


(a) Tree 1
(b) Tree 2

(c) Tree 3 (d) Tree 4

(e) Tree 5

Figure 6.1: Sample image from all the date sets
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6.2 Features vs Bark type

For each of the above data set, the Multi-scale grid based FAST algorithm was

used to obtain an average number of features. The average number of features in

short, was the mean of the features counted by the algorithm for 20 frames. This is

summarized in the following Table.

# Data Set Type Average no of features in a frames

1 Data Set 1 Dry Bark 175
2 Data Set 2 Smooth Bark 258
3 Data Set 3 Big Ridge 281
4 Data Set 4 Small Ridge 250
5 Data Set 5 Scaly Bark 239

Table 6.2: Average no of features is calculated in batches of 20 frames

It has been demonstrated that more number of features in the VSLAM system

will yield in better solution[16]. Since We are getting more 150 features per frame

reliably, the algorithm is suitable for the different tree types.

6.3 Comparison of Feature Detectors

A comparative study of the average number of features obtained for a single frame

using different feature detector algorithms was done. Data set 1 was used for this

study. The results indicated that Grid based FAST detector was able to detect more

number of features in a single frame compared to the other algorithms. The grid

based FAST detector algorithm was thus chosen in order to aid in better estimation

of the tree features[16].
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# Data Set Type of detector average no of features in a frames

1 Data Set 1 FAST 43
2 Data Set 1 Grid based FAST 87
3 Data Set 1 Good Features to track 50
4 Data Set 1 SURF 47

Table 6.3: Comparison between different types of feature detector used for the dry
bark dataset with indoor lighting

6.4 Matching vs Bark type

Once the grid based FAST was finalized as the feature detection algorithm, an

optical flow matching algorithm was used to compare the matching percentages in

all the data sets. A higher matching percentage indicated better ability to keep

track of the features in different frames. The matching percentage is defined by the

following equation.

matching% =
matchesinconsecutiveimages

Featuresdetectedinn1stimage
(6.1)

# Data Set Average matching %

1 Data Set 1 58.75
2 Data Set 2 85.45
3 Data Set 3 80.32
4 Data Set 4 78.43
5 Data Set 5 79.89

Table 6.4: Average no of matches using the formula in 6.1

The average matching percentage for all the data sets lie in the range 58 - 85,

indicating that the optical flow matching algorithm is a suitable tool for feature

matching.
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6.5 Comparison of Matching techniques

Similar to the study carried out for comparing feature detection algorithms, a com-

parison of matching algorithms was also performed. Optical flow and descriptor

based matching algorithms were compared for Data set 1. In this study, the optical

flow algorithm emerged as a better option, yielding a matching percentage of 58.78.

# Data Set Matching Technique % of Matches

1 Data Set 1 Optical Flow 58.78
2 Data Set 1 Descriptor Based 40.87

Table 6.5: Comparison between the matching techniques

6.6 Sparse vs dense

The extended Kalman filter was implemented using Sparse matrix and dense matrix.

A comparison between the performance of both is presented in the following table.

It was concluded that the sparse matrix based implementation was faster than the

dense matrix.

Operation Sparse(Avg) in msec Dense(Avg) in msec

Add a new feature 0.10 0.36
Delete a feature 0.10 2 0.20
Kalman Measurement 2.0 10.0
Prediction 5.00 9.00
Kalman Update 120.00 300.00

Table 6.6: Average time for the different operations in the EKF filter. The processor
used is Intel i7-3630QM CPU 2.40GHz
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Chapter 7

Conclusion

Visual Simultaneous Localization and Mapping is a suitable algorithm for generat-

ing 3D mesh grid of the tree. The multi-scaled grid based FAST feature extractor is

successful in generating large number of features in trees usually affected by ALB. In

addition to finding the features, matches need to be determined in order to update

the Extend Kalman Filter. We see that by using Quad tree combined with optical

flow we can get reasonable number of matches to correct the system estimates.

Large Matrix sizes implemented in dense memory format can lead to slow com-

putation in system. Hence by using Sparse memory format for the matrices, we can

achieve near real time processing. Finally implementing Visual SLAM for mesh grid

generation needs effective use of the computing resources such as multi-threading,

shared pointers, corner detection etc available in tools such as OpenCV, Eigen, PCL.
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Chapter 8

Future Work

The current implementation produces a model that is of arbitrary scale to the actual

tree. It is possible to introduce scale into monocular system by using external

observations. One such observation about the scale can be introduced by counting

the number of steps the robot takes and the amount of distance traveled in each

step.

In Image processing front, the matching algorithm currently only produces an

average of 80% matches. This is mainly due to the local inconsistencies that occur

when using optical flow. By improving upon the prediction of features in the next

image, we can get better matches and thus provide a more robust estimate of the

system.

From a computation point of view, the Extended Kalman filter computation

speed can be further increased by exploiting properties of symmetric matrix. Also

further parallelism can be introduced in computation of measurements by using

GPU to get faster speeds.

Radius estimation and other characteristics of the tree can be extracted from the

mesh grid by performing addition estimation, which will be useful for tree surveying.
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Loop closure in SLAM is a constantly researched upon topic, incorporating loop

closure techniques with VSLAM can extended this project to give better results

over a long time. Finally by incorporating potential ALB related features in the

3D model can further facilitate the USDA authorities in identifying probable tree

candidates.
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