March 2016

Upgrade Design for Septage Treatment: Pease Tradeport Wastewater Treatment Plant, Portsmouth, New Hampshire

Katherine Lynn Hedberg
Worcester Polytechnic Institute

Rita Ping Newman
Worcester Polytechnic Institute

Ryan Christopher Clark
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

Repository Citation
Upgrade Design for Septage Treatment
Pease Tradeport Wastewater Treatment Plant – Portsmouth, New Hampshire

Pease Wastewater Treatment Plant (Portsmouth City Council, 2015)

A Major Qualifying Project Proposal Submitted by:
Ryan Clark
Katherine Hedberg
Rita Newman
March 4, 2016

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects
Abstract

This Major Qualifying Project was completed in conjunction with Stantec to design upgrade options to increase septage treatment capacity at the Pease Wastewater Treatment Plant in Portsmouth, NH. Designs modernized existing technologies and suggested methods to treat glycol waste. Following a site visit, data analysis, design alternative development, and cost estimates, designs were scored in health and safety, environmental and sustainability, economic, and constructability criteria. This project proposes one short-term and one long-term design to resolve existing and future problems.
Capstone Design Statement

The Design Problem
The Pease Wastewater Treatment Plant (WWTP), located in Portsmouth, New Hampshire, was in need of new septage receiving design solutions. The plant often operated at capacity and the system was in need of upgrades to generate additional revenue and accept a glycol waste from a local biopharmaceutical company. This waste represented the potential to provide “food” for the microbes over the low-flow weekends, thus keeping the system stable and avoiding the Monday system shock. In collaboration with Stantec, this Major Qualifying Project (MQP) proposed several alternative designs to create a more robust system. Each design alternative contained cost estimates developed through collaboration with vendors and manufacturers. The benefits and disadvantages of each design were weighed through consideration of economic, environmental and sustainability, constructability, and health and safety constraints.

The Approach
Review of existing WWTP drawings and data, a site visit, and consultation with plant operators and Stantec engineers provided a full understanding of the plant operations. The team developed five alternatives that addressed the capacity improvements and the glycol waste. The design options were reviewed by Stantec engineers to ensure they met the needs of the client.

Health and Safety Constraints
WWTP health and safety constraints are twofold. The health of the population served by the plant is affected, as is the health and safety of individuals working in and operating the plant. To best serve the community’s increasing need for septage treatment, each design accommodated higher intake than anticipated. To improve safety for plant operators, equipment with more operating hazards were avoided in design development.

Environmental and Sustainability Constraints
Developing sustainable, environmentally conscious designs was imperative. High-quality system components, manufactured to last for years without replacement, were preferred in design development. The environmental impact of relocating or expanding the septage receiving facility was also considered.

Economic Constraints
Cost estimates are an integral part of any engineering decision. Each estimate included the capital cost and operations and management expenses. They also considered whether the alternative encompassed the potential revenue from the glycol waste. To develop the estimates, the team contacted vendors to receive quotes for necessary equipment. Additionally, some values in the cost estimates came from RS Means.

Constructability Constraints
Existing physical land resources also create limitations in implementing design. Some design alternatives required construction or more physical space than would fit within existing plant facilities. Designing lengthy pipe connections between facilities also constrained options for system component placement. Timeline was another important factor because longer construction time would delay the potential income from the glycol waste.
Professional Licensure

Becoming a licensed Professional Engineer (PE) symbolizes that an individual is a skilled, ethical engineer that will provide quality work for clients. The license is required if someone is in charge of work, as only Professional Engineers can sign and provide their seal on engineering drawings. In this way, PEs are able to access career opportunities that are otherwise unattainable.

There are various steps that an individual must complete to receive a professional engineer’s license. The first is to graduate from an accredited engineering program with a four-year degree. The next is to pass the FE, or Fundamentals of Engineering, exam. To get practice in the field, the engineer must work four years under the supervision of a licensed professional engineer. After all of these steps are completed, the engineer needs to pass the Principles and Practice of Engineering, or PE, exam to become officially licensed. However, the work does not end there. Many states require that Professional Engineers further their education and skills by taking more courses and utilizing professional development opportunities. Some of these may involve participating in web seminars, conducting independent studies, or attending events like the Professional Engineers Conference.

Obtaining the PE license is a sign of respect amongst engineering colleagues and trust between the PE and the communities they work for. The license explains that the engineer is competent and will work to make the communities safer. Obviously with this authority comes responsibility, as PEs are held accountable for the work they do and the lives that work affects. While the opportunities in a PEs career dramatically increase, they must constantly adhere to the ethically correct decisions to maintain their license and reputation.
Executive Summary

Septage is a liquid and solid waste which often contains high levels of grease, grit, hair, and large solids that can clog pipes and pumps (U.S. Environmental Protection Agency, 1994). With a high BOD concentration, it requires special treatment processes. Some facilities treat solely septage, though many wastewater treatment facilities treat it for a source of additional revenue. As long as the waste is pre-treated through a screen, it can be slowly combined with wastewater and go through the treatment process.

Located in Portsmouth, New Hampshire, the Pease Wastewater Treatment Plant (WWTP) is in need of new design solutions for its septage treatment process. The WWTP accepts between 50,000-220,000 gallons of septage each month. The existing receiving facility consists of pretreatment screening and temporary storage in two 7,000-gallon storage tanks. Each of these components has maintenance issues; rocks and rags build up in the screen and grit accumulates in the storage tanks. Additional problems result from limited septage handling capacity. Throughout the day, trucks unload at the facility and the waste that enters the storage tanks is pumped into the treatment plant system at 50gpm. Occasionally, the storage tanks reach maximum capacity before the end of day, resulting in overflow directly into the headworks facility. Although this has not yet caused organic overload problems for the system, nor violated the plant’s NPDES permit for BOD levels, each design alternative presented here works to remedy operational problems and increase septage treatment capacity by 50% to prevent this unmetered overflow as demand increases over time.

The WWTP also hopes to accept glycol waste from Lonza Biologics Inc., a local biopharmaceutical company. Pease anticipates that Lonza will generate up to 3,500 gallons of glycol each week and that the waste will have a BOD of 200,000 mg/L. Although glycol does not require the same pre-treatment as septage, its high BOD concentration requires a very slow feed rate into the treatment system. Fortunately, this waste could potentially solve the problem of insufficient food for the microbes in the activated sludge Sequential Batch Reactors (SBRs). Due to seasonal and hourly changes in wastewater and septage flow, Pease experiences high and low-flow periods. During low-flow periods, which occur during weekends and winter months, the SBR microbes are starved. Glycol can serve as a supplemental food source and elevate BOD levels in low-flow periods to keep the microbes stable. To serve this purpose, glycol will require separate storage from septage for entry into the treatment process.

The first step to developing design alternatives was evaluating existing conditions. In 2014, Underwood Engineers, Inc., wrote a facility evaluation report for the Pease WWTP. The overall system review report included current drawings of the facility, tank volumes, BOD levels throughout the treatment process, notes about current and past system operations, and suggestions for potential improvements. The complete drawings of the existing treatment plant displayed the available land areas that could be utilized for various alternatives, such as buildings that will be abandoned in the coming years that could be repurposed and open spaces where new facilities could be constructed. On January 22, 2016, the MQP team conducted a site visit with Stantec engineer, Steve Calabro, PE, to confirm the information reported in the facility evaluation.

After evaluating existing conditions and understanding problems occurring at the facility, the team developed five design alternatives that provided a range of inexpensive short term solutions for urgent upfront problems, and long term solutions that require new construction and more costly upgrades. The design alternatives were evaluated on four criteria categories: health and safety, environmental and sustainability, economic, and constructability. Each category was broken down into more specific criteria, such as operator safety, energy consumption, reliability, and scalability.

The five design options are as follows:

Option 1: Maintain Current Operations

Continue to operate the plant as normal with current maintenance costs, while accounting for upcoming changes from headworks and odor control redesign.
Option 2: Upgrade Septage Receiving Facility (Short-Term Solution)
Increase capacity with an additional septage storage tank. Implement a flow meter, sampling port, pinch valve and rock trap. Create sloped area for truck delivery for gravity feeding. Add a card reader system for auto-billing.

Option 3: Repurpose Existing Headworks Facility for Glycol Receiving (Short-Term Solution)
Convert grit removal tank in the existing headworks into a glycol storage tank. Waste will be pumped gradually into primary clarifiers through the control box.

Option 4: Construct New Facility for Glycol Receiving, Adjacent to Existing Septage Receiving Facility (Short-Term Solution)
Construct new storage tank with small capacity for glycol. Waste will be gradually pumped into the primary clarifiers through the control box. Only pumps (no screens or grit removal) will be necessary to operate this tank.

Option 5: Construct New Septage Pretreatment and Glycol Receiving Facility Adjacent to Sludge Storage Tanks (Long-Term Solution)
Construct new facility to store glycol and the Septage Complete Plant. There will be one wet well for septage and one storage tank for glycol. The glycol will slowly be pumped to mix into the septage wet well. From there, the combined waste will be pumped into an empty sludge storage tank (repurposed as high-BOD mix storage).

Of the original design alternatives, the MQP team recommends two upgrade solutions: one for short-term and one for long-term. If Pease would prefer to make improvements immediately, the recommended option is to combine the ideas presented in alternatives 2 and 3. It is highly recommended Pease implements the updates presented in option 2 because they prevent organic overloading by increasing the treatment capacity of the receiving facility. The suggested upgrades will also provide accurate information on the quantity of septage the facility takes in, which may result in more income for the plant. By integrating the design for option 3, Pease will be able to meet the needs of Lonza and treat glycol, which may also boost plant revenue.

However, if Pease is interested in long-term solutions and has the budget for a larger upgrade project in the coming years, the best option would be to implement alternative 5. This option would require the most new equipment and structures. However, if Pease intends to expand its treatment capabilities, this option should enable the facility to operate at higher treatment capacity for several years following construction.

There are two factors that make the long-term option stronger than the short-term option, despite the considerably higher expense. First, option 5 addresses the need for storage capacity to feed the treatment process during low-flow periods, which enables Pease to treat more septage and glycol, thus generating more revenue. Second, this option fully addresses the problem of grit accumulation which results from lack of grit removal as part of septage pretreatment. If the MQP team were required to recommend a single design option for implementation that would meet the needs of the Pease WWTP, it would be to construct a new facility for septage pretreatment and glycol storage.
Acknowledgements

The authors would like to sincerely thank their advisors, Professor Frederick Hart and Professor Suzanne LePage, for their time as they reviewed the report. This project also could not have been completed without support from Stantec. The MQP team would like to thank Joe Uglevich, PE, Steve Calabro, PE, and the rest of the engineers at the Burlington, MA office for their assistance. And a final thanks to the vendors who provided cost estimate quotes and the staff at the Pease WWTP in Portsmouth, NH, specifically Mike Baker, for their support on site and throughout the project.

Disclaimer: The information presented in this MQP report has not been checked or verified as accurate by Stantec and does not represent Stantec’s opinions or recommendations as to functionality, appropriateness or costs.
Table of Contents

Abstract .. 1

Capstone Design Statement ... 2

Professional Licensure ... 3

Executive Summary .. 4

Acknowledgements ... 6

List of Figures .. 9

List of Tables ... 9

1. Introduction ... 10

2. Background .. 11

 2.1 Overview of the Pease Tradeport Wastewater Treatment Plant 11

 2.2 Septage Overview ... 12

 2.2.1 Contents and Classifications .. 12

 2.2.2 Glycol ... 13

 2.2.3 Common Septage Treatment Methods ... 14

 2.3 Septage Receiving Facility Operations ... 14

 2.3.1 Receiving Station .. 15

 2.3.2 Screen System .. 16

 2.3.3 Grit Removal Systems ... 17

 2.3.4 Storage Tanks .. 18

 2.3.5 Feed Pumps .. 18

 2.3.6 Odor Control Systems .. 19

 2.4 Wastewater Contents ... 20

 2.5 Septage WWTP Co-Treatment Overview ... 21

 2.6 Water Regulations ... 21

 2.7 Design Constraints ... 23

 2.7.1 Physical Area for Expansion .. 23

 2.7.2 Septage Outflow Rate and Organic Loading 24

3. Methods .. 25

 3.1 Evaluation of Existing Conditions ... 25

 3.1.1 Site Visit .. 26

 3.2 Development of Design Alternatives ... 26
List of Figures
Figure 1. Layout of Existing Pease Wastewater Treatment Plant (Arcadis, 2015) ... 11
Figure 2. Overview of Pretreatment Process ... 14
Figure 3. Example of a Receiving/Dumping Station ... 15
Figure 4. Traveling Screen .. 17
Figure 5. Alternative Septage Treatment Process ... 21
Figure 6. SCADA System at Pease .. 28
Figure 7. Average Hourly Flow Rates by Weekend and Weekday .. 29
Figure 8. Septage Received from July 2012-June 2015 ... 30
Figure 9. Five Design Alternatives .. 31
Figure 10. Working Volume of the Storage Tanks .. 32
Figure 11. Tank Flow Diagram .. 33
Figure 12. Lobe Pump (Borger, 2016) .. 35
Figure 13. Double Disc Pump (Penn Valley Pump Company, 2011) .. 35
Figure 14. Peristaltic Pump (Watson-Marlow Bredel, 2015) .. 36
Figure 15. PortALogic Waste Dump Station Model DS-25 ... 42
Figure 16. PortALogic Waste Dump Station Model DS-82 .. 43
Figure 17. Raptor® Lakeside Complete Plant Model 31 SPA-A .. 44
Figure 18. Configuration of Option 5 .. 48

List of Tables
Table 1. Septage Classifications (Metropolitan Council, 2013) ... 12
Table 2. Corrosion Rate of Inhibited/Uninhibited Glycol-Water Mixtures (Berry & Browning, 2011) 13
Table 3. Methods of Septage Treatment (Gerardi, 2006) .. 14
Table 4. Types of Coarse Screens (EPA, 2003) .. 16
Table 5. Types of Fine Screens (EPA, 2003) .. 16
Table 6. Methods of Odorous Air Treatment: Advantages and Disadvantages (WEF & ASCE, 1992) ... 20
Table 7. Federal Acts Regulating Septage Treatment ... 22
Table 8. 2000-2005 NPDES Permit Discharge Limitations .. 23
Table 9. Significant Components in Domestic Wastewater and Septage (Gerardi, 2006) 24
Table 10. Decision Matrix ... 27
Table 11. Scoring System for Decision Matrix .. 27
Table 12. Odor Control Design Alternatives ... 37
Table 13. Cost Estimate Summary ... 44
Table 14. Completed Decision Matrix .. 46
1. Introduction

As one of the Worcester Polytechnic Institute (WPI) degree requirements, students must complete a final Major Qualifying Project (MQP) and capstone design experience which will utilize knowledge acquired through coursework to practice professional design. This MQP was completed with Stantec at their Burlington, Massachusetts branch to redesign the septage receiving facility at the Pease Tradeport Wastewater Treatment Plant in Portsmouth, New Hampshire. Stantec is an international consulting company of more than 1,000 professionals in the water and wastewater engineering sector (“Water & Wastewater Engineering - Stantec,” n.d.). Stantec is committed to making water a sustainable resource and the environment a safer place through projects such as the upgrade of the Pease Wastewater Treatment Plant.

The Pease Wastewater Treatment Plant (WWTP) receives wastewater from the local area sewer system and septage is brought into the facility by trucks. Sometimes septage storage tanks reach maximum capacity before the end of the day, resulting in septage overflow into the headworks facility. Although this has not yet overloaded the system or created major problems, it would be ideal to increase storage capacity. Maintenance issues also exist due to rock and rag build-up in the septage pretreatment screen and grit accumulation in the storage tanks. This project focused on developing effective design options to increase septage capacity and reduce operational problems.

To develop a set of design solutions that met increasing demand at the Pease Wastewater Treatment Plant, the team achieved three objectives as follows:

1. Understand current Pease septage collection operations and problems
2. Design alternative solutions to increase Pease septage capacity and enhance performance
3. Select a solution, or combination of solutions, through consideration of economic, environmental, constructability, and health and safety constraints
2. Background

The goal of this project is to develop multiple design solutions that will meet increasing septage treatment demand at the Pease Wastewater Treatment Plant. This will be achieved by examining existing septage receiving facilities and proposing potential solutions to improve operations. The Background section of this report reviews information about the Pease Wastewater Treatment Plant, standard operations of septage treatment, and important facts about required system components.

2.1 Overview of the Pease Tradeport Wastewater Treatment Plant

The Pease Wastewater Treatment Plant (WWTP) is located on the Pease International Tradeport (Figure 1). It was constructed in 1954 and originally served the Pease Air Force Base. Since the WWTP opening, there have been modifications and changes of ownership. In 1990, the City of Portsmouth took over operations and management through an inter-municipal agreement (Arcadis, 2015). There were major upgrades done in 1997 and the current septage receiving facility was constructed in 2002 (Underwood Engineers Inc., 2014). The WWTP does not have a permit flow limit. Currently, it intakes 1.2 MGD and discharges treated effluent into the Piscataqua River. Of the total flow, 60% of the plant’s organic loading is attributed to the Craft Brewer Alliance (Redhook Brewery) and Lonza Biologics. Together, the companies contribute 50% of the flow to the WWTP (Arcadis, 2015). The City of Portsmouth has another treatment plant, the Peirce Island treatment plant. Between these two facilities, there are 20 pump stations, 120 miles of sewers, and 3 combined sewer overflows.

![Figure 1. Layout of Existing Pease Wastewater Treatment Plant (Arcadis, 2015)](image-url)
In recent years, the demand for septage treatment has increased beyond the capabilities and capacity of Pease. For many wastewater treatment plants, the cause is population growth. Often, new homes in New England must be built further away from developed areas and are out of range of sewage lines (Burton A. Segall, 1980). Such homes require septic systems, thereby contributing to increasing demand for septage treatment. Many feasibility studies for the development and construction of septage receiving facilities will consider population and projected population growth in estimates for expected future septage volume (Dufresne-Henry, 2005). However, population projections were not considered in design development for this project. The Pease WWTP accepts primarily industrial septage and only small quantities of residential septage. Data from the past three years, in addition to comments from the Pease WWTP’s Assistant Chief Plant Operator, indicated that there was no increase in septage received and there is no expectation it will increase. Thus, the goal of this project is to increase septage handling capacity by 50%, a conservative percentage for the small size of the existing septage receiving facility.

2.2 Septage Overview

Unlike sewage and other forms of wastewater, septage is exceptionally problematic. Despite the growing demand for treatment at wastewater treatment plants, there are limited options due to the high contaminant concentrations. The following subsections will further explain the complexities of treatment at Pease and the differences between septage collected at the WWTP and other wastes.

2.2.1 Contents and Classifications

Septage is liquid and solid waste collected in on-site wastewater disposal systems which are periodically pumped for treatment and disposal purposes. It often contains high levels of grease, grit, hair, and large solids that can clog pipes and pumps (U.S. Environmental Protection Agency, 1994). However, the exact concentrations and contents will vary by location. For example, a household tank is likely to contain less grease than the septage from a restaurant. To help differentiate the types and their likely contents, there are four main classifications (see Table 1).

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>Waste collected in an individual septic tank (often household waste)</td>
</tr>
<tr>
<td>Commercial</td>
<td>Waste from a business or service establishment</td>
</tr>
<tr>
<td>Industrial</td>
<td>Waste from industrial or manufacturing processes</td>
</tr>
<tr>
<td>Brown Grease</td>
<td>Separate wastewater stream, collected from commercial or industrial sources</td>
</tr>
</tbody>
</table>

The Pease WWTP currently treats sanitary (domestic and commercial) and industrial septage. All of these forms of septage contain varying concentrations of grease. Grease must be carefully controlled to prevent harm to the treatment processes, particularly primary treatment. According to the EPA, treatment plants that accept both septage and sanitary wastewater should keep the grease content of the influent limited to 300 mg/L, and the skimming mechanisms in primary treatment should be modified to handle extra grease (U.S. Environmental Protection Agency, 1994).
Agency, n.d.). While grease is a component of septage, brown grease is a more concentrated form that can cause even more harm to treatment plants (see 2.2.3 Brown Grease).

It is important to recognize that septage content concentrations are affected by seasonal temperature changes. When taking samples in winter, it should be expected that some qualities, such as the total chemical oxygen demand (COD), may more than double during the summer (Halalsheh et al., 2010). This may partially be caused by a lack of rain during dry summers, which results in lower groundwater levels and less dilution (U.S. Environmental Protection Agency, 1994). At Pease, seasonal changes also impact expected treatment demand. During early summer (June) and mid-autumn (October), Pease receives peak highs of more than 200,000 gallons for either month. In late winter (February), the WWTP experiences peak lows of less than 40,000 gallons.

2.2.2 Glycol

In the future, Pease may accept glycol waste from Lonza Biologics Inc., a local biopharmaceutical company. The company generates substantial amounts of glycol waste with high levels of BOD, and is interested in having it treated at Pease. However, the facility is already operating at capacity, and may not be able to treat highly concentrated waste without developing a separate treatment process or designating a storage tank specifically for the waste. This potential future inflow was considered throughout the project design and development process.

Glycol is frequently used as a freeze protection agent and is also commonly used in the manufacture of pharmaceuticals. There are two primary types: ethylene glycol and propylene glycol. Each type has slightly different properties, such as viscosity and degradation time. When glycol comes in contact with water or bacteria, it has a tendency to become acidic waste (Berry & Browning, 2011). This lowers the pH of the fluid and increases corrosive properties that compromise metals. Ethylene glycol has stronger corrosion rates, but these can be substantially reduced through the addition of inhibitors and buffers which create “inhibited” glycol (see Table 2).

