reaction product was extracted with boiling ethanol leaving a residue of crude PDMETZ. Characterized by 1H NMR (Figure 45.) and 13C NMR (Figure 46.).

2,4,6-tris-(\textit{p}-methyldiphenylamino)-1,3,5-triazine (PMETZ). Cyanuric chloride (0.168 g, 0.913 mmol) and \textit{p}-methyldiphenylamine (0.500 g, 2.73 mmol) were reacted according to the general procedure. Temperature raised to 220 °C. Cooled down to room temperature and crude reaction product was extracted with methanol. Characterization was done by 1H NMR (Figure 47.) and 13C NMR (Figure 48.).

2,4,6-tris-(\textit{m}-methyldiphenylamino)-1,3,5-triazine. Cyanuric chloride (1.844 g, 10 mmol) and 3-methyldiphenylamine (5.157 ml, 30 mmol) were dissolved in toluene and refluxed for 2 hours. Distilled toluene and then raised the temperature to 200 °C
in 1.5 hours. Cooled to room temperature and the product washed with methanol. Characterization was done by 1H NMR (Figure 49.) and 13C NMR (Figure 50).

2,4,6-tris-(p-hydroxydiphenylamino)-1,3,5-triazine. Cyanuric chloride (1.106 g, 6 mmol) and 4-hydroxydiphenylamine (3.33 g, 18 mmol) and potassium carbonate (1.244 g, 9 mmol) were mixed in 50 ml toluene. Refluxed for 48 hours. Solid washed with 200 ml hot water and then 50 ml toluene. Characterized by 1H NMR (Figure 51.) and 13C NMR (Figure 52.).

2,4,6-tris-(m-methoxydiphenylamino)-1,3,5-triazine. Cyanuric chloride (1.844 g, 10 mmol) and 3-methoxydiphenylamine (5.977 g, 30 mmol) were dissolved in 50 ml toluene. Refluxed for 2 hours under nitrogen. Toluene distilled and the temperature raised to 220 °C over 1.5 hours. Cooled to room temperature and washed with methanol. Characterization done by 1H NMR (Figure 53.) and 13C NMR (Figure 54.).

2,4,6-tris-(N-phenyl-1-naphthylamino)-1,3,5-triazine; 2,4,6-tris-(N-phenyl-2-naphthylamino)-1,3,5-triazine; 2,4,6-tris-(p-nitrosodiphenylamino)-1,3,5-triazine; 2,4,6-tris-(p-nitrodiphenylamino)-1,3,5-triazine and 2,4,6-tris-(m-hydroxydiphenylamino)-1,3,5-triazine. The synthesis of these compounds was attempted according to the general procedure; most reactions yielded several byproducts; these products currently being purified. Also we tried to convert the methyl groups of PDMETZ and MDMETZ to COOH groups by KMnO₄ and organic equivalent of KMnO₄ (nBu₄NMnO₄); these reactions have not been successful.
Summary and Conclusion

Here we showed the synthesis of diarylamines exhibiting different functional groups on two phenyl rings. The successful attempt was in the case of phenyl-p-tolylamine, but we believe that different diarylamines can be synthesized by this procedure without any need of complex reaction conditions. We synthesized 2,4,6-arylamino-1,3,5-triazines both for the purpose of as a new family, and as intermediates for further synthesis of targeted triazines. We showed the successful coupling of diarylamines with cyanuric chloride to obtain the targeted molecules of 2,4,6-diarylamino-1,3,5-triazines. We successfully obtained the crystals of the products 2,4,6-(m,m’-ditolylamino)-1,3,5-triazine, 2,4,6-(p,p’-ditolylamino)-1,3,5-triazine and 2,4,6-(phenyl-p-tolylamino)-1,3,5-triazine. By successful retrosynthetic analysis we arrived at the targeted triazines, and showed that triazines synthesized may be accepted as molecular analogs of ideal Piedfort units formed by cofacial dimers of 2,4,6-arylamino-1,3,5-triazine molecules as formed in the previous case of 2,4,6-triaryloxy-1,3,5-triazines. All the crystals obtained exhibit methyl substituents, so far they belong to centrosymmetric space group $P2_1/c$. Though none of the molecules retain trigonal symmetry in the crystal structures, pseudo-trigonal assembly of molecules is identified in some cases. The assembly of molecules within the crystals results in columnar structures formed by C-H..N and C-H..π interactions. We believe that some other functional groups other than methyl group may give us targeted two-dimensional noncentrosymmetric networks.
Figure 43. Spectrum 1. MDMETZ H1
Figure 44. Spectrum 2. MDMETZ 13C
Figure 48. Spectrum 6, PMETZ_13C.
Figure 49. Spectrum 7. MMETZ 1H
Figure 50. Spectrum 8, MMEFTZ 13C
Figure 52. Spectrum 10. POHTZ13C
Figure 5.3: Spectrum II. MMOTZ 1H
Figure 54. Spectrum 12. MMOTZ 13C
REFERENCES