Table 2. Corrosion Rate of Inhibited/Uninhibited Glycol-Water Mixtures (Berry & Browning, 2011)

<table>
<thead>
<tr>
<th>Metal Type</th>
<th>Water</th>
<th>Ethylene Glycol</th>
<th>Propylene Glycol</th>
<th>Inhibited Ethylene Glycol</th>
<th>Inhibited Propylene Glycol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild Steel</td>
<td>9.69</td>
<td>44.50</td>
<td>9.80</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Cast Iron</td>
<td>21.20</td>
<td>55.70</td>
<td>16.20</td>
<td>0.13</td>
<td>0.05</td>
</tr>
<tr>
<td>Copper</td>
<td>0.08</td>
<td>0.16</td>
<td>0.16</td>
<td>0.12</td>
<td>0.04</td>
</tr>
<tr>
<td>Brass</td>
<td>0.23</td>
<td>0.46</td>
<td>0.20</td>
<td>0.12</td>
<td>0.08</td>
</tr>
<tr>
<td>Aluminum</td>
<td>13.20</td>
<td>19.80</td>
<td>1.80</td>
<td>0.44</td>
<td>+0.38 (weight gain)</td>
</tr>
</tbody>
</table>

Currently, Lonza generates both types of glycol in large, concentrated quantities. The company expects to generate up to 3,500 gallons of glycol waste each week with an average BOD of 200,000 mg/L. Most of this waste will be ethylene glycol, which has less favorable
properties with regards to toxicity and corrosion. However, the waste will not have significant total suspended solids or high nitrogen levels.

2.2.3 Common Septage Treatment Methods

There are four primary methods to treat and dispose of septage (Table 3). The first two methods are sometimes preferred as natural options, whereas the latter two require treatment plants and are preferred for large quantities of septage. Currently, the Pease WWTP is utilizing the third listed method of co-treating septage with sewage at the headworks of the plant. This method is popular for many large wastewater treatment plants since the addition of septage often does not significantly disrupt plant operations. WWTP co-treating is also favored in many communities as a reliable year-round option for disposing septage.

Table 3. Methods of Septage Treatment (Gerardi, 2006)

<table>
<thead>
<tr>
<th>Treatment Method</th>
<th>Process Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Application</td>
<td>Apply stabilized septage over a large, open area as fertilizer either subsurface or on surface.</td>
</tr>
<tr>
<td>Co-Disposal of Solids</td>
<td>Compost the septage or add it into landfills</td>
</tr>
<tr>
<td>WWTP Co-Treatment</td>
<td>Drive the septage to a WWTP, or have it pumped through a manhole into the facility. Co-treat the septage with sewage at the headworks, or with sludge in sludge handling processes. Septage will receive biological and chemical treatment.</td>
</tr>
<tr>
<td>Independent Septage Treatment Plant</td>
<td>Drive the septage to a specialized facility for biological treatment, chemical oxidation, composting, and lime stabilization.</td>
</tr>
</tbody>
</table>

Since Pease is interested in continuing to treat sewage and septage, the other alternative methods listed will not be suitable for this MQP. To increase septage capacity, it is necessary to investigate alternative methods for delivering septage to the WWTP in addition to options for improving existing system components.

2.3 Septage Receiving Facility Operations

Each weekday, septage trucks from the surrounding communities drive their septage load to the Pease WWTP for treatment. The truck will unload at the septage receiving facility. The septage is screened and pumped into storage tanks. From there, the septage is automatically pumped into the headworks facility once tank volume depth exceeds 30”. The following subsections detail the way septage receiving facilities typically operate and include details specific to Pease operations.

Figure 2. Overview of Pretreatment Process
2.3.1 Receiving Station

The septage receiving station serves three main purposes for wastewater treatment plants: transfer, pretreatment, and storage. The transfer station is where septage is moved from the hauler trucks into the facility for preliminary treatment consisting of screening, grit removal, and storage (U.S. Environmental Protection Agency, n.d). The design of a septage receiving station varies based on key factors: septage volume, truck volume, type of preliminary treatment, odor considerations or requirements, and type of downstream treatment and disposal.

The dumping station is the initial point of receiving septage where haulers hook up to the system and pay for the use of the facility. There should be a slightly sloped ramp to tilt the truck for complete drainage and facilitate hosing down of spillage to a central drain (U.S. Environmental Protection Agency, n.d). In designing the amenities for the dumping station, installation of an automatic billing and paperwork process or key card access is important for pre-registered haulers to dump after-hours. In addition, it provides for a more efficient billing process for the plant.

In the design phase, if there is heavy hauler traffic at the plant or the plant intends to increase the number of haulers coming to the site, multiple discharge locations should be considered, each with unloading docks and hose connections (U.S. Environmental Protection Agency, n.d). Each of these unloading docks should be inclined or on a slope. If an existing dock is not inclined or sloped, an alternative is to depress the area where the equipment is located and lower the inlet valve. This way, the truck can completely empty by gravity flow. Another option is to incorporate a hydraulic lift that can be raised or lowered as needed (U.S. Environmental Protection Agency, n.d).

To ensure the station can handle the range of daily flow, the estimated volume of septage entering the facility and the rate it passes through the pretreatment processes must be accurately estimated (U.S. Environmental Protection Agency, n.d). A meter could be implemented so the exact volume entering the system is known. For example, the City of Allegan in Michigan implemented a system with a card reader, flow meter and valve. This system provides the options of sampling, storing, and automatic billing. The key card operation allows for select access to the facility 24/7. To gain this access, haulers had to fill out a credit application for proper billing, provide proof of proper insurance, and provide a performance bond (Allegan Municipal, 2013).
Various amenities for the haulers can be included, such as a restroom, hoses, and other wash-down equipment that will aid clean up. Sometimes steam equipment is needed for colder climates to aid thawing in lines and valves. The types of hoses used for the connections are watertight and have a quick release discharge tube and the ability to extend the discharge tube below the liquid level in receiving chamber to prevent release of odorous gases (U.S. Environmental Protection Agency, n.d).

2.3.2 Screen System

Screening minimizes the potential wear or harm to equipment by removing large solids and grit (EPA, 2003). The screening process typically uses two types of screens: coarse screens for larger objects, and fine screens for smaller materials. Both screens are used to remove material that may create operational and maintenance problems, especially in systems that lack primary treatment. Table 4 and Table 5 below outline various screens and the solids they each remove (EPA, 2003).

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trash Rack</td>
<td>Removes logs, timbers, stumps, and other large debris</td>
</tr>
<tr>
<td></td>
<td>Opening size is 1.5”-6” (38mm-150mm)</td>
</tr>
<tr>
<td>Manually Cleaned Bar Screen</td>
<td>Used in smaller treatment facilities or in bypass channels</td>
</tr>
<tr>
<td></td>
<td>Removes large solids, rags, and debris</td>
</tr>
<tr>
<td></td>
<td>Opening size is 1”-2” (30mm-50mm)</td>
</tr>
<tr>
<td></td>
<td>Bar set at 30°-45° from vertical</td>
</tr>
<tr>
<td>Mechanically Cleaned Bar Screen</td>
<td>Used primarily in new installations</td>
</tr>
<tr>
<td></td>
<td>Removes large solids and other debris</td>
</tr>
<tr>
<td></td>
<td>Opening size is 0.25”-1.5” (6mm-38mm)</td>
</tr>
<tr>
<td></td>
<td>Bar set at 0°-30° from vertical</td>
</tr>
</tbody>
</table>

Table 4. Types of Coarse Screens (EPA, 2003)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Fine Screen</td>
<td>Opening size is 0.06”-0.25” (1.5mm-6mm)</td>
</tr>
<tr>
<td>Very Fine Screen</td>
<td>Removes suspended solids at a level comparable to primary clarification</td>
</tr>
<tr>
<td></td>
<td>Opening size is 0.01”-0.06” (0.2mm-1.5mm)</td>
</tr>
<tr>
<td></td>
<td>Bar set at 30°-45° from vertical</td>
</tr>
</tbody>
</table>

Table 5. Types of Fine Screens (EPA, 2003)

Cleaning the debris out of the screen system is essential to ensure that water can still pass through. A traveling screen, shown below in Figure 4, is a mechanically cleaned fine screen system. Its sections rotate upward and are cleaned with water sprays when they rotate to the head enclosure (Viessman, Perez, & Chadik, 2009). A mechanically cleaned medium screen system is commonly used to replace a manually cleaned coarse screen (Viessman et al., 2009). The debris collected can then be buried on land or incinerated, depending on the suitability of the options.
For septage receiving stations, mechanically cleaned bar screens are most desirable and any parts in contact with septage should be made of stainless steel (U.S. Environmental Protection Agency, n.d.). When designing the screen, it is important it can handle larger quantities than expected and heavier material than what is expected (U.S. Environmental Protection Agency, n.d.). The State of New Hampshire sets design and capacity requirements for the sizes of openings and how they are to be cleaned. Sections 708.25, 709.01, and 709.02 of the New Hampshire Code of Administrative Rules outline the requirements for septage receiving stations and screen systems (New Hampshire Code of Administrative Rules, 2014).

2.3.3 Grit Removal Systems

Grit removal occurs after screening to prevent abrasion and wear of mechanical equipment, as well as accumulation of rocks and grit in pipelines, channels, anaerobic digesters and aeration basins (EPA, 2003). Examples of grit, which are heavier than organic biodegradables, include sand, gravel, food waste, and bone chips (EPA, 2003). For design purposes, grit is defined as fine sand, or 0.2-mm-diameter particles with a specific gravity of 2.65 and settling velocity of 0.075 fps (Viessman et al., 2009). Several types of grit removal units are used and vary based on the amount of grit in the wastewater, size of the plant, convenience of operation and maintenance, and costs of installation and operation (Viessman et al., 2009). When implementing the grit removal system, the team must comply with New Hampshire regulations (New Hampshire Code of Administrative Rules, 2014).

The optimal situation is that after the septage passes through the screen system, it travels by gravity to the grit removal stage to avoid wear on pumps. Sometimes that situation is unavoidable and if that is the case, "recessed-impeller or other grit-resistant pumps" should be utilized (U.S. Environmental Protection Agency, n.d.). There are two main types of grit chambers: horizontal flow and aerated. However, the horizontal flow chamber is ineffective at removing grit from septage because the flow is not strong enough to break apart the grit from scum and other solids (U.S. Environmental Protection Agency, n.d.). The aerated grit chamber
pumps air into the septage, resulting in a spiral flow that allows the grit to settle. There are hoppers at the bottom of the chamber that collect the grit. The grit can then be removed by a centrifugal pump or a screw conveyer (U.S. Environmental Protection Agency, n.d.).

Cyclone degritters are an alternative to the aerated grit chamber. They are beneficial when septage is dumped directly into the pretreatment process because they operate in batch operation mode (U.S. Environmental Protection Agency, n.d.). Additionally, cyclone degritters generate less odor than the aerated grit chamber. When designing a cyclone degritter, the main consideration to account for is the flow velocity. However, in a situation where the average solids concentration is more than 2%, cyclone degritters may not be the best option for grit removal (U.S. Environmental Protection Agency, n.d.).

At the Pease WWTP, the only grit removal system present is located in the headworks. After the septage leaves the storage tanks, it is combined with the sanitary wastewater and then passes through headworks. Since there is no stage in the pretreatment process for grit removal, grit accumulation in the storage tanks becomes a problem.

2.3.4 Storage Tanks

Storage tanks can be placed either before or after the septage undergoes pretreatment. The benefit of placing the tanks before pretreatment is that if grit removal is included in the pretreatment, the flow rate through the grit chamber can be better controlled. However, it is not recommended that pumping occur before grit removal because that can cause excessive damage to the pumps. In such a situation, grit-resistant pumps would need to be utilized (U.S. Environmental Protection Agency, n.d.). If the tanks are placed after pretreatment, the grit removal system must have enough aeration and capacity to handle the loading and flow rates from the septage trucks (U.S. Environmental Protection Agency, n.d.).

The Pease WWTP has two 7,000-gallon storage tanks made of precast concrete located after the pretreatment (Underwood Engineers Inc, 2014). These tanks are equalize flow and mitigate variations between septage loads. Two essential characteristics of these tanks are mixing and aeration because they prevent the organics from settling and allow for better treatment of the septage (U.S. Environmental Protection Agency, n.d.). Additionally, it is common practice to have enough available capacity to store the maximum expected amount of one day's worth of septage.

One major problem with the storage tanks is that Pease's current capacity is sometimes not enough for the plant to store all of the pretreated septage. There is overflow built into the storage tanks so once they reach capacity, excess septage is carried directly to headworks for treatment. In addition to the previously mentioned grit accumulation, rocks have made it through the screen system and accumulated in the storage tank. Together, these factors reduce the available volume in the tanks.

2.3.5 Feed Pumps

Feed pumps move the pretreated septage to meet the main wastewater line and move onto the next stage of treatment. The pumps move septage through the system at a desired constant velocity to accommodate the system loading caused by the wastewater inflow. Pumping devices consist of a control unit, motor, pump, check valve, and various other valves and fittings (Korving, Clemens, & Van Noortwijk, 2006). To determine the pump type most applicable for a specific purpose, factors including water classification, energy use for operation, and maintenance costs should all be considered (Ackermann, 2003).
Another important factor in pump selection is the range of flows that may be desired throughout the day. It is ideal for a pump to feed water at a regular, consistent rate (Grundfos, n.d.). However, since some estimates claim that an “average flow” of wastewater may double in high-flow conditions, or may decrease to only half in drier periods, it may be advisable to use those varying flows to increase or decrease septage flow throughout the day (“Wastewater Treatment,” 2003). Regardless of flow rate variation, pump design must accommodate flow efficiently. When pumps are unable to perform at design capacity (possibly as a result of age), the pump has effectively failed and must be reassessed.

In sludge and septage handling, there are two types of preferred pumps: kinetic (rotodynamic) pumps and positive displacement pumps (Water Environmental Federation, American Society of Civil Engineers, & Environmental & Water Resources Institute, 2010). Kinetic pumps are generally less expensive and require less space and maintenance. However, positive-displacement pumps are not affected by fluid viscosity, making them ideal for pumping fluids with high solids concentrations. Applied to septage, positive displacement pumps are generally favored, and will therefore be the primary pump classification considered in this report. See Section XXYY--- for more specifics on the pump types considered.

The piping systems that convey the outflows from the pumps have important specifications as well. Pipe strength must resist internal pressure, handling, earth and traffic loads. Pipes should ideally withstand corrosion and abrasion, in addition to expansion and contraction due to changing temperature conditions. Additionally, valves, couplings, unions and other fittings must all be carefully selected to prevent leakage (“Wastewater Conveyance,” 2010).

2.3.6 Odor Control Systems

Wastewater entering treatment plants often contain odorous compounds that can escape through open channels or are generated as byproducts during treatment processes. Septage has very strong odors, which causes concern to local residents. To prevent harm from odors, local governmental agencies created odor control ordinances (WEF & ASCE, 1992). Addressing odor control must come in the early design phase where the engineer consults local and state rules and regulations concerning odor control. Methods to control odor emissions from wastewater include prevention, chemical treatment, preaeration, and air scrubbers, along with other systems such as adsorption, biological, combustion, and mist (WEF & ASCE, 1992). In order to prevent odors, good facility maintenance is needed to minimize the formation of anaerobic conditions that cause odors to occur. The other methods are more complex when odors cannot be prevented. The advantages and disadvantages to these methods can be seen in the below Table 6.
In the current contract with Pease, Stantec is designing a new odor system that will be separate from the plant's current chemical scrubber system. The current system is comprised of a packed tower, recirculation pump, exhaust fan, sodium hydroxide (NaOH) metering pumps, sodium hypochlorite (NaOCl) metering pumps and collection/discharge ductwork (Underwood Engineers Inc., 2014). It is in need of significant rehabilitation because it’s approximate 15 years old. Also, its load now contains high odorous compounds due to the contributions from a brewery and pharmaceutical manufacturer. The system will continue to have high operating costs due to the chemical usage and high operation and maintenance requirements. Additionally, the hydrogen sulfide is actually causing widespread corrosion problems at the plant (Underwood Engineers Inc., 2014).

2.4 Wastewater Contents

After passing through the septage receiving facility, septage is piped into the main wastewater line entering the treatment plant. This wastewater is approximately 60% industrial and 40% sanitary wastewater. Industrial wastewater typically contains chemicals, grit, and highly toxic materials. Sanitary wastewater is a combination of domestic waste and some industrial waste. Domestic waste typically contains human and animal solid and liquid discharges, household cleaners, garbage, and other household wastes (“Wastewater Treatment,” 2003).

Currently, Pease does not experience problems from adding septage into its wastewater flows since the combination dilutes the septage enough to avoid overloading the treatment.
system. However, knowing the contents of the wastewater and its respective classification are important as these factors determine likely contents and appropriate treatment practices. Moving onto the design stages, this knowledge will help determine limits for potential increases in septage flow rates.

2.5 Septage WWTP Co-Treatment Overview

In the existing system, septage is co-treated in the headworks facility with wastewater. Stantec recently redesigned the headworks facility for a large upgrade which will be implemented in coming years. This required building a bigger, completely new facility, closer to the primary treatment stage. Water entering the headworks is screened, grit is removed, and the water is pumped to primary treatment. In addition to protecting the downstream equipment from large debris, the headworks removes some highly concentrated pollutants that exist in wastewater. This reduces the cost to treat the wastewater later in the process and helps meet standards for the safe discharge of effluent into a body of water (Oyler, 2001).

The alternative to feeding pre-treated septage into the headworks is to feed it into the sludge removal process in primary treatment. The septage undergoes the same pretreatment process (screening) before being directed into the activated sludge process, which occurs in the sequencing batch reactors (SBRs). In this process, the influent and activated sludge are agitated and aerated. Then, sedimentation separates the activated sludge from the "mixed liquor" and the sludge is recycled into the process (Spellman, 2011). The treated wastewater then overflows from the tank to move onto the next treatment process. Sludge can be disposed of by land application, landfilling, incineration and out-of-state disposal (Wheeler et al., 2008). Figure 5 outlines this process.

![Figure 5. Alternative Septage Treatment Process](image)

2.6 Water Regulations

Environmental impacts must be considered when designing a septage facility. Several unintentional adverse effects on the environment and/or human health can result during a facility upgrade. For example, increased truck traffic due to construction and improved WWTP capabilities may result in higher noise levels (U.S. Environmental Protection Agency, n.d). At the state and local levels, regulations for septage treatment vary. There are no overall regulations for strict licensing requirements, equipment used, pretreatment requirements, or allowable disposal practices. Although sometimes there is no formal regulation enforcement for local regulations, federal regulations are always enforced (U.S. Environmental Protection Agency, n.d). To address environmental concerns with septage and sludge management, there
are various regulations at the federal, state and local levels. Table 7 below summarizes the federal acts:

Table 7. Federal Acts Regulating Septage Treatment

<table>
<thead>
<tr>
<th>Federal Acts</th>
<th>Description</th>
</tr>
</thead>
</table>
| The Clean Water Acts (CWA) | • Federal funding is made available for constructing facilities for municipal wastewater treatment and septage treatment/disposal
 • The Environmental Protection Agency (EPA) is in charge of issuing septage and wastewater sludge management guidelines and regulations
 • A research and demonstration program is developed to improve wastewater treatment and sludge and septage management practices
 • National Pollution Discharge Elimination System (NPDES) point source discharge regulations are released
 • Waste treatment and water quality management plans for non-point source pollution are implemented |
| The Resource Conservation and Recovery Act (RCRA) | • Federal financial assistance is given to state and local governments for solid waste management plans
 • Stringent regulations are required for the disposal of hazardous and non-hazardous materials, including septage |
| The Marine Protection Research and Sanctuaries Act (MPRSA) | • Ocean disposal of sewage sludge and septage is phased out due to its potential harm to human health and the environment |
| The Safe Drinking Water Act (SDWA) | • Further regulations are made to protect drinking water from contamination. This act supplements the CWA and RCRA |
| The National Environmental Policy Act (NEPA) | • If there are suspected adverse effects on environment, economy, and/or human health from a new or modified sludge or septage disposal facility or practice, it is up to regional discretion if an Environmental Impact Statement (EIS) is required |
| The Toxic Substances Control Act. (TSCA) | • In coordination with CAA and CWA, this restricts disposal of toxic wastes
 • Federal regulations only monitor sludge disposal for Polychlorinated Biphenyl (PBC) |

The Pease wastewater treatment plant was issued a NPDES permit in August of 2000, which allowed discharge of treated effluent to the Piscataqua River (Arcadis, 2015). The requirements are summarized below in Table 8 (Underwood Engineers Inc., 2014). It states "Report" for flow as there is not a limit that the plant is able to receive. Pease is simply required to document their flows and submit that information to the New Hampshire Department of Environmental Services (NHDES). The permit does not limit total nitrogen or total phosphorus. However, a future permit will most likely include a limit for total nitrogen (Arcadis, 2015). An
evaluation study completed by Arcadis in June 2015 indicated that future wastewater treatment plant modifications would need to consider potential environmental impacts on native shellfish. Since the Piscataqua River and Great Bay are impaired water bodies, the City may require limits for anti-degradation of effluent (Arcadis, 2015).

Table 8. 2000-2005 NPDES Permit Discharge Limitations

<table>
<thead>
<tr>
<th>Effluent Characteristic</th>
<th>Discharge Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Month</td>
</tr>
<tr>
<td>Flow, MGD</td>
<td>Report</td>
</tr>
<tr>
<td>BOD$_5$, ppd (mg/l)</td>
<td>300 ppd, (30 mg/l)</td>
</tr>
<tr>
<td>TSS, ppd (mg/l)</td>
<td>300 ppd, (30 mg/l)</td>
</tr>
<tr>
<td>Fecal Coliform, colonies/100 ml</td>
<td>14/100 ml</td>
</tr>
<tr>
<td>Total Residual Chlorine</td>
<td>0.75 mg/l</td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
</tbody>
</table>

- pounds per day = ppd
- milligrams per liter = mg/l
- ** Permit limit more stringent than other NPDES permits in the region

2.7 Design Constraints

Before considering possible design alternatives, it is important to fully understand factors that constrain potential improvements at Pease. The existing space throughout the facility is somewhat limited, and the distances between buildings for pumping treated septage must be considered. Another constraint involves physical flow of the main sanitary wastewater and the addition of pretreated septage and glycol. The amount of septage allowed into the sewage line is currently restricted to ensure that the WWTP systems are not chemically overloaded.

2.7.1 Physical Area for Expansion

While it would be beneficial to upgrade many components at the Pease WWTP, there are physical limitations to how much can be constructed. For example, though it would be ideal to add grit removal to the screen system, such an addition may not fit in the current septage receiving building. Ideally, it would be preferable to repurpose existing buildings whenever possible. Two buildings on site will be abandoned following the construction of a new
headworks facility. Thus, the existing headworks and current Control Operations building will be available for repurposing. Another factor to consider for constructability involves physical pipelines. The longer the pipeline, the more likely leakage may occur; thus it may be preferable to keep consecutive processes nearby to one another. However, this may be limited by available land area in suitable locations.

2.7.2 Septage Outflow Rate and Organic Loading

Another reason for limited septage flow into the system is organic overload. Organic loading is the amount of organic matter entering a treatment plant. In technical terms, it is the amount of BOD (biochemical oxygen demand) or COD (chemical oxygen demand) applied to a volume of filtered media. When a system is “overloaded”, it means the system is attempting to treat more BOD than the design capacity of the system allows. Typically, this occurs when a primary wastewater treatment system receives more waste than it was designed to treat (Spellman, 2003). This is problematic because insufficient organic treatment yields effluent water with higher total-coliform and fecal-coliform counts, which is unacceptable for plant permits (Halalsheh et al., 2010). Thus, organic loading is one of the biggest concerns a WWTP will have when choosing to accept septage for co-treatment.

Treatment of organic matter is particularly difficult chemically, and exacerbated by adding septage, which is approximately 50 times as concentrated as domestic wastewater (see Table 9). Currently, wastewater dilutes the added septage at Pease and is sufficient to avoid system overloading. However, the concentrations and flows of septage into the system should be carefully monitored and changed as is appropriate for effective plant operation.

Table 9. Significant Components in Domestic Wastewater and Septage (Gerardi, 2006)

<table>
<thead>
<tr>
<th>Component</th>
<th>Range in Concentration (mg/liter)</th>
<th>Typical Concentration (mg/liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domestic Wastewater</td>
<td>Septage</td>
</tr>
<tr>
<td>BOD$_5$</td>
<td>110–400</td>
<td>2,000–6,000</td>
</tr>
<tr>
<td>COD</td>
<td>250–1,000</td>
<td>5,000–80,000</td>
</tr>
<tr>
<td>Grease</td>
<td>50–150</td>
<td>5,000–10,000</td>
</tr>
<tr>
<td>NH$_4$+</td>
<td>12–50</td>
<td>100–800</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>4–15</td>
<td>50–800</td>
</tr>
<tr>
<td>TKN</td>
<td>8–35</td>
<td>100–1,600</td>
</tr>
<tr>
<td>TSS</td>
<td>100–350</td>
<td>2,000–100,000</td>
</tr>
<tr>
<td>VSS</td>
<td>80–275</td>
<td>1,200–14,000</td>
</tr>
</tbody>
</table>
3. Methods

The goal of this project was to develop several design solutions that modernize the current septage treatment system and allow for the acceptance of glycol waste at the Pease wastewater treatment plant. This approach offered the City of Portsmouth multiple options to choose from to upgrade the treatment plant. The WPI team also analyzed the benefits and disadvantages of each plan and suggested an option to best improve long term performance. The team presented the following three deliverables to Stantec at the end of the seven-week project work period:

1. Set of alternative septage receiving design plans to improve plant efficiency and capacity
2. Recommended design plan, complete with supportive reasoning in MQP report
3. Presentation of project evolution and conclusions

To develop desired deliverables, the team met the following objectives:

1. Understand current Pease septage collection operations and problems
2. Design alternative solutions to increase Pease septage capacity and enhance performance
3. Select a solution, or combination of solutions, through consideration of economic, environmental, constructability, and health and safety constraints

3.1 Evaluation of Existing Conditions

An initial literature review was the first step to evaluating existing conditions so the team could become aware of important design constraints and standard system operations. This knowledge was gathered through an extensive literature review and meetings with Stantec engineers.

The next step involved understanding the current conditions of the septage receiving facility and preliminary treatment process. In 2014, an engineering firm, Underwood Engineers, Inc., developed an overall system review report which included current drawings of the entire facility and suggestions for potential improvements. The document included tank volumes, BOD levels, and notes about current and past system operations. The existing drawings of the entire treatment plant displayed the available areas that could be utilized for various alternatives, such as buildings that will be abandoned in the coming years and open space where new facilities could be constructed.

Additionally, Stantec provided various flow and influent data. This data was analyzed to show trends between the flows, relations between septage and BOD/TSS, and how effective Pease was at removing materials to comply with their permit. The data also revealed seasonal patterns in peak flows and differences in flow between weekends and weekdays.

Another important component that helped in the facility evaluation was GIS data. This allowed the team to see the locations of the four towns from which Pease receives wastewater. While the plant also accepts septage from those four communities, their receiving facility takes in septage from other towns as well. The GIS Map in Appendix B displays the location of Pease and the surrounding septage receiving facilities.
3.1.1 Site Visit

To gain a better understanding of the operations at the Pease treatment plant and septage receiving facility, the MQP team conducted a site visit on January 22nd, 2016 with Steve Calabro, PE from Stantec. Questions developed prior to the visit were answered by the Assistant Chief Plant Operator, Mike Baker, who gave a tour of the facility and explained the processes at each stage of treatment. In the days following the site visit, the team acquired additional plant data for flows and effluent contaminant concentrations.

During and after the site visit, the team utilized a mobile application called PlanGrid, which helped organize notes and pictures taken. For more details about PlanGrid and the site visit, a site visit status report can be found in Appendix E.

3.2 Development of Design Alternatives

Before identifying specific alternatives, the team needed to understand the demand for additional treatment capacity. Although past influent flow data showed no significant change in septage influent since July 2012, it was recommended by Stantec engineers that storage volume increase by 50% to accommodate potential future increase in demand. The team also needed to consider storage and treatment for glycol waste. As a new waste for this facility, glycol poses different storage and integration challenges.

The team prepared five different design alternatives. These alternatives were created based on literature review, evaluation of current conditions at the septage receiving facility, and discussions with vendors, Stantec engineers, and Mike Baker. Limitations to design development included the existing layout and space available at Pease.

3.2.1 Cost Estimates

After designing the five alternatives, associated cost estimates were developed. The final estimates included initial costs, operation and maintenance costs, and overall life cycle costs with consideration of capital cost payback periods. Some costs were based on numbers from RS Means. These values are accepted by the industry for creating cost estimates and were recommended by Stantec for cost estimating. Other costs, particularly for equipment, were from contacting vendors.

Stephen Calabro put the team in contact with a local vendor who frequently works with Stantec in development of cost estimates. This vendor’s company represents several manufacturers of various pieces of equipment necessary for wastewater treatment. In addition to this vendor, the team contacted four manufacturers for septage pretreatment equipment.

Contacting vendors played a crucial role in selecting pumps, rock traps, and grit removal systems. Unlike most of the required system components, which have standard costs associated with their installation (such as valves, piping, and concrete), these components vary widely in design, operation, and client satisfaction. In pump selection, it is standard practice for an engineer to provide vendors with two pieces of information about pump application: desired flow rate and the required total dynamic head (TDH). Vendors are then able to determine what pump model and motor will meet the need and provide a quote for the respective cost of that solution. This allows engineers to focus on other parts of design, and leave the selection of pumps to other experts. Vendors are also able to provide insight about pros and cons of specific pieces of equipment. In selecting rock traps and grit removal systems, for example, vendor input helped the team understand required maintenance work, costs, and special features the equipment.
3.3 Review of Design Alternatives

The design alternatives were evaluated on health & safety, environmental & sustainability, economic, and constructability criteria that were broken down into more specific criteria such as, operator safety, energy consumption, reliability, and scalability. The list was developed in partial reference to evaluation criteria used in a similar project for screen technology alternatives and from the Septage Management Feasibility Study for the Regional District of Okanagan-Similkameen (Conestoga-Rovers & Associates, 2010) (Olson, 2013). These criteria were placed into a decision matrix and each individual criterion was assigned a weight, ranging from 1-3, with three being the most important. The weight represents the importance of each criterion to the client, based on preliminary discussion with Mike Baker and feedback from Mr. Calabro. The decision matrix the team utilized is displayed below in Table 10.

Table 10. Decision Matrix

<table>
<thead>
<tr>
<th>Primary Criteria</th>
<th>Specific Criteria</th>
<th>Description</th>
<th>Weight</th>
<th>Design Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health & Safety</td>
<td>Operator Safety</td>
<td>Access hazards for O&M, exposure to septage</td>
<td>2</td>
<td>#1 #2 #3 #4 #5</td>
</tr>
<tr>
<td></td>
<td>Regulatory Obligations</td>
<td>Ability to meet current permit levels</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Environmental and</td>
<td>Energy Consumption</td>
<td>Energy used to process septage at each facility</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Sustainability</td>
<td>Water Resources</td>
<td>Potential impact to surface water and groundwater resources</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nuisance Odor</td>
<td>Potential nuisance odors</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Economic</td>
<td>Reliability</td>
<td>Consistency of performance with variable system demands</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Efficiency</td>
<td>How well the system is performing (i.e.: whether O&M is needed frequently)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Initial Capital Cost</td>
<td>Upfront equipment and installation cost</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O&M Costs</td>
<td>Cost for parts upkeep and replacement</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Business Expansion</td>
<td>Potential to support or link to local businesses</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Constructability</td>
<td>Timeline</td>
<td>Estimated time to completion</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integration</td>
<td>Ease of integrating design, given existing construction plans and existing structures</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scalability</td>
<td>Represents the physical space available to scale a facility to accommodate all inflows</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infrastructure</td>
<td>Whether additional infrastructure is needed to support operation</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

When scoring, each alternative was assigned a value 1-5. Table 11 below illustrates the scoring system implemented for each criterion. Once the points were weighed and added, the best solution became clear.

Table 11. Scoring System for Decision Matrix

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Poor</td>
</tr>
<tr>
<td>2</td>
<td>Below Average</td>
</tr>
<tr>
<td>3</td>
<td>Average</td>
</tr>
<tr>
<td>4</td>
<td>Good</td>
</tr>
<tr>
<td>5</td>
<td>Very Good</td>
</tr>
</tbody>
</table>
4. Results and Discussion

This chapter outlines the information the team gathered throughout the course of the project. Preliminary findings came from the site visit and data analysis. The team then developed five design alternatives, which are presented in detail in this chapter. Finally, the team evaluated the alternatives using the decision matrix to determine which one(s) Pease should implement.

4.1 Site Visit

The site visit on January 22nd with the Assistant Chief Plant Operator, Mike Baker, revealed that although there is no urgent need for improvements, there are areas throughout the system where improvements can be made in future. Significant problems noted during the tour include the following:

- The existing headworks and influent pump station, which is part of the control operations building, will all be replaced and abandoned by 2018. Team designs should attempt to repurpose these buildings whenever possible.
- After septage storage tanks fill, septage flows unmetered, directly into the existing headworks.
- Septage trucks need to use their internal pumps to “blow off” their contents because the connection point to the building prevents complete gravity feed.
- Trucks unload waste on an honor system (contents are not sampled beforehand)

The Pease plant utilizes a SCADA (Supervisory Control And Data Acquisition) system, which is shown in Figure 6. This system can monitor numerous parameters such as flow, and can even trigger automatic pumping when preset operation conditions are met. A full status report from the site visit can be found in Appendix E.

![Figure 6. SCADA System at Pease](image-url)
4.2 Data Analysis

To understand the current operations, it was critical to review data to identify trends in the treatment processes. This allowed the team to observe times when Pease tends to have extra capacity, which was critical for implementing of the glycol waste into the system and ensuring there is no septage overflow.

4.2.1 Treatment Flows and Capabilities

Currently, septage is pumped at a constant rate of 50gpm to combine with wastewater before entering the headworks. This rate is constant, regardless of wastewater influent flow rates. However, it may be better to schedule septage treatment so more septage can be treated when wastewater flows are low. This could prevent organic overload and also boost the food source for activated sludge microbes during low-flow periods.

Based on Pease flow rate records, the WWTP has operated at higher flows during weekdays than during the weekend for the last three years, with the exception of April 2014. Figure 7 shows the average hourly flow rate for weekends and weekdays at Pease for each month from 2013 to 2015. The consistently higher weekday flows indicate that the plant is capable of treating more wastewater and/or septage on weekends than it currently does.

![Average Hourly Flows](image)

Figure 7. Average Hourly Flow Rates by Weekend and Weekday

4.2.2 Septage Receiving Data

Pease receives between 50,000-220,000 gallons of septage per month. Figure 8 displays the amount of septage received from July 2012-June 2015. As the graph shows, the summer months (June, July, and August) tend to have the highest amount of gallons received. On the other hand, the plant receives its lowest flows in the winter months (December, January, and February). This data displays that the plant has more capacity for treatment in the winter months.

1 There is reason to believe that this exception is due to erroneous data. When the SCADA system fails, flow rates are automatically recorded as peak values. Operators go through the data to make adjustments where needed, but some data points were left unchanged. Given the clear trend in other months of data, this portion is likely incorrect.
For specific quantities, refer to the “Septage Volumes (July 2012-June 2015)” table in Appendix D.

Figure 8. Septage Received from July 2012-June 2015

4.3 Overview of Design Alternatives

The team established five design alternatives, which are illustrated in Figure 9. Each alternative builds on one another in addressing existing operational problems at the treatment plant. The first couple of alternatives address urgent, upfront problems in relatively inexpensive ways. The latter designs include new construction and more costly solutions that may solve bigger problems in the long-run.
4.4 Option 1: Maintain Current Operations

The first option was to do nothing to the system and operate as usual. However, as the system ages, there will be additional maintenance costs to keep the septage receiving facility operational. The general life cycle of equipment is roughly 20 years. Since the receiving facility was built in 2002, the City of Portsmouth should plan to replace system components, such as the screen system and pumps, around the year 2022. In addition to replacing equipment, the plant will need to continue paying to remove grit accumulation from the storage tanks. The assistant chief plant operator said this occurs twice a year.

A distinct disadvantage to this option is the absence of a septage receiving flow meter. The plant currently uses the honor system when haulers bring septage, so the plant does not have any exact readings for how much septage they actually take in, allowing haulers to merely estimate how much their trucks contain. If a flow meter were added, this would ensure accurate documentation of the amount of septage Pease receives. Often, haulers underestimate how much septage they treat at facilities, leading to under-paying. By adding a flow meter, the WWTP could generate more revenue for the treatment processes it provides. Section 4.11 explains the equipment that can be added. In addition to the flow meter, a sampler and pH sensor can be added as well so Pease can have data specifically for septage, considering they currently only have combined wastewater and septage.

Another important disadvantage is that if the City of Portsmouth decides to simply maintain current operations, Pease will be unable to generate a significant amount of revenue from treatment of glycol waste. The team calculated that Pease can charge up to $7 per gallon of glycol waste on a septage equivalent basis, which could result in an additional $840,000 each year from glycol alone (see calculations in Section XXX). Besides the economic benefits, the
treatment of glycol would further strengthen the partnership between Lonza and the Pease WWTP.

4.5 Option 2: Upgrade Septage Receiving Facility

Option 2 suggests several upgrades for the existing septage receiving facility. This option avoids constructing new buildings, but does not accommodate glycol waste. Thus, these upgrades could potentially be combined with the designs for glycol treatment included in alternatives 3 and 4.

4.5.1 Capacity

Although the septage receiving facility has two tanks, each with 7,000 gallon working capacity, Pease sometimes accepts more than 15,000 gallons of septage in a short time span. When this happens, septage overflows out of the tanks and is redirected out of pre-treatment, into the headworks at an unmetered rate. This is not good practice because it makes the organic loading on the wastewater treatment plant completely unpredictable. When septage is pre-treated and stored in the adjacent tanks properly, it can be pumped at a constant, controlled rate into the headworks. To make sure this procedure is always followed, a 50% increase in septage storage capacity is desired.

4.5.1.1 Current Septage Storage Tank Working Volume

To understand the extent of storage capacity problems at Pease, the team assessed existing conditions by reviewing the feasibility study written by Underwood Engineers, Inc., drawings of the facility, and information gained through the site visit. From this information, the team determined the actual working volume of the two storage tanks.

In most tank applications, dead space exists at the top and bottom of the tank. Pumps cannot remove septage from below their lowest suction point, and the space above the overflow outlet will not be utilized. Thus, the working volume is the space between the two dead spaces between the elevation at which pumps turn off (pumpOFF), and the elevation where overflow occurs. Another important thing to note is that most pumps do not turn on at the pumpOFF elevation; they turn on after an additional foot of septage has accumulated, at the pumpON elevation, as seen in Figure 10.

![Figure 10. Working Volume of the Storage Tanks](image)

According to the Underwood Engineers, Inc. report, the volume of each tank is 7,000 gallons. In facility drawings, the bottom of the tank is at elevation 31.62’, the overflow is at
40.83’, and the tank base dimensions are 10’ X 16’. For the working volume to be 7,000 gallons, the pumpOFF elevation must be 34.98’ to create a working volume depth of 5.85’, as seen in the calculation below:

\[
Volume = L \times W \times D
\]

\[
7,000\text{ gallons} = 7.48(16\text{ ft} \times 10\text{ ft} \times D)
\]

\[
D = 5.85\text{ ft}
\]

\[
D = overflow - pumpOFF
\]

\[
5.85\text{ ft} = 40.83\text{ ft} - pumpOFF
\]

\[
pumpOFF = 34.98\text{ ft}
\]

This means the pumps must turn on at elevation 35.98’, which would require an extra 1,197 gallons of septage to accumulate, before pumps will turn on. This also means that approximately 3.36’ of septage accumulate in the dead space at the bottom of the tank. With this 4,023 gallon space not being utilized, at least 36% of each tank’s full volume is currently dead space.

4.5.1.2 Current Septage Storage Tank Fill Rate

The next operational consideration is how quickly the tanks fill with septage to the overflow elevation. Trucks typically take 20 minutes to unload and are usually either 3,000 or 5,000-gallon trucks. Therefore, the flow rates are 150gpm and 250gpm respectively. To maintain conservative fill-time calculations, the 250gpm rate is used throughout the following sections. It is also known that the pump that moves septage out of the tanks operates at 50gpm. As shown in Figure 11, this means the tanks must fill at approximately 200gpm. At this rate, a single tank would fill in about 35 minutes, so two tanks would fill in 70 minutes. Since each truck unloads in about 20 minutes, this means that three 5,000-gallon trucks could completely unload consecutively without causing overflow at present operating conditions.

![Figure 11. Tank Flow Diagram](image)

\[
\text{5000 gallons} \div \text{20 minutes} = 250\text{gpm} - 50\text{gpm} = 200\text{gpm}
\]
4.5.2 Possible Solutions

Since only three 5,000 gallon trucks can be accommodated without causing overflow in current operations, but four or more trucks may arrive on a single day, the interest in increasing capacity is warranted. This can be achieved by implementing one or more of the following solutions: install a new tank, alter tank working volume by adjusting pump suction elevation, or upgrade the pump so outflow will be higher than 50gpm.

4.5.2.1 New Storage Tank

For system consistency, the most straightforward option to increase capacity is to construct a new replica storage tank adjacent to the two existing tanks (see CAD drawings in Appendix F). This would enable the new tank to be connected to the existing two tanks so all three could share the same odor control system, pumps, and pipelines.

Another method to increase capacity further is to change the automatic settings for septage pumping based on tank contents. Currently, each tank has an extra 4,000 gallons of unused capacity. It is unclear whether this large dead space was created by incorrect pump installation or operator preferences. In the first case, the pump suction line should be checked; if the opening could be lowered deeper into the tank, more working volume would be created. In the latter case, the automatic settings for the pumps could be adjusted. Instead of setting pumps to turn on after several feet of septage accumulation, they could be set to start pumping after less septage has accumulated. According to Steve Calabro, standard operation for a pump with a tank this size would require two feet from the bottom of the take and 1 foot between pumpOFF and pumpON elevations. By increasing working capacity this way, Pease could potentially reduce the likelihood of needing to rely heavily on the overflow.

4.5.2.2 Replace Pumps

Another way to increase storage capacity is to alter pump operation. Currently, Pease operators are concerned with the capacity of existing hose pumps which move septage from the receiving facility to the headworks. If septage can be moved out of the tanks more quickly, more room will become available for additional septage storage which could avoid overflow conditions. The two Watson-Marlow/Bredel pumps each have a 50-gpm capacity, 15-ft of total dynamic head (TDH), and operate on single-speed motors at 7.5hp. Per typical operation, one pump is active, and the other is not used, serving as the standby. The application of positive displacement pumps for septage is suitable due to the high solids content and viscosity of septage. Thus, considering different pump styles within this classification was warranted. Other popular positive displacement pumps include progressive cavity, lobe, and double disc pumps. Due to the compact operations of Pease, progressive cavity pumps were preliminarily disregarded as they require significantly more floor space for operation. Remaining options of lobe, double disc, or hose pumps were studied.

Lobe pumps operate by carrying liquid between rotor lobe surfaces as they rotate. Timing gears are used to synchronize the rotation of each lobe as it carries pockets of fluid through the pump. Based on discussion with a vendor, lobe pumps have the appeal of infrequent required maintenance and flexibility in equipment components. Although the pump housing will never need to change, the lobes will need to be replaced for maintenance over time. If the operators are unsatisfied with the performance of a specific lobe type, they can try implementing lobes made out of different materials or cut in different shapes without spending excessive amounts of money on complete pump replacement. So far, Pease has yet to install a lobe pump, so its installation may create unforeseen and unexpected problems at the facility.
At Pease, double disc pumps are utilized to move the contents of a 127,000-gallon sludge storage tank into dewatering once each week. Operationally, double disc pumps are relatively similar to diaphragm pumps. The suction discs are lifted from their seats in alternation to create vacuums and cavities that will move the fluid through the pump, as seen in Figure 13. So far, Pease operators have not expressed major complaints with their double disc pumps, but operators at other plants have complained about the number of required spare parts to conduct regular maintenance and repairs.

Hose pumps (peristaltic) are generally preferred for their minimal maintenance. Peristaltic pumps operate by squeezing a hose to move the hose contents through the pump. Thus, the only part that needs replacement is the hose itself (see Figure 14). The capital cost of these pumps is generally high, but due to the limited maintenance and their ability to handle abrasive liquids, they are generally favored by facility operators.
Although the hose pumps are more expensive, they are generally preferred by treatment plant operators. Since they are also used throughout Pease, operators are familiar with peristaltic pumps and are less likely to experience new problems when they are installed. Hose pumps also have yet to cause serious problems at Pease, so they were selected as the ideal type to use. For consistency in cost estimating, it is assumed that all 50gpm pumps required for alternative designs will be peristaltic pumps. Since hose pumps are not manufactured for high capacities, lobe pumps will be used for any capacity requirements over 100gpm. These pumps are relatively inexpensive and more operator-friendly when compared to double disc pumps.

4.5.2.3 Flow Meter & Inlet Valve

Capacity at the septage receiving facility is also impacted by the way trucks unload their septage into the facility. Without a valve or flow meter at the facility inlet, truck drivers can unload septage at any flow they want, which puts the plant at risk of becoming overloaded. Most septage receiving facilities implement several flow meters throughout the system to make sure that design flows are being safely met. Without a flow meter at the inlet, this practice is impossible.

The inlet also lacks a pinch valve. The Lakeside Septage Acceptance Unit can only accept a limited amount of septage to pre-treat before the unit would overflow or become damaged. Most units include sensors connected to a pinch valve at the inlet. This enables the tank of the unit to sense when it is filling too quickly and force the valve to shut temporarily. Adding an inlet pinch valve could help prevent damaging equipment.

4.5.3 Grit and Rock Removal

The existing septage receiving facility does not have a mechanism in place to remove rocks and grit from septage before passing into headworks. In terms of the grit, it accumulates in the septage storage tanks and requires operators to remove it twice per year. Since grit removal maintenance should only occur once every 5 years, or not at all in an ideal situation, the higher frequency of required maintenance has indicated an operational problem. The solution is to replace the Septage Acceptance Plant with a Septage Complete Plant, considering the complete plant contains grit removal. However, the complete plant is too large to fit in the existing septage receiving building, so the team did not consider adding the complete plant for this alternative.

On the other hand, rock accumulation is a problem this alternative does address. When large rocks are lodged into the septage acceptance system, operators must reach into the machine and use a hose to remove the rocks on a weekly basis. The rocks could easily damage the equipment and the maintenance puts the operators at an unnecessary risk. The simplest solution for reducing the buildup of large rocks is to install a rock trap. The manufacturer of the existing septage acceptance plant also manufactures rock traps that can be placed close to the facility.
inlet. The rock trap works to remove dense, heavy rocks, and lets the liquid continue into the facility for pre-treatment. The rock trap can be maintained by removing a lid at the bottom of the housing to let rocks roll out. In many indoor systems, the rock trap will be contained in the same facility. Due to the smaller size of this facility, the rock trap is unlikely to fit, and will need to be integrated outdoors. This is a common solution for other facilities, even in New England, so the colder climate should not negatively impact the operation or maintenance of this additional equipment.

4.5.4 Improvements for Truck Drivers

Installation of a key card reader for an auto-billing system will help modernize the facility. This will allow Pease to hold haulers accountable and help accurately track the number of gallons received. A major benefit is if the treatment system is upset due to an overwhelming amount of septage, the plant would be able to identify which hauler caused the shock. It also is more convenient for haulers because if they need to dump septage after-hours or on weekends, the card access will provide them with this capability.

The area where trucks unload is at a lower elevation than the inlet valve to the receiving station, so truck drivers are forced to use internal pumps to “blow off” the remaining septage from their truck as it nears empty. The flow surge occasionally creates a mess that the truck drivers then need to clean up. If the area adjacent to the facility was higher than the inlet valve so the trucks could unload their septage with only gravity, it would be advantageous.

4.5.5 Odor Control

The Stantec upgrade will replace the existing chemical scrubber with a biofilter. The design options considered for the new odor control system was an activated carbon absorber or a biofilter. Table 12 shows the advantages and disadvantages between the systems and why the biofilter was chosen. Because the current system is beginning to fail due to its age, the old system will be retrofitted to include the biofilter, but will have the same design parameters.

<table>
<thead>
<tr>
<th>Odor Control Design Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technique</td>
</tr>
<tr>
<td>Activated Carbon Absorbers</td>
</tr>
<tr>
<td>Low to moderate strength odors; small to large facilities</td>
</tr>
<tr>
<td>Cost-effectiveness depends on frequency of carbon replacement or regeneration</td>
</tr>
<tr>
<td>Simple, few moving parts</td>
</tr>
<tr>
<td>Only applicable for relatively dilute air streams; longevity of carbon difficult to predict</td>
</tr>
<tr>
<td>Biofilters</td>
</tr>
<tr>
<td>Low to moderate strength odors; small to large facilities</td>
</tr>
<tr>
<td>Low capital and O&M costs</td>
</tr>
<tr>
<td>Simple, minimal O&M</td>
</tr>
<tr>
<td>Design criteria not well established, may not be appropriate for very strong odors</td>
</tr>
</tbody>
</table>
4.6 Option 3: Repurpose Existing Headworks Facilities for Glycol Receiving

Design option three would address Lonza's glycol waste by repurposing the existing headworks for storage. This glycol has corrosive properties and a high BOD concentration, which necessitates separate storage from other types of waste. Repurposing the existing headworks by retrofitting corrodeable materials would be a resourceful way to store glycol.

4.6.1 Repurposing the Existing Headworks for Storage

Due to the planned location of the new headworks facility, it will be necessary to demolish the existing headworks building and move its operations below grade. This way, trucks will be able to drive over the existing headworks location and onto the location of the new headworks. Since the primary purpose of the existing headworks will be relocated to the new facility, and moving the septage pre-treatment processes below grade will not be reasonable for maintenance purposes, it makes most sense to repurpose this building as a below grade storage tank.

Converting the existing headworks into a storage tank should be relatively simple. Currently, the floor of the structure is depressed, such that staff must walk down a set of stairs to reach the equipment on the floor. A major component of this facility is its grit chamber. At 8’ X 8’ X 8’ deep, this tank currently has a volume of 5,964 gallons. If the walls of the tank were extended vertically up by 5’, the volume would increase by at least 2,400 gallons, bringing the tank to about the same volume as the existing septage receiving tanks. With this added height, the tank would definitely have enough volume to store the biweekly glycol deliveries.

4.6.2 Glycol Flow Rate

Since glycol can bypass pre-treatment, it can be slowly bled from storage into a wet well, pump station, or storage unit to mix with the wastewater and go through the rest of the treatment process. It is crucial to determine an ideal rate for this flow, as a high glycol flow rate could disrupt the system’s organic loading. Two methods of calculation were considered. The first relates the concentration (C) and flow rate (Q) of glycol to that of the rest of the wastewater in the system. If the two can be made to balance, the glycol can be added without substantially changing BOD daily concentrations. This is done as follows:

\[Q_{ww}C_{ww} = Q_{glycol}C_{glycol} \]

\[50 \text{ gpm} \times \frac{349.0 \text{ mg}}{L} = Q_{glycol} \times \frac{200,000 \text{ mg}}{L} \]

\[Q_{glycol} = 0.08 \text{ gpm} \]

The problem with this is that the flow rate is too slow for the anticipated quantities of glycol. If Lonza produces up to 3,500 gallons of glycol each week, it would be reasonable to expect one 5,000 gallon truck full of glycol every two weeks. At a 0.08 gpm feed rate, it would take 40 days to process a single truck’s contents, which means that the storage tank would be unable to accept a second load of glycol unless the storage capacity increased to accommodate this slow feed rate.

The alternative flow calculation considers design plan concentrations in relation to actual concentration data. Based on a mass balance drawing in the Underwood Engineers, Inc. report, the wastewater and septage that enters the headworks is expected to have an average daily BOD
concentration of 2,907 lb/d. However, water samples that have been taken from July 2012 to June 2015 indicate that the water that enters the headworks has an average daily BOD concentration of only 1,466 lb/d, with a maximum daily BOD concentration of 2,156 lb/d. This means that even at maximum concentration levels, there is still 751 lb/d of BOD that could be added to the system without exceeding the original design concentration averages. By converting from lb/d to mg/L, an ideal flow rate can be calculated. This is done as follows, where \(\alpha \) is the glycol flow rate:

\[
\frac{lb}{d} = \frac{mg}{L} \times 8.34 \times MGD
\]

\[
751 \frac{lb}{d} = 200,000 \frac{mg}{L} \times 8.34 \times \alpha MGD
\]

\[
\alpha = 0.00045 \frac{MGD}{gpd} = 450.24 \frac{gpd}{MGd} = 0.31 \frac{gpm}{MGd}
\]

This rate is substantially faster, and would allow a 5,000-gallon volume of glycol to be treated in 11 days. However, it would increase the average daily concentrations at the plant too close to the BOD concentration limit. Instead, it may be better to use a flow rate between the two that have been calculated. If a 5,000-gallon volume can be treated within 14 days, it would meet Lonza’s needs with less likelihood of overloading the system. The new concentrations and flows can be calculated as follows:

\[
\frac{Tank Volume}{Ideal \text{ Treatment Period}} = \frac{5,000 \text{ gallons}}{14 \text{ days}} = 357.14 \text{ gpd} = 0.248 \text{ gpm} = 0.000357 \text{ MGD}
\]

\[
\beta \frac{lb}{d} = 200,000 \frac{mg}{L} \times 8.34 \times 0.000357 \text{ MGD}
\]

\[
\beta = 595.71 \frac{lb}{d}
\]

With a margin of 155.29 lb/d BOD, feeding glycol at 0.248gpm should be safe for the system. However, this feed rate should be flexible and vary throughout the day and across the week. When wastewater flows are low, the system will be able to handle additional glycol, and when flows are high, less glycol should be added.

4.6.3 Cost Benefits of Glycol Treatment

Due to its extremely high BOD levels, accepting and treating Lonza’s glycol waste can justify a higher fee. The concentration of the combined septage and wastewater averages at 349.0 mg/L BOD, which actually fits within the concentration range for domestic wastewater listed in Table 9. The table also indicates that the BOD of septage may range from 2,000 mg/L to 6,000 mg/L. Unfortunately, Pease does not take samples of the received septage, so no data for septage BOD concentrations exist. The only data the team was able to acquire was for BOD concentrations for combined wastewater and septage. Pease does not take samples of the received septage.

To determine how much Pease can charge to treat the glycol, the team developed a range based on the average septage BOD range of 2,000-6,000 mg/L (see Table 9). Currently, Pease
charges $0.07 per gallon of septage and the BOD of the glycol waste is about 200,000 mg/L.
Assuming the septage concentration is 2,000 mg/L, Pease can charge $7 per gallon to treat
glycol. For the upper limit, Pease can charge $2.33 per gallon. See the full calculation below (α
represents the cost using the lower limit and β represents the higher limit). Since the actual
concentration of the septage received at Pease is unknown, it is assumed for estimation purposes
that the facility can charge a mid-range fee of $5 per gallon for glycol.

\[
\frac{\text{Average Septage BOD}}{\text{Glycol BOD}} = \frac{\text{Cost for Septage}}{\text{Cost for Glycol}}
\]

\[
\frac{2,000 \text{ mg/L}}{200,000 \text{ mg/L}} = \frac{$0.07}{\alpha}
\]

\[
\alpha = \left(\frac{200,000 \text{ mg/L}}{2,000 \text{ mg/L}} \right) \times ($0.07) = $7.00
\]

\[
\frac{\text{Average Septage BOD}}{\text{Glycol BOD}} = \frac{\text{Cost for Septage}}{\text{Cost for Glycol}}
\]

\[
\frac{6,000 \text{ mg/L}}{200,000 \text{ mg/L}} = \frac{$0.07}{\beta}
\]

\[
\beta = \left(\frac{200,000 \text{ mg/L}}{6,000 \text{ mg/L}} \right) \times ($0.07) = $2.33
\]

4.6.4 Disadvantages

This alternative has two logistical disadvantages. First, the location of the existing
headworks is far away enough from both the new headworks and the septage receiving facility
that piping the glycol waste to either location would require about 30ft of piping. Glycol requires
a very small pump, and a very low flow. The pump that meets these needs has a small hose that
may not be easily installed over a 30ft distance.

Second, by placing the storage tank underground, it may be difficult to conduct
maintenance. The tank lid would need to be flush to the ground, so the pump might need to be
fixed onto a tank wall close to an access door. Glycol should also vent for odor control. Adding
ventilation would incur additional cost and construction difficulties.

4.7 Option 4: Construct New Facility for Glycol Receiving

There are two primary reasons to consider constructing new storage for glycol receiving.
First, glycol is acidic, and has potential to corrode metals. To maintain the safest operations
possible, it is best to create a new storage area specifically designed to contain glycol. Second,
the demand for treatment of glycol is a new one. If Lonza currently generates up to 3,500 gallons
each week, this amount could potentially increase in the future. Due to the high BOD
concentration of the glycol, treatment at Pease could also generate substantial revenue. Thus, the
plant should plan ahead with extra storage capacity. By constructing a new storage area instead of repurposing existing buildings, there will be less likelihood of unforeseen problems occurring. The two proposed locations are shown in Appendix F in the CAD layout. The first possible location is adjacent to the existing septage storage tanks, and the alternative is underneath or adjacent to the new headworks building.

As discussed in the previous section, Pease can charge anywhere from $2.33-7 per gallon to treat glycol. If the plant charges more toward the upper limit, they may be able to construct new structures to accommodate the glycol with a relatively short capital cost payback period. Additionally, Pease and Lonza have a strong business relationship due to their geographic proximity. Should new facilities be constructed to accommodate Lonza, it may be possible that Lonza would help fund new construction. For these reasons, the upgrade and repurpose of existing buildings were considered in conjunction with the possibility of new construction.

The increased cost is obviously a disadvantage compared to simply repurposing existing buildings. The main difference between options 3 and 4, in terms of capital cost, is the expense of installing a new storage tank. As mentioned, it would be beneficial to pick this over option 3 because it allows for Pease to have more capacity for if Lonza increases their generation of glycol waste. However, if initial cost is a major limiting factor, option 4 may prove to be not worth the additional cost.

4.8 Option 5: Construct New Septage Pre-Treatment Facility and Glycol Receiving Facility

The final design alternative involved relocating the septage facility to ensure that it could house all the components necessary for septage pretreatment (rock trap, screening, and grit removal). This design also includes a built-in storage area for glycol. This keeps all of the concentrated wastes in the same area, with the proper storage and pre-treatment necessary. If repurposing abandoned structures seems too costly or does not meet the needs of the plant, new structures may be better options. Building a new structure to house these processes could reduce the need of serious maintenance for another 20 years.

In this design (see Appendix F), septage will be dumped at a new facility, constructed closer to the sludge storage tanks. The facility will pretreat the septage, redirect it into a small wet well, and pump it for storage into an empty 126,904 gallon sludge storage tank. Although this mix could be pumped directly into the sequencing batch reactors for use by the activated sludge microbes, it is better to add the mix into an early stage of treatment. Both septage and glycol do not need to go through the headworks because the septage is already pretreated and the glycol only needs to be treated by the biological processes. Based on the wastewater treatment processes at Pease, the team suggests pumping the mix into the control box that feeds the primary clarifiers. From there, septage will continue through the rest of the treatment process. This new facility will also be used to receive and store glycol. The glycol tank area will be located adjacent to the septage wet well so that glycol can be slowly pumped into the wet well and then pumped into the sludge storage tank to mix with the septage.

One of the unique elements of this design is the way it accommodates low-flow periods. By storing a mix of septage and glycol in the sludge storage tank, Pease will have continuous access to a high-strength waste which can be treated during low-flow periods. This mix can be bled into the system as a food source for microbes in the SBRs over weekends. The large volume of the sludge storage tanks also enables Pease to keep the concentrated mix on standby for longer periods of time than would be possible if small 7,000-gallon tanks were used.
This alternative would add a Septage Complete Plant for the pretreatment process. This would prevent Pease from cleaning out the grit accumulation in the storage tanks twice per year, thus saving in operations cost. This would also implement all of the upgrades to the Septage Acceptance Plant that the team suggested in design alternative 2, such as a flow meter, inlet valve, and rock trap. This, combined with the ability to have a large storage capacity for the glycol waste, makes this alternative the most reliable option and satisfies Lonza's need to treat the waste. The fact that this option allows for Lonza to increase the generation of glycol waste also strengthens Pease's business relationship with them and may lead to an increase in revenue.

The disadvantages to this include the time it would take to design and construct the facility, which results in lost potential revenue from not accepting the glycol waste for an extended period of time. Additionally, this alternative is obviously the most expensive option in terms of capital cost ($1.4 million), a major consideration for the City of Portsmouth. With the construction of new facilities, the installation of new equipment, and the addition of an odor control system, the capital cost payback period is much longer.

4.9 Equipment Selections

The team contacted six vendors concerning septage receiving stations and pretreatment systems such as the complete plants, screens and rock traps. Below are the equipment selected for the designs.

4.9.1 Glycol Receiving Station (Options 3, 4, and 5)

The PortALogic DS-25 is a simple tamper-proof model easy for haulers to use. This station provides secure hauler access by PIN or swipe card and includes a pedestal base with an electrically actuated valve and flow meter. The equipment can operate outdoors in temperatures ranging from -40°F to 122°F and receive septage, fats-oils-grease, sludge, frac water and other waste flow up to 1,100gpm. More information on the PortALogic Waste Dump Station- Model DS-82 can be found in Appendix H.

![Dump Station DS-25](image)

Figure 15. PortALogic Waste Dump Station Model DS-25
4.9.2 Septage Receiving Station (Options 2 and 5)

The PortALogic DS-82 is a tamper-proof complete solution for waste receiving. The station provides secure access to haulers by PIN or swipe card. The station includes an electrically actuated valve, flow meter, sampler and pH sensor. The equipment can operate outdoors in temperatures ranging from -40ºF to 122ºF and receive septage, fats-oils-grease, sludge, frac water and other waste flow up to 1,100 GPM. More information on the PortALogic Waste Dump Station- Model DS-82 can be found in Appendix H.

![Dump Station DS-82](image)

Figure 16. PortALogic Waste Dump Station Model DS-82

4.9.3 Septage Complete Plant (Option 5)

The complete septage system the team selected was the Lakeside Raptor Septage Complete Plant, which combines screening and grit removal into one self-contained unit for treatment. More information can be found in Appendix H.
4.10 Completed Cost Estimates

Cost estimates were an essential part of this project because there are large differences between all five alternatives. Table 13 below displays the cost estimate summary for the options the team developed. As anticipated, the costs associated with option 5 are the most expensive. Option 1 is obviously the cheapest option because it only reflects the money that Pease currently spends annually for regular operating costs. Option 2 appears more expensive than options 3 or 4 due to the considerations for septage treatment upgrade. Cost estimates for options 3 and 4 address only the costs associated with the integration and maintenance needed for glycol treatment. Thus, if option 3 or 4 is of interest in addition to option 2, the total costs can simply be added together. For the complete cost estimate breakdown, refer to Appendix G.

<table>
<thead>
<tr>
<th>Subtotal</th>
<th>Option1</th>
<th>Option2</th>
<th>Option3</th>
<th>Option4</th>
<th>Option5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractor OH&P (18%)</td>
<td>$244,200</td>
<td>$312,400</td>
<td>$30,800</td>
<td>$49,060</td>
<td>$1,025,200</td>
</tr>
<tr>
<td>Contingency (30%)</td>
<td>$56,232</td>
<td>$5,544</td>
<td>$8,831</td>
<td>$184,536</td>
<td>$307,560</td>
</tr>
<tr>
<td>Total</td>
<td>$244,200</td>
<td>$462,352</td>
<td>$45,584</td>
<td>$72,609</td>
<td>$1,517,296</td>
</tr>
</tbody>
</table>

The $20,000 difference in cost estimates for options 3 and 4 can be accounted for by the installation of a new storage tank in option 4. Since option 3 utilizes the grit tank in the existing headworks, this design costs less. The cost of option 4 is not excessively more than option 3.
because it only involves installing the new storage tank for the glycol and this does not require a facility to be built around it. Both suggested placements of the tank for option 4 allowed the pump to be housed in either the new headworks or the existing septage receiving facility, thus saving the plant significantly.

The building cost really separated the fifth option from the rest because it is the only alternative that requires building a completely new facility. There was also a high cost for equipment because this option required new pumps and a Septage Complete Plant that costs $276,000. Although this option is the most expensive, it is important to note that this is the only alternative that addresses the need for low-flow weekends and provides “food” for the microbes during those times.

It is interesting to note that maintaining operations costs $238,000, and that for twice that amount, Pease could implement option 2 and have the septage receiving facility operate much more efficiently. However, if the facility had $1 million more available, the long-term design option 5 would become a possibility as well. It is also important to remember the capital cost payback period for design options that will treat glycol. At a $5 per gallon treatment fee, and at least 10,000 gallons of glycol being treated each month, it would take only about one month for the costs of options 3 or 4 to be paid for. The cost of option 5 could be paid for with glycol fees alone within about two years.

4.11 Decision Matrix

After developing the five alternatives, the team completed a decision matrix to determine which alternative(s) would likely be the most beneficial for the Pease WWTP to implement. The completed matrix is shown below. Option 2 scored that highest, while option 1 was the lowest. For health and safety, all options scored at least a 3 for both sub-categories. There are no serious threats to both operators and the community with the facility operating as is, so any updates would only improve the current situation.

Option 1 was the only alternative to score below a 3 out of all of the environmental and sustainability criteria. This option scored a 2 for energy consumption because the septage trucks do not empty completely by gravity into the facility, resulting in the need for the truck to turn on its pump to remove the remaining septage. Additionally, the operators spend time once per week using a hose and their hands to physically remove debris from the screen system that builds up due to the trucks having to turn on their hoses. Every other alternative would ensure total gravity flow, which is why they all scored at least a 3 for energy consumption. For nuisance odors, all options received a 4 because there currently is not an odor problem at Pease and the various locations for options 3-5 would all be covered by the new odor control system Stantec is implementing with their headworks upgrade. For instance, if Pease decided to go with option 5, that building would simply be tied in to the odor control system and would not require the installation of a new system.

The economic criteria were weighed the heaviest because this is arguably the most important category to the client. The City of Portsmouth was already upgrading their other treatment plant, the Peirce Island WWTP, and there were various improvements already planned for Pease, such as the new headworks that Stantec was designing. That being said, it was very important that these options were economically efficient ways to improve the septage receiving process. The business expansion criterion was important because this included whether or not Pease would be able to accommodate Lonza and treat the glycol waste. The reason why option three only scored a 4 for this and options four and five scored a 5 was that the latter could be
Built to whatever capacity Pease desires. In terms of reliability, option 5 was the only one to score a 5 because it has an extremely high capacity of 126,000 gallons for both septage and glycol. While the other alternatives have sufficient capacity, this option is more reliable because it takes advantage of the low-flow weekends and helps prevent the microbes from starving.

For the constructability criteria, the timeline criterion decreased going across the alternatives because more work is required with each option, thus delaying when the new facilities will be up and running. Options 4 and 5 scored a 1 for infrastructure because they did not repurpose any existing buildings. Option 4 required installing a new storage tank and option 5 involved constructing a whole new facility. For integration, option 2 scored a 4 because all of the updates, except grit removal, could be applied to the current facility and did not require expanding the building.

Table 14. Completed Decision Matrix

<table>
<thead>
<tr>
<th>Primary Criteria</th>
<th>Specific Criteria</th>
<th>Weight</th>
<th>Design Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>#1</td>
</tr>
<tr>
<td>Health & Safety</td>
<td>Operator Safety</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Regulatory Obligations</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>Environmental and</td>
<td>Energy Consumption</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Water Resources</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Nuisance Odor</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Economic</td>
<td>Reliability</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Efficiency</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Initial Capital Cost</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>O&M Costs</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Business Expansion</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Constructability</td>
<td>Timeline</td>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Integration</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Scalability</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Infrastructure</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>46</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Weighted Total</td>
<td>90</td>
<td>104.5</td>
</tr>
</tbody>
</table>
5. Conclusion and Recommendations

Although the decision matrix clearly indicates that the preferable design option is alternative 2, it is important to note how heavily the economic criteria were weighed. Option 2 is economically the best option in that it proposes solutions for existing problems in inexpensive ways. However, it is also important to satisfy the needs of clients relying on Pease for its treatment abilities, and ensure that the plant is operating effectively and efficiently. For these reasons, the team proposes two recommended designs, neither of which is alternative 2 in its original state.

5.1 Economically Effective: Short-Term Recommendation

If Pease would prefer to make adjustments immediately, the best option would be to combine the ideas presented in alternatives 2 and 3. By integrating the design for option 3, Pease will be able to meet the needs of Lonza and treat glycol. The main advantage of option 3 over option 4 is that there is no need to install a storage tank specifically for the glycol, since the grit tank in the existing headworks would be repurposed to accommodate the waste. That is essentially the main difference between alternatives 3 and 4.

It is highly recommended Pease implements the updates presented in option 2 because it will ensure the system is not overloaded, expand the capacity of the receiving facility, and provide accurate information on the quantity of septage the facility takes in, which may result in more income for the plant. Additionally, implementing the ramp so the septage trucks can completely empty by gravity flow will result in less operational problems with the Septage Acceptance Plant.

5.2 Operationally Efficient: Long-Term Recommendation

If Pease is interested in long-term solutions and has the budget for a larger upgrade project in the coming years, the best option would be to implement alternative 5. This option would require the most new equipment and structures. However, if Pease intends to expand its treatment capabilities, this option should enable the facility to operate at higher treatment capacity for several years following construction.

To further develop this option, the team considered pump specifications and facility capacity. In order to move influent septage into the sludge storage tank, which sits 24 feet above grade, it is necessary to utilize pumps. Since the sludge storage tank would be the primary storage location for the septage, a small wet well under the new facility, connected to powerful pumps, should effectively move the septage quickly into storage. To prevent wet well overflow, it will be necessary for the septage to exit the wet well at, or near, the same flow rate at which it enters the facility. This can be achieved by using a 150-gpm pump at the bottom of the wet well. Since the largest truck volume should be 5,000 gallons, the wet well and glycol storage tank should each have a working capacity of at least 5,000 gallons. To be safe, the team decided that the same tank size currently used at the existing septage receiving facility (7,000 gallons) could be used in this application. Figure 18 illustrates these specifications and the path of septage and glycol flow within the new facility.
There are two factors that make this option stronger than the short-term option, despite the considerably higher expense. First, this option has the storage capacity needed to feed the treatment process during low-flow periods and will enable Pease to treat more septage and glycol, generating more revenue. Second, this option fully addresses the problem of grit accumulation. If Pease intends to increase its septage treatment capacity, problems with grit accumulation will increase as well, unless conditions are changed. Due to the size of most grit removal systems, the only way such equipment could be housed is through the construction of a new facility. Another major advantage for this over the short term option is this significantly increases the capacity to receive septage. The existing facility's capacity for septage is 14,000 gallons, while this option would account for over 126,000 gallons for both glycol and septage. Pease would be able to market their expanded capacity, which may result in even more revenue.

5.3 Recommendations for Future Study

Due to the short time-span of this project, there are several areas of study that would help ensure the accuracy of cost estimates and design recommendations. If time permitted, the team would investigate the following areas.

5.3.1 Septage Flows and Concentrations

Throughout this project, it was assumed all 3,000 gallon and 5,000 gallon trucks of septage take 20 minutes to empty into the septage storage tanks. It was also assumed that each truck tank was completely full when entering the plant. Without data from a flow meter, these assumptions were necessary for preliminary calculations to determine ideal tank volume and
required pump flows. To make the calculations for this equipment more accurate, it would be necessary to obtain more accurate data about the flow rate and quantity of septage leaving trucks. This could be achieved by installing a flow meter at the facility inlet connection point and collecting data for at least one year to capture all potential seasonal changes in flow.

Since the septage is not sampled prior to entering the facility, no data exists for initial BOD concentrations. Due to seasonal and locational variation in septage concentrations, it would be ideal to sample septage from each regular collection location at least once each week. If accurate data was collected for one year, a more accurate fee for glycol treatment could be developed. The facility could also determine if they are actually accepting more or less BOD concentration than originally assumed, which could result in a change in the baseline septage treatment fee.
6. References

http://www.portsmouthnh.com/visitor-info/

Appendix A: Proposal
Septage Receiving and Treatment Upgrade Design Proposal
Pease Trade Port Wastewater Treatment Plant – Portsmouth, New Hampshire

A Major Qualifying Project Proposal Submitted by:

Ryan Clark
Katherine Hedberg
Rita Newman

January 11, 2016
Abstract

Combined wastewater inflow exceeds capacity at the Pease Wastewater Treatment Plant. To maximize cost benefits by treatment of inflow water, the plant must be retrofitted to increase capacity. This can be achieved by implementing new screen and grit removal systems to prevent solid waste buildup and developing an alternative pump station design to maximize efficiency and decrease energy consumption. This project will enable Stantec to select a solution that will meet economic, environmental, constructability, and safety constraints for improved performance.
Table of Contents

Abstract .. i
List of Tables .. iii
List of Figures ... iii
1.0 Introduction ... 1
2.0 Background .. 2
 2.1 Overview of the Existing Pease Tradeport Wastewater Treatment Plant .. 2
 2.2 Project Scope and Wastewater Classification .. 3
2.3 Headworks Overview .. 4
 2.3.1 Pump Operation ... 4
 2.3.2 Screen Systems ... 4
 2.3.3 Grit Removal Systems ... 5
3.0 Methods .. 7
 3.1 Schedule of Tasks .. 7
 3.1.1 Stantec Orientation: Jan 14-15 ... 8
 3.1.2 Review Existing Facility Drawings & Initial Site Visit: Jan 19-22 ... 8
 3.1.3 Evaluation of Conditions: Jan 25-29 .. 8
 3.1.4 Develop Design Alternatives: Feb 1-5 .. 9
 3.1.5 Prepare Cost Estimates: Feb 8-12 ... 10
 3.1.6 Review Design Alternatives: Feb 15-19 .. 11
 3.1.7 Finalize Deliverables: Feb 22-Mar 4 .. 11
References .. 14
List of Tables

Table 1. Waste Sources ("Wastewater Treatment," 2003) ... 3
Table 2. Wastewater Classification ("Wastewater Treatment," 2003) 3
Table 3. Types of Coarse Screens (EPA, 2003) .. 5
Table 4. Types of Fine Screens (EPA, 2003) .. 5
Table 5. Anticipated Project Completion Schedule .. 7
Table 6. Decision Matrix Criteria and Description ... 11

List of Figures

Figure 1. Layout of Existing Pease Wastewater Treatment Plant (Arcadis, 2015) 2
Figure 2. Gantt Chart of Project Schedule .. 13
1.0 Introduction

As one of the Worcester Polytechnic Institute (WPI) degree requirements, students must complete a final Major Qualifying Project (MQP) and capstone design experience which will utilize knowledge acquired through coursework to practice professional design. This MQP will be completed with Stantec at their Burlington, Massachusetts branch to redesign the Pease Trade Port Wastewater Treatment Plant in Portsmouth, New Hampshire. Stantec is an international consulting company of more than 1,000 professionals in the water and wastewater engineering sector (“Water & Wastewater Engineering - Stantec,” n.d.). Stantec is committed to making water a sustainable resource and the environment a safer place through projects such as the upgrade of the Pease Wastewater Treatment Plant.

The Pease Wastewater Treatment Plant (WWTP) is an existing sewage receiving and treatment facility. Currently, holding tanks are at maximum capacity, resulting in occasional overflow, which causes an inconvenience to the community and a loss in revenue for the facility. Maintenance issues also exist due to rock and grit accumulation in the holding tanks. This project will focus on cost effective design options to remedy overflow situations and reduce operational problems. As part of the scope of this project, the team will assess existing conditions on the site and conduct cost analyses for various design options.

To develop a set of design solutions that will meet increasing demand at the Pease Wastewater Treatment Plant, the team will achieve three objectives as follows:

1. Understand current Pease headworks operations and problems
2. Design alternative solutions to increase Pease capacity and enhance headworks performance
3. Select a solution through consideration of economic, environmental, constructability, and health and safety constraints
2.0 Background

The goal of this project is to develop multiple design solutions that will meet increasing demand at the Pease Wastewater Treatment Plant. The Background section of this report reviews information about the Pease Wastewater Treatment Plant, standard operations of wastewater treatment plants, and important facts about headworks components.

2.1 Overview of the Existing Pease Tradeport Wastewater Treatment Plant

The Pease Wastewater Treatment Plant is located on the Pease International Tradeport. It was constructed in 1954 and originally served the Pease Air Force Base. Since the WWTP opening, there have been modifications and changes of ownership. In 1990 the City of Portsmouth took over operations and management through an inter-municipal agreement (Arcadis, 2015). The WWTP does not have a permit flow limit. Currently, it intakes 1.2 MGD and discharges treated effluent into the Piscataqua River. Because the WWTP takes on 60% of the load and 50% of the flow from the Craft Brewer Alliance (Redhook Brewery) and Lonza Biologics, meeting permit limits can be challenging (Arcadis, 2015). The City of Portsmouth has another treatment plant, the Peirce Island treatment plant. Between these two facilities, there are 20 pump stations, 120 miles of sewers, and 3 combined sewer overflows. Figure 1 below displays the layout of the Pease Wastewater Treatment Plant.

Figure 1. Layout of Existing Pease Wastewater Treatment Plant (Arcadis, 2015)
2.2 Project Scope and Wastewater Classification

The project description provided by Stantec (received on September 17, 2015 via e-mail) informed the team about existing system problems and desired design work. The description indicated that the sewage water being collected led to problematic rock and grit accumulation within the treatment plant. The contents of the water and its respective classification are important as these factors determine the processes and respective equipment necessary to treat plant intake. Wastewater is typically generated by several sources, as listed below:

<table>
<thead>
<tr>
<th>Waste Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human and animal</td>
<td>Solid and liquid discharges (most dangerous to human health)</td>
</tr>
<tr>
<td>Household</td>
<td>Household cleaners, garbage, other waste from homeowners</td>
</tr>
<tr>
<td>Industrial</td>
<td>Industrial discharge: chemicals, grit, highly toxic materials</td>
</tr>
<tr>
<td>Storm water runoff</td>
<td>From community infrastructure: grit, street debris, road salt</td>
</tr>
<tr>
<td>Groundwater infiltration</td>
<td>Groundwater with grit may enter old improperly sealed pipes</td>
</tr>
</tbody>
</table>

Due to the wide range of wastewater sources, there are five primary classifications:

<table>
<thead>
<tr>
<th>Water Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic (sewage)</td>
<td>Human and animal wastes with some groundwater infiltration and industrial waste</td>
</tr>
<tr>
<td>Sanitary</td>
<td>Mostly domestic waste with some industrial waste</td>
</tr>
<tr>
<td>Industrial</td>
<td>Industrial waste only</td>
</tr>
<tr>
<td>Combined</td>
<td>Sanitary wastewater and storm water runoff</td>
</tr>
<tr>
<td>Storm water</td>
<td>Storm water only</td>
</tr>
</tbody>
</table>

Given these classifications and the project description, it is assumed that the Pease Wastewater Treatment Facility intake is combined water. There are three combined sewer overflows in the City of Portsmouth’s wastewater system, at least one of which is likely associated with the Pease Wastewater Treatment Plant (Department of Public Works, 2012). This assumption was used to conduct the rest of the background research about potential system components.
2.3 Headworks Overview

The project description also noted the team can utilize an “abandoned below-grade headworks facility” for potential upgrade designs. To do this, the team must examine the existing headworks of the wastewater treatment process, which removes inorganics such as sticks, stones, grit, and sand. The headworks is essential as it protects the downstream equipment from damage and wear. This equipment includes: pumps, mechanical screens, and grit removal systems. In addition to protecting the downstream equipment, the headworks removes some highly concentrated pollutants. This reduces the cost to treat wastewater later in the process and helps meet standards for a safe discharge of effluent into a body of water (Oyler, 2001).

It is essential to invest money in improving treatment facilities or there can be serious damage and failures, which happened to the Lowell Regional Wastewater Utility. Due to a lack of funding, insufficient repairs were conducted for about ten years, and as a result the Utility experienced “a series of catastrophic failures” (Young, 2011). After those failures, the facility implemented various capital improvements, such as four new screw pumps, new influent screens, and updated grit screening.

2.3.1 Pump Operation

Pumping stations move wastewater throughout the system at a desired velocity. Pumping devices consist of a control unit, motor, pump, check valve, and various other valves and fittings (Korving, Clemens, & Van Noortwijk, 2006). To determine the pump type most applicable for a given treatment plant, factors including water classification, energy use for operation, and maintenance costs should all be considered (Ackermann, 2003).

Another important factor to consider is the range of flows that a facility may experience on any day. Some estimates claim that an “average flow” may double in stormy high-flow conditions, or may decrease to only half in drier periods ("Wastewater Treatment," 2003). Whatever the flow rate is throughout the day, pump design must accommodate that flow efficiently. When pumps are unable to perform at design capacity (possibly as a result of age), the pump has effectively failed and must be reassessed.

The piping systems that convey the intake and outtake flows to and from the pumps have important specifications as well. Pipe strength must resist internal pressure, handling, earth and traffic loads. Pipes should ideally withstand corrosion and abrasion in addition to expansion and contraction due to changing temperature conditions. Additionally, valves, couplings, unions and other fittings must all be carefully selected to prevent leakage ("Wastewater Conveyance," 2010).

2.3.2 Screen Systems

As part of the pretreatment process, screening minimizes the potential wear or harm to equipment by removing large solids and grit (EPA, 2003). The removal of larger grit is important to prevent problems in wastewater treatment such as jamming and excessive wear. The screening process uses two types of screens: coarse screens for larger objects, and fine screens for smaller materials. Both screens are used to remove material that may create operational and maintenance problems (especially in systems that lack primary treatment). Table 3 and Table 4 below outline various screens and the solids they each remove (EPA, 2003).
Table 3. Types of Coarse Screens (EPA, 2003)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trash Rack</td>
<td>Removes logs, timbers, stumps, and other large debris</td>
</tr>
<tr>
<td></td>
<td>Opening size is 1.5”-6” (38mm-150mm)</td>
</tr>
<tr>
<td>Manually Cleaned Bar Screen</td>
<td>Used in smaller treatment facilities or in bypass channels</td>
</tr>
<tr>
<td></td>
<td>Removes large solids, rags, and debris</td>
</tr>
<tr>
<td></td>
<td>Opening size is 1”-2” (30mm-50mm)</td>
</tr>
<tr>
<td></td>
<td>Bar set at 30°-45° from vertical</td>
</tr>
<tr>
<td>Mechanically Cleaned Bar Screen</td>
<td>Used primarily in new installations</td>
</tr>
<tr>
<td></td>
<td>Removes large solids and other debris</td>
</tr>
<tr>
<td></td>
<td>Opening size is 0.25”-1.5” (6mm-38mm)</td>
</tr>
<tr>
<td></td>
<td>Bar set at 0°-30° from vertical</td>
</tr>
</tbody>
</table>

Table 4. Types of Fine Screens (EPA, 2003)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Fine Screen</td>
<td>Opening size is 0.06”-0.25” (1.5mm-6mm)</td>
</tr>
<tr>
<td>Very Fine Screen</td>
<td>Removes suspended solids at a level comparable to primary clarification</td>
</tr>
<tr>
<td></td>
<td>Opening size is 0.01”-0.06” (0.2mm-1.5mm)</td>
</tr>
<tr>
<td></td>
<td>Bar set at 30°-45° from vertical</td>
</tr>
</tbody>
</table>

Cleaning the debris out of the screen system is essential to ensure that water can still pass through. A traveling screen is a mechanically cleaned fine screen system. Its sections rotate upward and are cleaned with water sprays when they rotate to the head enclosure (Viessman, Perez, & Chadik, 2009). A mechanically cleaned medium screen system is commonly used to replace a manually cleaned coarse screen (Viessman et al., 2009). The debris collected can then be buried on land or incinerated depending on the suitability of the options.

The State of New Hampshire sets design and capacity requirements for the sizes of openings and how they are to be cleaned (New Hampshire Code of Administrative Rules, 2014). Final designs will need to comply with these requirements.

2.3.3 Grit Removal Systems

Grit removal occurs after screening to prevent abrasion and wear of mechanical equipment, as well as deposition and accumulation of rocks and grit in pipelines, channels, anaerobic digesters and aeration basins (EPA, 2003). Examples of grit, which are heavier than organic biodegradables, include sand, gravel, food waste, and bone chips (EPA, 2003). For design purposes, grit is defined as fine sand, 0.2-mm-diameter particles with a specific gravity of 2.65 and settling velocity of 0.075 fps (Viessman et al., 2009). Several types of grit-removal units are used and vary based on the amount of grit in the wastewater, size of the plant, convenience of operation and maintenance, and costs of installation and operation (Viessman et
3.0 Methods

The goal of this project is to develop several design solutions that will meet increasing demand at the Pease Wastewater Treatment Plant. This approach will offer Stantec multiple options to choose from in implementing upgrades at the treatment plant. The WPI team will also analyze the benefits and disadvantages of each plan and suggest an option to best improve long term performance. The team will present the following three deliverables to Stantec at the end of the seven-week project work period:

1. Set of alternative headworks design plans to improve plant efficiency and capacity
2. Recommended design plan, complete with supportive reasoning in MQP report
3. Presentation of project evolution and conclusions

To develop desired deliverables, the team will work to meet the following objectives:

1. Understand current Pease headworks operations and problems
2. Design alternative solutions to increase Pease capacity and enhance headworks performance
3. Select a solution through consideration of economic, environmental, constructability, and health and safety constraints

3.1 Schedule of Tasks

The timeline to complete this MQP is from January 14th to March 4th. Although the team will likely continue project work during weekends, only weekdays are listed in the timetable below. Each week focuses on a different team goal.

<table>
<thead>
<tr>
<th>Goal/Important Events</th>
<th>Date Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stantec Orientation</td>
<td>Jan 14-15</td>
</tr>
<tr>
<td>Martin Luther King, Jr. Day</td>
<td>Jan 18</td>
</tr>
<tr>
<td>Review Existing Facility Drawings & Initial Site Visit</td>
<td>Jan 19-22</td>
</tr>
<tr>
<td>Evaluation of Conditions</td>
<td>Jan 25-29</td>
</tr>
<tr>
<td>Develop Design Alternatives</td>
<td>Feb 1-5</td>
</tr>
<tr>
<td>Prepare Cost Estimates</td>
<td>Feb 8-12</td>
</tr>
<tr>
<td>Review Design Alternatives</td>
<td>Feb 15-19</td>
</tr>
<tr>
<td>WPI Career Fair (Students may take the day off)</td>
<td>Feb 18</td>
</tr>
<tr>
<td>Finalize Deliverables (2 weeks)</td>
<td>Feb 22-March 4</td>
</tr>
</tbody>
</table>
3.1.1 Stantec Orientation: Jan 14-15

The initial days will be spent settling into the office, meeting supervisors, and becoming acquainted with existing resources for the completion of project work.

3.1.2 Review Existing Facility Drawings & Initial Site Visit: Jan 19-22

The first full week will establish a better understanding of permit requirements and current operations at the Pease Treatment Plant through review of existing drawings and operation data. This period may also help to refocus the project scope if necessary. Ideally, the team hopes to visit the facility and collect information as follows:

- Confirm that components shown in site drawings are accurate
- Take photos as needed for use in report, presentation, and future reference in system evaluation and development of alternative designs
- Visit the abandoned headworks facility and record information for use in possible upgrade designs
- Speak with system operators to gauge their understanding of existing problems and their thoughts on potential solutions. Questions during discussion may include:
 - What is the power and age of each pump? Have you noticed their performance decrease in efficiency?
 - What is the current average daily flow of the plant? What are the peak flows?
 - What solid matter exists in the wastewater that flows into the facility?
 - Describe the problems that the plant currently faces. Can you identify a direct cause of these problems?
 - Do you have any suggestions for ways to improve the efficiency of the existing system?

3.1.3 Evaluation of Conditions: Jan 25-29

After reviewing drawings and a site visit, existing conditions and machinery can be further evaluated. For pump design, the most important information is desired flow to pump, the actual composition of the wastewater, and the local conditions of the pump station (Ackermann, 2003). Without careful calculation of flow, pumps may not operate at the levels they were designed for. Having a pump of the wrong size is both inefficient and can lead to damage. Most advanced wastewater treatment plants have monitoring equipment already in place, such as a SCADA (Supervisory Control And Data Acquisition) system or AMI (Advanced Metering Infrastructure). These systems can monitor several qualities of water, such as flow, and can even set alarms for potential issues like sewer overflow (Atkinson, 2015). If Stantec has records of this data for the Pease plant, the team will be able to determine if the pumps are operating efficiently given their design. If the data collected seems inaccurate, or no data is being collected at all, the team will need to investigate options for system monitoring since this is the best way to accurately measure flow and ensure efficient system operation.

The contents of wastewater is also critical for selecting the right pump as different solids will cause different problems. One recent issue has been an increase in the use of flushable wipes, which has caused problems for sewage plants. Instead of dissolving the way they should,
these wipes “form into strips during the treatment process and reform into larger balls” (Brzozowski, 2015). In submersible pumps, this clogging requires maintenance teams to enter the confined space surrounding the pump and remove the accumulated waste. This process is unsafe for maintenance workers but often occurs regularly due to frequent pump clogging. Some plants that are aware of this issue have chosen to install stronger pump impellers which grind and shred the wipes more successfully, thereby preventing clogging. However, since these impellers require more power, they incur more cost, so they should not be used unless proven necessary. In this way, wastewater contents dictate the appropriate pump mechanisms to use in a system. Granted, selected pump components must still physically fit the local conditions of the pump stations, unless complete reconstruction and upgrade of the stations is desired.

To reduce the existing operational problems from rocks and grit accumulating in the holding tanks, the team will evaluate the existing screen system’s physical conditions and sizes of openings and compare them to the sizes of particles and materials entering the system. One way to evaluate the efficiency of grit removal is to determine the percent removal of various particle sizes and biological degradable materials (Olson, 2013). The team will also determine what type of materials are passing through the screens into the holding tanks, and whether resizing or installing different screens would be appropriate. It is assumed the plant has both coarse and fine screens, but this is something the team will need to confirm in their evaluation as that is an important part in the treatment process. The screens can be either mechanically or manually cleaned. If the plant manually cleans the screens, that certainly can be upgraded as mechanically cleaned is the more updated, efficient process. Following the screens, the grit systems must capture any materials that pass through the screens. Any visible build-up of grit is an indication that the grit systems might need updating. Additionally, feedback from the plant operators is essential to collect as they continuously work with the system and understand it best.

3.1.4 Develop Design Alternatives: Feb 1-5

After evaluating the existing facility, the team will determine which components need to be improved or replaced and develop multiple design alternatives. Literature review and research will generate ideas for possible solutions which will be assessed based on known information about the system.

One significant design consideration that can change pump efficiency is the arrangement of pumps. It is common for pumps to be arranged in parallel, where one pump operates as the “duty pump” and the other is only used occasionally, as the “standby pump” (Microbi, 2015). However, the use of vacuum-primed series pump arrangements proves to be advantageous in high head pumping applications. By pumping in concert (simultaneously), flow rates will remain constant while the heads produced by each pump will be added. While this arrangement may save substantial operational cost, it will require two additional series pumps in standby, resulting in a higher initial cost (Microbi, 2015). Beyond the arrangement of the pumps, the actual speed and power of each pump must be considered in design, along with impeller specifications.

The opening between the screen bars is an essential design consideration that will be based on the materials present in the inflow. Another consideration is the number of screens present in the system, which will be dependent on the flow characteristics and the type of collection system (Oyler, 2001). While space is an obvious design constraint, it is suggested that at least two screens are used so if one needs maintenance, the inflow still undergoes screening. Depending on the length and slope of the existing collection system, the optimal situation would be to have a system with minimal slope leading to the screens because less turbulence may result
in a higher removal of material (Oyler, 2001). Ultimately, there are four factors to consider when selecting the screen system: particle size and volume of material in inflow, flow variations and influent characteristics, maximum and minimum water levels, and plant hydraulics and allowable headloss (Oyler, 2001).

The grit system selected in the new design must be based on the quantity and characteristics of the grit, space requirements, headloss requirements, removal efficiency (Oyler, 2001). It is important that the grit systems collect the fine grit that can surpass the screen processes, otherwise fine grit can build up and cause problems later in the treatment process. If not already utilized, it would be beneficial to send the removed grit into a cyclone, where it is washed to remove lighter organic material (Oyler, 2001). This washing reduces the odor and allows for easier disposal of grit. Again, it is essential for the grit system design to follow the New Hampshire design requirements (New Hampshire Code of Administrative Rules, 2014). It will also be important to incorporate feedback from the plant operators and observations from the site visit. For instance, if there is visible wear on the equipment, this is evidence that there is strain on the system that must be relieved through upgrades.

3.1.5 Prepare Cost Estimates: Feb 8-12

The team will need to develop a cost estimate for every design option. The estimates will be prepared with cost information from potential vendors. The cost estimates will play an important role in selection of a final recommended design (to take place the following week), as cost is always an important decision factor.

To conduct cost estimates for pump stations, it will be important to remember that the purchase of the pump itself will only account for about 5% of its life cycle costs, whereas 85% result from energy consumption and the remaining 10% of expenses are for regular maintenance (Ackermann, 2003). These percentages can shift, depending on the selection of pumps. Some pumps that have a higher upfront cost are more energy efficient and easier to maintain. This may mean that the initial investment will save the facility money in the future. Other expenses to consider when conducting cost estimates include installation and decommissioning costs in addition to any environmental costs. The team believes it is most beneficial to conduct life-cycle cost analyses, as they consider initial and operating costs. However, it is unclear if calculating these costs will be plausible in the project time-frame.

A closer look at the screens will determine if they need to be replaced or repaired. Additionally if there are only coarse screens or only fine screens, a design addition of either screen will ensure maximum efficiency of the system and prevent rocks and other buildup from entering the system. Installing more expensive or additional screens may be costly upfront but will prolong the life of the entire treatment plant by preventing future maintenance issues.

To evaluate the costs of grit removal, using one grit chamber and a bypass channel for maintenance purposes in each alternative will reduce costs (Olson, 2013). Proper grit removal will lower maintenance costs in the long run and allow for a longer facility lifespan. Lower capital costs can be expected when a forced vortex grit chamber and ancillary equipment are selected (Olson, 2013).

Lastly, a cost estimate will be conducted for renovating or demolishing the abandoned below-grade headworks facility. The facility will likely either be retrofitted to meet system requirements or completely replaced within reasonable time and cost parameters.
3.1.6 Review Design Alternatives: Feb 15-19

Each design alternative will be reviewed to determine the benefits and disadvantages of each with consideration to economic, environmental, constructability, and health and safety constraints. The goal of this period is to select a final recommended design.

To determine a final selection from multiple design alternatives, the team will utilize a decision matrix. The matrix will consider all important constraints and factors and weigh them appropriately by the needs of the client. Scaled points are then assigned to each alternative for each of the criteria. Once the points are weighed and added, the best solution emerges. The team determined a set of important criteria presented in Table 6. The list was developed in partial reference to evaluation criteria used in a similar project for screen technology alternatives (Olson, 2013). The weight of each criterion listed here will be determined with guidance from Stantec, as the importance of each area is dependent on the client.

Table 6. Decision Matrix Criteria and Description

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>How consistently the system is expected to perform with a range of flows and operate without operator assistance</td>
</tr>
<tr>
<td>Efficiency</td>
<td>How well the system is expected to perform (how much debris may collect at the bottom of holding tanks)</td>
</tr>
<tr>
<td>Initial Capital Cost</td>
<td>How much the system costs upfront</td>
</tr>
<tr>
<td>O&M Costs (Life Cycle Costs)</td>
<td>How much regular O&M will cost (cleaning, parts replacement, etc.)</td>
</tr>
<tr>
<td>Environmental Effects</td>
<td>How friendly the system is to the environment in its manufacture, implementation, and use</td>
</tr>
<tr>
<td>Constructability</td>
<td>How efficiently the system uses existing space and how long it will take to implement</td>
</tr>
<tr>
<td>Health/Safety</td>
<td>How safe it will be for operators to maintain the system</td>
</tr>
</tbody>
</table>

3.1.7 Finalize Deliverables: Feb 22-Mar 4

After reviewing the potential design alternatives and selecting the best design option, the team will prepare the following three deliverables for Stantec:

1. Set of alternative headworks design plans to improve plant efficiency and capacity
2. Recommended design plan, complete with supportive reasoning in MQP report
3. Presentation of project evolution and conclusions
It is important to note that the MQP report will be updated throughout the term to reflect the work accomplished every week. This report will contain the first two deliverables: the set of alternative design plans and the team’s recommended plan. Each design option will have a list of its benefits and disadvantages, in addition to the reasoning for developing the recommended solution. The completed decision matrix will be provided so Stantec can understand the reasoning used in weighing the design options. Finally, the WPI team will present their findings to Stantec in the final week of the project to explain the project process and the information acquired.
Figure 2. Gantt Chart of Project Schedule
References

Appendix B: GIS Map
Project Location and Surrounding Septage Receiving Stations
New Hampshire Municipalities

⭐ MQP Focus - Portsmouth
🔺 Surrounding Septage Receiving Stations
 Manchester
 Franklin
 Keene

Appendix C: Referenced Facility Drawings
2005 Underwood Drawings
2013 Underwood Drawings
2016 Stantec Drawings Part 2
Appendix D: Pease WWTP Data
Septage Volumes (July 2012-June 2015):

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Month</td>
<td>Gallons</td>
<td>Month</td>
<td>Gallons</td>
</tr>
<tr>
<td></td>
<td>Jan</td>
<td>99,500</td>
<td>Jan</td>
<td>71,750</td>
</tr>
<tr>
<td></td>
<td>Feb</td>
<td>72,350</td>
<td>Feb</td>
<td>64,250</td>
</tr>
<tr>
<td></td>
<td>Mar</td>
<td>66,250</td>
<td>Mar</td>
<td>82,000</td>
</tr>
<tr>
<td></td>
<td>Apr</td>
<td>170,450</td>
<td>Apr</td>
<td>190,200</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>205,300</td>
<td>May</td>
<td>157,650</td>
</tr>
<tr>
<td></td>
<td>Jun</td>
<td>179,850</td>
<td>Jun</td>
<td>191,150</td>
</tr>
<tr>
<td></td>
<td>Jul</td>
<td>162,550</td>
<td>Jul</td>
<td>157,300</td>
</tr>
<tr>
<td></td>
<td>Aug</td>
<td>221,700</td>
<td>Aug</td>
<td>220,775</td>
</tr>
<tr>
<td></td>
<td>Sep</td>
<td>176,300</td>
<td>Sep</td>
<td>198,150</td>
</tr>
<tr>
<td></td>
<td>Oct</td>
<td>195,050</td>
<td>Oct</td>
<td>191,650</td>
</tr>
<tr>
<td></td>
<td>Nov</td>
<td>213,250</td>
<td>Nov</td>
<td>208,000</td>
</tr>
<tr>
<td></td>
<td>Dec</td>
<td>125,250</td>
<td>Dec</td>
<td>128,050</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1,094,100</td>
<td>Total</td>
<td>1,897,625</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>182,350</td>
<td>Average</td>
<td>158,135</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>125,250</td>
<td>Min</td>
<td>66,250</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>221,700</td>
<td>Max</td>
<td>220,775</td>
</tr>
</tbody>
</table>

Influent Combined Septage and Wastewater Characteristics:

| Influent WWTP Influent Wastewater Characteristics July, 2012 - June, 2015 |
|---|---|---|---|
| Flow (MGD) | BOD$_5$ (mg/L) | TSS (mg/L) | TSS (lb/d) |
| Average | 0.479 | 349.0 | 1465.8 | 530.1 | 2222.4 |
| Min | 0.00 | 201.4 | 671.2 | 246.4 | 878.9 |
| Max | 4.00 | 510.1 | 2156.4 | 892.3 | 3975.9 |
Weekday vs. Weekend Flow Data:

<table>
<thead>
<tr>
<th>Month</th>
<th>Average Weekday Flow (MGD)</th>
<th>Average Weekend Flow (MGD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan-13</td>
<td>0.625</td>
<td>0.367</td>
</tr>
<tr>
<td>Feb-13</td>
<td>0.759</td>
<td>0.608</td>
</tr>
<tr>
<td>Mar-13</td>
<td>0.969</td>
<td>0.850</td>
</tr>
<tr>
<td>Apr-13</td>
<td>0.716</td>
<td>0.408</td>
</tr>
<tr>
<td>May-13</td>
<td>0.746</td>
<td>0.573</td>
</tr>
<tr>
<td>Jun-13</td>
<td>0.951</td>
<td>0.722</td>
</tr>
<tr>
<td>Jul-13</td>
<td>0.785</td>
<td>0.513</td>
</tr>
<tr>
<td>Aug-13</td>
<td>0.550</td>
<td>0.415</td>
</tr>
<tr>
<td>Sep-13</td>
<td>0.770</td>
<td>0.507</td>
</tr>
<tr>
<td>Oct-13</td>
<td>0.476</td>
<td>0.325</td>
</tr>
<tr>
<td>Nov-13</td>
<td>0.309</td>
<td>0.250</td>
</tr>
<tr>
<td>Dec-13</td>
<td>0.703</td>
<td>0.555</td>
</tr>
<tr>
<td>Jan-14</td>
<td>0.804</td>
<td>0.607</td>
</tr>
<tr>
<td>Feb-14</td>
<td>0.654</td>
<td>0.534</td>
</tr>
<tr>
<td>Mar-14</td>
<td>0.720</td>
<td>0.647</td>
</tr>
<tr>
<td>Apr-14</td>
<td>0.751</td>
<td>0.830</td>
</tr>
<tr>
<td>May-14</td>
<td>0.696</td>
<td>0.481</td>
</tr>
<tr>
<td>Jun-14</td>
<td>0.614</td>
<td>0.534</td>
</tr>
<tr>
<td>Jul-14</td>
<td>0.610</td>
<td>0.426</td>
</tr>
<tr>
<td>Aug-14</td>
<td>0.584</td>
<td>0.390</td>
</tr>
<tr>
<td>Sep-14</td>
<td>0.509</td>
<td>0.339</td>
</tr>
<tr>
<td>Oct-14</td>
<td>0.481</td>
<td>0.358</td>
</tr>
<tr>
<td>Nov-14</td>
<td>0.556</td>
<td>0.410</td>
</tr>
<tr>
<td>Dec-14</td>
<td>0.717</td>
<td>0.608</td>
</tr>
<tr>
<td>Jan-15</td>
<td>0.580</td>
<td>0.501</td>
</tr>
<tr>
<td>Feb-15</td>
<td>0.501</td>
<td>0.376</td>
</tr>
<tr>
<td>Mar-15</td>
<td>0.639</td>
<td>0.546</td>
</tr>
<tr>
<td>Apr-15</td>
<td>0.790</td>
<td>0.619</td>
</tr>
<tr>
<td>May-15</td>
<td>0.606</td>
<td>0.460</td>
</tr>
<tr>
<td>Jun-15</td>
<td>0.692</td>
<td>0.592</td>
</tr>
<tr>
<td>Jul-15</td>
<td>0.698</td>
<td>0.543</td>
</tr>
</tbody>
</table>
Influent Combined Septage and Wastewater Flow (July 2012-June 2015):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADF</td>
<td>Min</td>
<td>Max</td>
<td>ADF</td>
</tr>
<tr>
<td></td>
<td>(MGD)</td>
<td>(MGD)</td>
<td>(MGD)</td>
<td>(MGD)</td>
</tr>
<tr>
<td>Jan</td>
<td>0.477</td>
<td>0.16</td>
<td>3.21</td>
<td>0.589</td>
</tr>
<tr>
<td>Feb</td>
<td>0.496</td>
<td>0.13</td>
<td>4.0</td>
<td>0.472</td>
</tr>
<tr>
<td>Mar</td>
<td>0.708</td>
<td>0.07</td>
<td>4.0</td>
<td>0.576</td>
</tr>
<tr>
<td>Apr</td>
<td>0.480</td>
<td>0.0</td>
<td>4.0</td>
<td>0.601</td>
</tr>
<tr>
<td>May</td>
<td>0.489</td>
<td>0.0</td>
<td>4.0</td>
<td>0.476</td>
</tr>
<tr>
<td>Jun</td>
<td>0.680</td>
<td>0.16</td>
<td>4.0</td>
<td>0.442</td>
</tr>
<tr>
<td>Jul</td>
<td>0.499</td>
<td>0.11</td>
<td>3.68</td>
<td>0.506</td>
</tr>
<tr>
<td>Aug</td>
<td>0.469</td>
<td>0.01</td>
<td>1.72</td>
<td>0.408</td>
</tr>
<tr>
<td>Sep</td>
<td>0.414</td>
<td>0.08</td>
<td>1.23</td>
<td>0.528</td>
</tr>
<tr>
<td>Oct</td>
<td>0.449</td>
<td>0.11</td>
<td>1.13</td>
<td>0.345</td>
</tr>
<tr>
<td>Nov</td>
<td>0.455</td>
<td>0.14</td>
<td>3.68</td>
<td>0.204</td>
</tr>
<tr>
<td>Dec</td>
<td>0.415</td>
<td>0.08</td>
<td>3.59</td>
<td>0.498</td>
</tr>
</tbody>
</table>

Influent Combined Septage and Wastewater Average BOD5 Characteristics (July 2012-June 2015):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADF</td>
<td>Min</td>
<td>Max</td>
<td>ADF</td>
</tr>
<tr>
<td></td>
<td>(mg/L)</td>
<td>(lb/d)</td>
<td>(mg/L)</td>
<td>(lb/d)</td>
</tr>
<tr>
<td>Jan</td>
<td>219.5</td>
<td>931.5</td>
<td>218.0</td>
<td>1163.4</td>
</tr>
<tr>
<td>Feb</td>
<td>251.3</td>
<td>1108.1</td>
<td>254.5</td>
<td>958.3</td>
</tr>
<tr>
<td>Mar</td>
<td>201.4</td>
<td>1204.6</td>
<td>266.0</td>
<td>1161.5</td>
</tr>
<tr>
<td>Apr</td>
<td>311.9</td>
<td>1282.9</td>
<td>346.9</td>
<td>1862.3</td>
</tr>
<tr>
<td>May</td>
<td>338.3</td>
<td>1398.6</td>
<td>358.7</td>
<td>1468.7</td>
</tr>
<tr>
<td>Jun</td>
<td>351.2</td>
<td>2156.4</td>
<td>370.0</td>
<td>1382.5</td>
</tr>
<tr>
<td>Jul</td>
<td>347.8</td>
<td>1569.3</td>
<td>430.1</td>
<td>1935.3</td>
</tr>
<tr>
<td>Aug</td>
<td>363.2</td>
<td>1538.0</td>
<td>487.9</td>
<td>1757.9</td>
</tr>
<tr>
<td>Sep</td>
<td>370.7</td>
<td>1429.9</td>
<td>394.0</td>
<td>1975.4</td>
</tr>
<tr>
<td>Oct</td>
<td>379.6</td>
<td>1540.9</td>
<td>406.7</td>
<td>1239.6</td>
</tr>
<tr>
<td>Nov</td>
<td>347.4</td>
<td>1391.6</td>
<td>369.5</td>
<td>671.2</td>
</tr>
<tr>
<td>Dec</td>
<td>248.6</td>
<td>926.5</td>
<td>266.2</td>
<td>1283.7</td>
</tr>
</tbody>
</table>

Influent Combined Septage and Wastewater Average BOD5 Characteristics (July 2012-June 2015):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg</td>
<td>Min</td>
<td>Max</td>
<td>Avg</td>
</tr>
<tr>
<td></td>
<td>(mg/L)</td>
<td>(lb/d)</td>
<td>(mg/L)</td>
<td>(lb/d)</td>
</tr>
<tr>
<td>Jan</td>
<td>0.450</td>
<td>0.09</td>
<td>2.51</td>
<td>0.485</td>
</tr>
<tr>
<td>Feb</td>
<td>0.414</td>
<td>0.01</td>
<td>1.13</td>
<td>0.204</td>
</tr>
<tr>
<td>Mar</td>
<td>0.499</td>
<td>0.14</td>
<td>3.68</td>
<td>0.708</td>
</tr>
</tbody>
</table>

Influent Combined Septage and Wastewater Average BOD5 Characteristics (July 2012-June 2015):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg</td>
<td>Min</td>
<td>Max</td>
<td>Avg</td>
</tr>
<tr>
<td></td>
<td>(mg/L)</td>
<td>(lb/d)</td>
<td>(mg/L)</td>
<td>(lb/d)</td>
</tr>
<tr>
<td>Jan</td>
<td>342.9</td>
<td>1399.4</td>
<td>335.6</td>
<td>1412.1</td>
</tr>
<tr>
<td>Feb</td>
<td>248.6</td>
<td>926.5</td>
<td>201.4</td>
<td>671.2</td>
</tr>
<tr>
<td>Mar</td>
<td>379.6</td>
<td>1569.3</td>
<td>487.9</td>
<td>2156.4</td>
</tr>
</tbody>
</table>
Appendix E: Site Visit Status Report
Site Visit Status Report
Pease Tradeport Wastewater Treatment Plant - Portsmouth, New Hampshire

Pease Wastewater Treatment Plant (Portsmouth City Council, 2015)

Ryan Clark
Katherine Hedberg
Rita Newman

January 22, 2016
Table of Contents

Notes .. 3
General Pease Information ... 3
Septage Receival Process ... 3
Lonza Biologics Waste .. 4
Headworks .. 4
Sludge Removal ... 4
Information about Anticipated Problems .. 4
Information about Existing Problems ... 4
Software Application Used ... 5
PlanGrid ... 5
Drawings from 2014 Report from Underwood Engineers .. 6
Site Visit Photos: ... 7
Notes

General Pease Information
- Treats industrial wastewater
- Septage is treated at 7¢/gallon
- Currently, the following towns are serviced (Pease is not a regional treatment facility)
 - Portsmouth
 - New Castle
 - Greenland
 - Rye
- Septage receival operates from 730AM until 3PM each weekday except Fridays; closes at noon (no weekend collection)
- Pease receives the most septage in the summer
 - Have days where they receive around 30,000 gallons
- Wastewater inflow has increased over recent years, but septage inflow has not
- Increases in WW flow from the biotech company has led to an increase in BOD
- Grease trap waste is not accepted
- Pease is staffed with 2 individuals each week day (3 if it’s a particularly busy day) for lab work and general maintenance/supervision of dewatering process
 - Staff rotates between Pease and Peirce Island plants
 - 1 staff member is on-call outside of regular work hours
 - 1 person is at the plant on Saturdays and Sundays
- Only one of two primary clarifiers is used

Septage Receival Process
- Truck arrives with septage load, driver fills out paperwork
 - Trucks generally range from 3,000-5,000 gallons
- Unloads at septage receiving facility (may be done without assistance from plant operators) through exterior connection
 - NOTE: Buses/RVs and portable toilet waste can be collected through the storm drain adjacent to the exterior connection
 - Buses/RV’s waste is typically up to a couple hundred gallons
 - Portable toilet waste is usually around 750 gallons
 - Both wastes typically don’t upset the treatment process
- Septage goes through screening
- Screw mechanism brings solid waste up into disposal bags
 - Disposed of in Rochester, New Hampshire
- Septage collects in aerated holding tanks (7,000 gallons each)
 - Once a tank fills to 30”, pumps automatically turn on
 - Once a tank fills to 40”, the overflow built into the tanks is used to put septage directly into headworks through a storm drain
 - Although each tank is 7,000 gallons, their true capacity is about 5,000 gallons
 - Tanks are cleaned out twice per year
- Septage is pumped through two 4” hose pumps into headworks
 - The pumps are automated and set at a constant flow rate
- Screen system is cleaned every Friday afternoon by an operator
Lonza Biologics Waste
- Glycol, a food source, is in some of the Lonza waste
- Pease is negotiating with Lonza to separate the glycol from the waste before discharging it to the plant

Headworks
- Entire facility will no longer be in use after construction of new headworks
- Current operation uses a grinder as a screening mechanism
- Grit is cleaned out 3 times per year

Sludge Removal
- Sludge is dewatered with a belt filter press which compresses sludge into mass that collects in a dumpster
- Sludge enters dewatering at 2% liquid (by volume?), leaves process at 20% liquid
- Dewatering only occurs once each week

Information about Anticipated Problems
- Grit removed from septage holding tanks twice each year (spring and autumn); removes 1-1.5 yards each time
- Operators may be interested in a rock trap to remove larger solids
- Septage intake annually is stable and not anticipated to increase
 - Most septage accepted in early autumn (Oct), least in late winter (Feb)
 - 2015 septage received: 1,891,950 gallons
- Septage trucks are NOT turned away due to full tanks; excess septage is immediately passed through headworks
- Having additional septage capacity could allow for more septage to be bled into the system on weekends
- The hose pumps restrict the flow of septage to headworks because it is set at a constant rate; this doesn’t allow for more septage to enter at low-flow times

Information about Existing Problems
- Septage trucks need to “blow off” to remove all load contents (facility valve is at a higher elevation than the truck valve; is not gravity fed)
 - Look into the turning radius and area where trucks access the station (if possible add a graded ramp; allow for gravity feed)
- Truck contents is never sampled or tested prior to unload; they want to implement a flow meter and a card reader system to record truck unloading for billing, this is a topic of discussion with the City
 - No samples are taken because the Plant doesn’t have the staff for it; they use the honors system
 - Most haulers have been coming to the plant for at least 10 years
- Rags collect in the screw that moves solids into the waste bags; this causes operational problems
- Adding grit removal to septage pretreatment is a potential area of improvement
Software Application Used

PlanGrid

To organize our notes during and after the site visit, the team used an application called PlanGrid. PlanGrid is a cloud based service that takes blueprints as pdfs directly on tablets or phones. The application allows for team members to be added to the project to allow fast communication and updates when new drawings are added. When changes are made in the app, it automatically syncs with the computer. If there are changes, that are not synced a note (Not Current) will appear at the bottom. The team can upload their respective modifications to a master plan drawing and can avoid overlapping data or consolidate into one comment.
Drawings from 2014 Report from Underwood Engineers
Site Visit Photos:
Septage Receiving Station Exterior
Septage Receiving Station Exterior - Unloading
Septage Receiving Station Exterior – Driveway Area
Septage Receiving Station Interior – Screening System
Septage Receiving Station Interior – Screening System
Septage Receiving Station Interior – Cleaning Screens
Septage Receiving Station Exterior – Holding Tanks
Septage Receiving Station Exterior – Holding Tanks
Septage Receiving Station Exterior – Pump Station
Septage Receiving Station Interior – Cleaning Screens
Headworks Exterior – Control Panel
Headworks Interior – Screen and Grit Removal
Primary Clarifier Tanks
Elevated Views of Clarifiers and Sludge Storage
Sludge Storage Tanks Exterior
Chemical Feeds
Sequencing Batch Reactors (SBRs)
Sequencing Batch Reactor (SBR)
2 Meter Belt Filter Press
2 Meter Belt Filter Press
2 Meter Belt Filter Press into Roll-Off Container
Appendix F: CAD Drawings and Revit Models
Figure No.

City of Portsmouth, NH
Pease WWTP
Septage Upgrade

1.0

Title

Option 2 - Ramp Grading
Option 2 Design
Septage Upgrade, Pease

Scale 1/8" = 1'-0"
Option 2 Design
Septage Upgrade, Pease

South & West Elevation

Scale: 1/8" = 1'-0"
Site & Floor Plan

Option 2 Design
Septage Upgrade, Pease

Scale
1/32" = 1'-0"
Option 2 Design
Septage Upgrade, Pease

3D Views

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3D View 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3D View 2</td>
<td></td>
</tr>
</tbody>
</table>
Option 5 Design
Septage Upgrade, Pease

Pumps & Tanks

Project number: MQP-51-5T/5W6
Date: March, 2016

Drawn by: Author
Checked by: Checker
Scale: 3/32" = 1'-0"

No. Description Date

1. Pumps 3/32" = 1'-0"

2. Tanks 3/32" = 1'-0"
Option 5 Design
Septage Upgrade, Pease

3D Facility Views

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3D View 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3D View 2</td>
<td></td>
</tr>
</tbody>
</table>

Project number: MQP-SL1-STW6
Date: March, 2016
Drawn by: Author
Checked by: Checker
Scale: A105
Reccomendation Site Plan
Design Options 2 and 3
Appendix G: Complete Cost Estimate
<table>
<thead>
<tr>
<th>Item</th>
<th>Unit Cost</th>
<th>Qty</th>
<th>Subtotal</th>
<th>Use</th>
<th>Qty</th>
<th>Subtotal</th>
<th>Use</th>
<th>Qty</th>
<th>Subtotal</th>
<th>Use</th>
<th>Qty</th>
<th>Subtotal</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen. Rent</td>
<td></td>
</tr>
<tr>
<td>Mob/DeMob, Bonds, Insurance</td>
<td>$4,000</td>
<td>0</td>
<td>$22,200</td>
<td>$28,400</td>
<td>0</td>
<td>$2,800</td>
<td>$4,460</td>
<td>0</td>
<td>$39,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Work</td>
<td>$175</td>
<td>c.y.</td>
<td></td>
</tr>
<tr>
<td>Excavation</td>
<td>$175</td>
<td>c.y.</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$5,020</td>
<td>$5,000</td>
<td>0</td>
<td>$1,020</td>
<td>$2,040</td>
<td>0</td>
<td>$7,060</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yard piping</td>
<td></td>
</tr>
<tr>
<td>Cast Iron Piping</td>
<td>$200</td>
<td>l.f.</td>
<td></td>
</tr>
<tr>
<td>Pipe Corrosion Resistance</td>
<td>$3</td>
<td>l.f.</td>
<td></td>
</tr>
<tr>
<td>Cast Iron Fittings (4")</td>
<td>$250</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>Valves</td>
<td>$1,000</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>PVC Piping</td>
<td>$20</td>
<td>l.f.</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$11,583</td>
<td>$12,000</td>
<td>0</td>
<td>$1,000</td>
<td>$1,800</td>
<td>0</td>
<td>$13,800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build Conc.</td>
<td></td>
</tr>
<tr>
<td>Slab</td>
<td>$750</td>
<td>c.y.</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>$300</td>
<td>s.f.</td>
<td></td>
</tr>
<tr>
<td>Storage Tank</td>
<td>$3</td>
<td>gal.</td>
<td></td>
</tr>
<tr>
<td>50 gpm Pump</td>
<td>$17,000</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>150 gpm Pump</td>
<td>$16,000</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>520 UmAN/REL Pump (glycol)</td>
<td>$8,000</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>Variable Frequency Drive</td>
<td>$3,000</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>Septage Screening System</td>
<td>$132,000</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>Complete Plant</td>
<td>$277,760</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>Rock Trap</td>
<td>$15,000</td>
<td></td>
</tr>
<tr>
<td>Dump Station Meter (DS-82)</td>
<td>$50,000</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>$216,000</td>
<td>$216,000</td>
<td>$281,000</td>
<td>$281,000</td>
<td>$11,000</td>
<td>$11,000</td>
<td>$33,500</td>
<td>$33,500</td>
<td>$477,760</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
</tr>
<tr>
<td>Tank Grit Removal</td>
<td>$2,500</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>50gpm Hose Replacement</td>
<td>$810</td>
<td>Each</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>$5,810</td>
<td>$6,000</td>
<td>$5,810</td>
<td>$6,000</td>
<td>$5,810</td>
<td>$6,000</td>
<td>$5,810</td>
<td>$6,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$244,200</td>
<td>$244,200</td>
<td>$33,800</td>
<td>$33,800</td>
<td>$49,060</td>
<td>$49,060</td>
<td>$73,609</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractor OH&P (18%)</td>
<td>$56,232</td>
<td></td>
</tr>
<tr>
<td>Contingency (30%)</td>
<td>$93,720</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$344,200</td>
<td>$462,352</td>
<td>$59,584</td>
<td>$73,609</td>
<td>$1,517,296</td>
<td>$1,517,296</td>
<td>$1,517,296</td>
<td>$1,517,296</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix H: Selected Equipment Brochures and Quotes from Vendors
The Maher Corporation
Simplicity is Simply Better

Rotary Lobe Pumps
Please add.
Six series with 20 sizes.

All pump models are manufactured using single piece construction. That won't be copied easily. The AL, PL, CL, FL, EL and XL series allow for a rated capacity between 5–5,000 usgpm. Whatever pump size is right for you depends on its intended purpose, installation location and the characteristics of the pumped fluid. Whatever you need, we'll give you thorough technical advice.

When we select a rotary lobe pump model for you, we consider the large variety of different pump sizes and materials available, including the best suited shaft seal and drive selection, so that your customized pump is built for its intended use. The pump casing is constructed using grey cast iron as standard. It is given either an abrasive-resistant coating or is finished entirely in stainless or duplex steel for corrosive applications.

All elastomers can be supplied in an almost unlimited material range with various characteristics. Our performance driven, reliable and robust pumps benefit not only from the Maintenance in Place Feature (MIP) but also from high efficiencies resulting in low energy consumption, reducing the life cycle costs to a minimum.
And now multiply.

Worldwide unique: the significant rotor variety.

Optimum Rotor*
Dual-lobe, screw profile
• large sealing area with effective scraping edge
• for abrasive and aggressive fluids
• almost pulsation-free and high pressure stability

Premium Rotor*
Dual-lobe, linear
• large sealing area and pressure stable
• for high viscous, abrasive products
• from hard metal / stainless steel or plastics

Rotor
Dual-lobe, linear
• The Allrounder
• entirely elastomer coated
• for aggressive and abrasive fluids

Rotor
Dual-lobe, readjustable
• entirely elastomer coated
• for abrasive conveying products
• threefold longer service life

Rotor*
Tri-lobe, screw profile
• with replaceable rotor tips
• for solids and debris containing fluids
• with low pulsation

Rotor*
Tri-lobe, linear
• with replaceable rotor tips
• with long-living sealing line
• for solids and debris containing fluids

Rotor
Tri-lobe, screw profile
• entirely elastomer coated
• with non-wetted core
• with low pulsation

Rotor
Tri-lobe, linear
• PTFE or Plastics coated
• for chemically problematic fluids
• solvents-resistant

*patented

Different rotary lobe types with various materials of construction such as elastomer, plastic or metal are used depending on the fluid characteristics. Viscous, abrasive and aggressive pumped media can be handled easily with the variable and modular rotor design capabilities.

Thanks to the special, patented construction, the robust rotor core and durable shaft remain non-wetted. We consider all factors when determining the selection of the best suited rotor for each individual application, therefore meeting the special demands of our customers.

In case of changing operating conditions, different rotor designs can be fitted into an existing pump unit because of our modular pump design.
The low number and compact nature of the individual components will astonish anyone that has disassembled a Börgler rotary lobe pump. The different sizes of the casings and rotors are manufactured in a single piece construction, quite different from the high number of components normally found in comparable pumps.

The result of course are robust and compact rotary lobe pumps, which are known for quiet, safe and reliable operation, long operational life and for ease of maintenance. The replacement of wear parts can be managed, in-situ, by service personnel in the blink of an eye without the removal of pipe systems or drive units. Simplicity is one of Börgler's trademarks.

Börgler rotary lobe pumps are universally mountable and are suited for many different types of installation. For example, electric, combustion and hydraulic drives are used. Complete mobile aggregates can be manufactured to customer specification and are finished in our own workshop.
Small Börger Rotary Lobe Pump Glossary

Block construction
Timing gear in a one-piece construction casing with a strong bearing and durable gear wheel pairing.

Compact construction
High performance in a compact design.

Interior pump protection
Protection plates available from a selection of hardened steel, stainless steel, plastic or ceramic.

Life cycle costs
For the customer, capital cost, energy consumption, maintenance and downtime as well as replacement part pricing levels compare excellently with all other positive displacement pumps.

MIP
Maintenance in Place: Replacement of wear parts in the blink of an eye, in-situ by service personnel. The way to go in the reduction of maintenance and downtime.

Pump casing
Made from high-quality grey cast iron, ductile iron, stainless steel or in duplex quality. Thanks to the MIP construction an almost limitless operational lifetime is achieved.

Quench
The quench and control liquid filled intermediate chamber, between the pump casing and the timing gear, provides a high degree of safety and is supplied by Börger as standard.

Quick-release cover
This is the entrance door to the interior of the pump and provides the quickest possible access to all parts in contact with the pumped medium.

Rotary Lobe Pumps
Self-priming, valveless positive displacement pumps guarantee almost pulsation-free and smooth flow patterns; reversible flow by switching the flow direction.

Rotor materials
Coatings to suit intended usage made from elastomers, plastic, all-metal including stainless steel.

Rotors
The patented rotors with quickly exchangeable rotor tips, elastomer coated or adjustable; screw profile design for almost pulsation-free pumping.

Shaft seal
Supplied as standard with strong mechanical seal in different constructions and materials, optional with multi-seal or packing. The Börger Protect pump with double-acting mechanical seal is especially designed for pumping difficult and hazardous, often viscous media.

Smooth running
Large bucket geometry and short passage through the pump provide a smooth transfer of the pumped fluid.
MIP = Maintenance in Place

Both, repair- and downtime cost money. Production and process time should not be lost due to maintenance. Following this basic principle, Börger has been constantly striving to perfect its rotary lobe pumps. The result is an extremely efficient, reliable and easy to maintain pump aggregate that is worldwide unmatched. All replacement and wear parts are extremely durable, resilient and affordable. You won’t be forced into any expensive maintenance contracts with Börger – simply carry out any maintenance and repairs yourself! The unique MIP property of our pumps makes this possible. MIP or Maintenance in Place means that all replaceable parts can be easily installed and removed by maintenance personnel, in-situ, without having to remove any pipe or drive systems.

Reversible flow direction

Rotary lobe pumps are self-priming, valveless positive displacement pumps. The screw rotor guarantees almost pulsation-free, smooth running. Reversible flow is achieved by simply switching the rotation direction. Rotary lobe pumps are therefore suitable for both loading and unloading applications.

The quick-release cover enables easy access to the inner components of the pump. All wetted parts can be quickly maintained and replaced when necessary – without removal of pipe or drive system.
Industries, Application and Pumped Media

- Wastewater and biosolids processing
- Chemical, ceramic, pharmaceutical and oil industries
- Paints, coatings and synthetic materials
- Fats, oil, grease and soap
- Starch and sugar mills
- Liquid raw materials, i.e. latex
- Pulp and Paper
- Meat and fish processing
- Fruit and vegetable processing
- Renewable energy production
- Clay and lime, aggregate industry
- Marine, Shipyards, and disaster protection
The Maher Corporation
Paul Sussman
192 Pleasant St.
Rockland, MA 2370
USA

Quotation
No.: 30001671
Date: 02/09/2016

<table>
<thead>
<tr>
<th>RFQ Reference</th>
<th>Septage treatment components capst</th>
<th>Outside Sales</th>
<th>E-Mail</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFQ Date</td>
<td>10:14 02/09/2016</td>
<td>Pete Masson</td>
<td>pma@boerger.com</td>
<td>612-435-7324</td>
</tr>
<tr>
<td>Recipient</td>
<td>Paul Sussman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Mail</td>
<td>psussman@themahercorp.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td>(781) 421-2623</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Customer No.</th>
<th>100425</th>
<th>Inside Sales</th>
<th>E-Mail</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payment Terms</td>
<td>Net 30</td>
<td>James Connell</td>
<td>jco@boerger.com</td>
<td>612-435-7335</td>
</tr>
<tr>
<td>Std. Delivery ARO</td>
<td>10Week(s) Inquire For Faster Delivery</td>
<td>Prepared By</td>
<td>JKCFHJ</td>
<td></td>
</tr>
<tr>
<td>Shipping Type</td>
<td>UPS Ground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terms of Delivery</td>
<td>FOB (Free On Board Factory) /FOB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line</th>
<th>Part / Label</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>75100000003</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL 100 Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.05</td>
<td>PP1SARCFAAAADCC14</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Börger Rotary Lobe Pump PL100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product series: BLUEline</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conveying Product
Product: Sludge
Specific Product: -
Viscosity: 1 cp
Solid Content: 5 %
Solid Size: - in
Density/SG: 1.0 -
Product Temp.: Ambient °F
ph-value: Neutral
Addl Notes:

Operational Characteristics
Location: Closed Building, Dry
Specific Location: -
Hazardous Area: Not Classified
Ambient Temp.: Ambient °F
Operating Mode: Continuous -
Suction Pressure: Flooded psi
Discharge Pressure: - psi
Differ. Pressure: - psi
NPSHa: - ft
Addl Notes:

Performance Data
GPM	PSI	RPM
Min. Capacity: - | - | -
Nom. Capacity: 50 | 20 | 245
Max. Capacity: - | - | -

Additional Notes
Quotation
No. 30001671
Date: 02.09.2016

<table>
<thead>
<tr>
<th>Line</th>
<th>Part / Label</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>1300000066</td>
<td>2</td>
<td>$ 0.00</td>
<td>$ 1300000066</td>
</tr>
<tr>
<td></td>
<td>PL100 to 2in ANSI Flange</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1 Configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galvanized CS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.15</td>
<td>5310000399</td>
<td>1</td>
<td>$ 0.00</td>
<td>$ 5310000399</td>
</tr>
<tr>
<td></td>
<td>Nord SK22-180TC-6.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inline Helical Reducer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1750rpm/269rpm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td>5120000823</td>
<td>1</td>
<td>$ 0.00</td>
<td>$ 5120000823</td>
</tr>
<tr>
<td></td>
<td>WEG 00318ET3E182TC-W22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3hp,1800rpm,Prem Eff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>208-230/460V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>182/4TC,1.25SF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>2500000002</td>
<td>1</td>
<td>$ 0.00</td>
<td>$ 2500000002</td>
</tr>
<tr>
<td></td>
<td>PL In-Line Assembly <=20 HP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galvanized Frame</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flexible Coupling & Guard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galvanized Gearmotor Plate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PL100 Pump Assembly $ 8,773.24
- Optional Item(s) not Included -

2.00 2900000003 Specified Spare Parts and Special Tools PL100

PL100 Spare Parts and Tools $ 1,800.00
- Optional Item(s) not Included -
Quotation

No.: 30001671
Date: 02.09.2016

<table>
<thead>
<tr>
<th>Line</th>
<th>Part / Label</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Net Value</td>
<td></td>
<td>$ 10,573.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tax</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Amount (USD)</td>
<td></td>
<td>$ 10,573.24</td>
</tr>
</tbody>
</table>

- Optional Item(s) not Included -

Notes:

1. BOERGER, LLC’s standard Terms and Conditions apply and are an integral part of this quotation unless specifically noted otherwise in this proposal.

2. Installation, wiring, field painting, start-up and instructional services are not included unless specifically noted otherwise in this proposal.

3. Anchor bolts, pressure gauges, valves, drainage piping, starters, variable frequency drives and control equipment or any other items are not included unless specifically noted otherwise in this proposal.

4. BOERGER, LLC will review plans and specifications and will offer technical assistance and certified pump drawings for construction. The responsibility for pump station layout, access, seismic calculations including local PE stamp, etc., shall be by others.

5. This proposal is offered as an acceptable pumping system based upon descriptive items listed above. Deviations from the equipment described could result in price adjustment.

6. A BOERGER, LLC field engineer may be provided, as noted above, in a supervisory capacity only. Any and all costs associated with labor, set-up, etc., for the tests are to be by contractor.

Boerger, LLC
2860 Water Tower Place
Chanhassen, MN 55317
USA
Phone: 612.435.7300
Fax: 612.435.7301
E-Mail: america@boerger.com
Website: www.boerger.com
Section 1 Boerger Rotary Lobe Pumps

1.01 GENERAL

A. The equipment covered by these Specifications shall be of standard units of proven ability as manufactured by reputable concerns having long experience in the production of such equipment. The equipment furnished shall be designed, constructed, and installed in accordance with the best practice and methods, and shall operate satisfactorily when installed as shown on the Drawings.

B. All equipment shall be designed and built for 24-hour continuous service at any and all points within the specified range of operation, without overheating, without cavitation, and without excessive vibration or strain.

C. The pumping units required under this section shall be complete. All parts shall be so designed and proportioned as to have liberal strength, stability, and stiffness and to be especially adapted for the service to be performed. Ample room for inspection, repairs and adjustment shall be provided.

D. Stainless steel nameplates giving the name of the MANUFACTURER, the pump serial number and material code and all other pertinent data shall be attached to each pump, motor, and control panel.

E. All working parts of the pumps and motors, such as bearings, wearing rings, shaft, sleeves, etc., shall be standard dimensions built to limit gauges or formed to templates, such that parts will be interchangeable between like units and such that the OWNER may, at any time in the future, obtain replacement and repair parts for those furnished in the original machines.

F. The nameplate ratings of the motors shall not be exceeded, nor shall the design service factor be reduced when the pump is operating at any point on its characteristic curve at maximum speed.

G. Mechanical equipment, including drives and electric motors shall be supplied and installed in accordance with applicable OSHA regulations. The noise level of motors, unless otherwise noted, shall not exceed 85 dBA measured 3 meters from the unit under free field conditions while operating on utility power.

H. All lubrication fitting shall be brought to the outside of all equipment so that they are readily accessible from the outside without the necessity of removing covers, plates, housings, or guards.

I. Warranty: Rotary Lobe Pumps supplied under this section shall be warranted to be free from defects in workmanship, design and materials for a period of two (2) years from shipment. If any part of the equipment should prove to be defective during the warranty period, the MANUFACTURER at no expense to the OWNER shall replace the part.
1.02 PUMPS

A. General

1. The Rotary Lobe Pumps shall be designed to be abrasion resistant for applications in wastewater treatment plants. The pump shall have a minimum displacement of 23.5 gal / 100 rev. (PL 100) The ratio of the axial length of the lobe as compared to the lobe diameter (length/diameter) shall not exceed 1.0.

2. The pumps shall be of the positive displacement, rotary lobe type, designed to pump primary and secondary wastewater sludge as manufactured by Boerger.

3. All fluid-wetted parts including the mechanical seal shall be replaceable through the quick release front cover without disassembly of coupling, drive unit or the pipe system.

4. The pumps shall be designed to temporarily run dry and to operate in either direction. Oil-quench for protection of the mechanical seal is mandatory. Seal water flush systems are not acceptable.

5. The pumps shall be constructed with an oil-filled intermediate chamber between the pump casing and the gearbox with the following functions:

 a. Oil-Quench (Lubrication and cooling) of the mechanical seals
 b. Detection of seal failures
 c. Buffer zone to the sealed timing gear

6. Oil drain of gearbox and intermediate chamber shall be easily accessible with side mounted drain screw. Oil drain under the pump is not acceptable.

7. The rotor/shaft connection shall be oil-lubricated fed by an intermediate chamber and shall not come in contact with the pumped fluid.

B. System and Fluid Conditions

<table>
<thead>
<tr>
<th>Fluid Name</th>
<th>Septage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solids Content</td>
<td>5%</td>
</tr>
<tr>
<td>Capacity</td>
<td>50 gpm</td>
</tr>
<tr>
<td>Discharge Pressure</td>
<td>20 psi</td>
</tr>
<tr>
<td>Suction Condition</td>
<td>Flooded</td>
</tr>
<tr>
<td>Temperature</td>
<td>Ambient</td>
</tr>
<tr>
<td>pH Value</td>
<td>Neutral</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.0</td>
</tr>
<tr>
<td>Duty</td>
<td>Continuous</td>
</tr>
</tbody>
</table>
C. Pump Unit

<table>
<thead>
<tr>
<th>Model</th>
<th>PL100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Type</td>
<td>Geared Motor with Flexible Coupling</td>
</tr>
<tr>
<td>Drive Configuration</td>
<td>Inline</td>
</tr>
<tr>
<td>Motor Power</td>
<td>3 hp</td>
</tr>
<tr>
<td>Pump Speed</td>
<td>245 rpm</td>
</tr>
<tr>
<td>Suction Flange</td>
<td>2” ANSI 150-lb</td>
</tr>
<tr>
<td>Discharge Flange</td>
<td>2” ANSI 150-lb</td>
</tr>
</tbody>
</table>

D. Pump Construction

1. The pump casing shall be manufactured in a single block construction (Cast iron ASTM A48 grade 40, Brinell hardness 264 Brinell). Multiple Piece Design Pump Casings held together by screw connections are not acceptable.

2. The rear of the pump casing and the front cover shall be protected with replaceable wear plates with a hardness of 550 Brinell. The front cover protection plate shall be reversible. The pump casing shall be equipped with radial pump casing protection plates, which are less expensive and will eliminate the pump casing as a spare part for reduction of the Life Cycle Costs of the pump unit. Pump casings without radial liners are not acceptable.

3. The quick release cover shall be held in place by four eye nuts. The stationary threaded studs shall keep the front cover on the same level as the pump casing in the process of opening the pump for easy handling.

4. **PL Series**

 Rotors shall be tri-lobe screw rotor design and shall consist of a non-sludge-wetted cast iron core entirely coated with abrasion-resistant Buna-N. Stacking of lobes is not acceptable. Rotors shall be keyed to the shaft and secured with one central screw to a cylindrical thread inside the shaft. The cast iron core of the rotor shall be equipped with a female thread to enable the removal of the rotor from the shaft with ease. Rotor/shaft designs with a cover disc and/or spring washers are not acceptable.

5. The shafts shall be non-sludge-wetted. The rotor/shaft connection shall be lubricated with quench fluid of the intermediate chamber. The shafts shall be timed in their rotation by straight cut timing gears running in a separate oil chamber, which also contains the ball and roller bearings for each shaft. Sludge wetted rotor/shaft connections are not acceptable. The shafts shall be constructed from AISI 4140 carbon steel.
6. The pumps shall be fitted with maintenance free, quenched mechanical seals with duronit seal faces. The seals shall be operating in a common oil-filled intermediate chamber (Quench for lubrication and cooling). Purge systems for the seals are not acceptable. The rotating holding bush shall be locked in a fixed radial position by a keyway that also holds the rotor in place. Seal designs that open during rotor replacement are not acceptable. No sleeves shall be necessary for the mechanical seal set up. Design of the pump shall allow removal and replacement of the seal via the front cover.

7. Bearings and timing gear shall be located in a common oil-filled cast iron gearbox, fitted with a built in sight glass to monitor oil level. The timing gear shall maintain non-contact between the rotors. Bearing life to be designed for L-10 bearing life rating of 100,000 hours at design conditions.

8. Suction and discharge connections from galvanized steel shall be ANSI 150-lb flanges.

9. Pump and drive fitted on common base, made from galvanized steel.

1.03 Spare Parts

A. One (1) set of mechanical seals and o-rings for each pump model
B. One (1) set of lobes and o-rings for each pump model
C. One (1) set of axial protection plates for each pump model
D. One (1) set of radial liners (if provided) for each pump model
E. One (1) set of special tools for each pump model

1.04 Motors

A. Each unit shall consist of a pump with a gear reducer and 1800 rpm electric motor.
B. The motor shall be 3-phase, 60 Hz, 460 V with 1.15 SF and Class F Insulation.
C. All motors shall be built in accordance with latest NEMA, IEEE, ANSI and AFBMA standards where applicable.
PL Series
Overhead Mounted Design

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>387</td>
<td>27 3/4</td>
<td>17 3/4</td>
<td>23 1/4</td>
<td>32 7/8</td>
</tr>
<tr>
<td>5</td>
<td>461</td>
<td>28 3/4</td>
<td>17 3/4</td>
<td>23 1/4</td>
<td>33 1/4</td>
</tr>
<tr>
<td>7 1/2</td>
<td>485</td>
<td>31</td>
<td>17 3/4</td>
<td>23 1/4</td>
<td>33 1/4</td>
</tr>
</tbody>
</table>

NOTE: standard flange; 3" (other flange connections possible)

**) reference dimensions, dependent on flange size and motor / reducer type

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>497</td>
<td>28 3/4</td>
<td>19 1/8</td>
<td>22 3/4</td>
<td>33 1/4</td>
</tr>
<tr>
<td>7 1/2</td>
<td>521</td>
<td>31</td>
<td>19 1/8</td>
<td>22 3/4</td>
<td>33 1/4</td>
</tr>
<tr>
<td>10</td>
<td>582</td>
<td>32 3/4</td>
<td>19 1/8</td>
<td>22 3/4</td>
<td>34 3/8</td>
</tr>
</tbody>
</table>

NOTE: standard flange; 4" (other flange connections possible)

**) reference dimensions, dependent on flange size and motor / reducer type

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>534</td>
<td>28 3/4</td>
<td>20 1/8</td>
<td>27 5/8</td>
<td>33 1/4</td>
</tr>
<tr>
<td>7 1/2</td>
<td>558</td>
<td>31</td>
<td>20 1/8</td>
<td>27 5/8</td>
<td>33 1/4</td>
</tr>
<tr>
<td>10</td>
<td>667</td>
<td>32 3/4</td>
<td>20 1/8</td>
<td>27 5/8</td>
<td>34 3/8</td>
</tr>
</tbody>
</table>

NOTE: standard flange; 6" (other flange connections possible)

**) reference dimensions, dependent on flange size and motor / reducer type
PL Series

Standard Design

<table>
<thead>
<tr>
<th>Drive</th>
<th>Weight</th>
<th>Measurements **</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[HP]</td>
<td>[lbs]</td>
</tr>
<tr>
<td>2</td>
<td>341</td>
<td>43 1/4</td>
</tr>
<tr>
<td>3</td>
<td>352</td>
<td>45 1/4</td>
</tr>
<tr>
<td>5</td>
<td>419</td>
<td>46 1/4</td>
</tr>
<tr>
<td>7 1/2</td>
<td>441</td>
<td>48 1/2</td>
</tr>
<tr>
<td>10</td>
<td>540</td>
<td>51</td>
</tr>
<tr>
<td>15</td>
<td>606</td>
<td>55 7/8</td>
</tr>
<tr>
<td>20</td>
<td>672</td>
<td>57 3/4</td>
</tr>
</tbody>
</table>

NOTE: standard flange; 3" (other flange connections possible)

**) reference dimensions, dependent on flange size and motor / reducer type

PL 200

<table>
<thead>
<tr>
<th>Drive</th>
<th>Weight</th>
<th>Measurements **</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[HP]</td>
<td>[lbs]</td>
</tr>
<tr>
<td>3</td>
<td>385</td>
<td>45 1/4</td>
</tr>
<tr>
<td>5</td>
<td>452</td>
<td>46 1/4</td>
</tr>
<tr>
<td>7 1/2</td>
<td>474</td>
<td>48 1/2</td>
</tr>
<tr>
<td>10</td>
<td>529</td>
<td>51</td>
</tr>
<tr>
<td>15</td>
<td>650</td>
<td>55 7/8</td>
</tr>
<tr>
<td>20</td>
<td>705</td>
<td>57 3/4</td>
</tr>
</tbody>
</table>

NOTE: standard flange; 4" (other flange connections possible)

**) reference dimensions, dependent on flange size and motor / reducer type

PL 300

<table>
<thead>
<tr>
<th>Drive</th>
<th>Weight</th>
<th>Measurements **</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[HP]</td>
<td>[lbs]</td>
</tr>
<tr>
<td>3</td>
<td>419</td>
<td>45 1/4</td>
</tr>
<tr>
<td>5</td>
<td>485</td>
<td>46 1/4</td>
</tr>
<tr>
<td>7 1/2</td>
<td>507</td>
<td>48 1/2</td>
</tr>
<tr>
<td>10</td>
<td>606</td>
<td>51</td>
</tr>
<tr>
<td>15</td>
<td>672</td>
<td>55 7/8</td>
</tr>
<tr>
<td>20</td>
<td>738</td>
<td>57 3/4</td>
</tr>
</tbody>
</table>

NOTE: standard flange; 6" (other flange connections possible)

**) reference dimensions, dependent on flange size and motor / reducer type
Bredel 40 and Bredel 50 hose pumps

FEATURES AND BENEFITS

- Sealless, valveless pumping principle for reliable, low maintenance metering, dosing and transfer
- Flow rates up to 17,500 L/hr (77.1 GPM) and pressures up to 16 bar (232 psi)
- Dry running and self-priming, with up to 9.5 meters (30 foot) suction lift capability
- Robust design for aggressive chemicals or abrasives
- Compact direct coupled design to maximize gearbox life
- Simple hose change decreases cost of ownership, downtime and need for parts inventory

PERFORMANCE

Required motor power kW (hp)

Bredel 40

<table>
<thead>
<tr>
<th>Product temperature C (F)</th>
<th>40 (104F)</th>
<th>50 (122F)</th>
<th>60 (140F)</th>
<th>70 (158F)</th>
<th>80 (176F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump speed rpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity L/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity USGPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bredel 50

<table>
<thead>
<tr>
<th>Product temperature C (F)</th>
<th>40 (104F)</th>
<th>50 (122F)</th>
<th>60 (140F)</th>
<th>70 (158F)</th>
<th>80 (176F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump speed rpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity L/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity USGPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continuous Duty

Intermittent Duty*

* Maximum 2 hours operation followed by minimum 1 hour stop

1. Flow required indicates pump speed
2. Calculated discharge pressure
3. Net motor power required
4. Product temperature
5. Calculated discharge pressure
6. Maximum recommended pump speed

Note: The area of continuous operation diminishes with increased product temperatures.
For product temperatures >40C (104F), the area of continuous operation is limited by the corresponding red temperature line.
TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Components</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow range</td>
<td>up to 9,600 L/hr (42.27 GPM)</td>
</tr>
<tr>
<td>Capacity</td>
<td>1.33 L/rev (0.35 G/rev)</td>
</tr>
<tr>
<td>Minimum starting torque</td>
<td>320Nm (2,832 inch-lbs)</td>
</tr>
<tr>
<td>Hose lubricant required</td>
<td>5 liters (1.32 G)</td>
</tr>
<tr>
<td>Pumphead weight</td>
<td>121 kg (267 lbs)</td>
</tr>
</tbody>
</table>

Bredel 50

Flow range	up to 17,500 L/hr (77.05 GPM)
Capacity	2.92 L/rev (0.77 G/rev)
Minimum starting torque	620Nm (5,487 inch-lbs)
Hose lubricant required	10 liters (2.64 G)
Pumphead weight	227 kg (500 lbs)

Common features

- Max inlet pressure 2.5 bar abs (38 psi)
- Suction pressure 0.05 bar abs (0.73 psi)
- Maximum discharge pressure 1,600 kPa (16 bar) (232 psi)
- Product temperature range* -10°C up to 80°C (14°F up to 176°F)
- Ambient temperature range** -20°C up to 45°C (-4°F up to 113°F)

*Please consult your Bredel representative for lower or higher temperature operation.

**Allowable ambient temperature is based on pump capabilities and may be further limited by gearbox ambient capabilities.

MATERIALS OF CONSTRUCTION

<table>
<thead>
<tr>
<th>Components</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump housing</td>
<td>Cast iron</td>
</tr>
<tr>
<td>Rotor</td>
<td>Cast iron</td>
</tr>
<tr>
<td>Pressing shoes</td>
<td>Aluminium or epoxy</td>
</tr>
<tr>
<td>Cover</td>
<td>Mild steel</td>
</tr>
<tr>
<td>Brackets</td>
<td>Galvanized steel or AISI 316</td>
</tr>
<tr>
<td>Flanges</td>
<td>Galvanized steel or AISI 316</td>
</tr>
<tr>
<td>Inserts</td>
<td>AISI 316, PVC, PP, PVDF</td>
</tr>
<tr>
<td>Support frame</td>
<td>Galvanized steel or AISI 316</td>
</tr>
<tr>
<td>Hose clamps</td>
<td>Galvanized steel or AISI 316</td>
</tr>
<tr>
<td>Shaft</td>
<td>Alloy steel</td>
</tr>
<tr>
<td>Seals</td>
<td>Neoprene or nitrile</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Options</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available hose materials</td>
<td>NR, NBR, F-NBR, EPDM, CSM</td>
</tr>
<tr>
<td>Available flanges</td>
<td>ANSI, EN DIN, JIS</td>
</tr>
<tr>
<td>Available inserts</td>
<td>Bredel standard or with sanitary connectors</td>
</tr>
<tr>
<td>High level float switch</td>
<td>Max. 2A, 230 V AC/DC, max. 40VA</td>
</tr>
<tr>
<td>Low level float switch</td>
<td>ATEX: max. 50 mA, max. 28V AC/DC</td>
</tr>
<tr>
<td>Integrated FI for stand alone speed control</td>
<td>Factory programmable from 12-80 Hz</td>
</tr>
<tr>
<td>Revolution counter</td>
<td>For maintenance intervals and /or metering</td>
</tr>
<tr>
<td>Vacuum assist</td>
<td>For difficult suction conditions and high viscosity fluids</td>
</tr>
<tr>
<td>Cover lifting device</td>
<td>For one-man pump maintenance</td>
</tr>
</tbody>
</table>
Watson-Marlow Bredel
Exploded Detailed 3-D view
for SPX40 - SPX100 Models
Raptor® Septage Acceptance Plant

For Municipal Wastewater, Septage and Grease Trap Applications

LAKESIDE EQUIPMENT CORPORATION
Water Purification Since 1928

Cleaner Water for a Brighter Future®
The Lakeside Raptor® Septage Acceptance Plant

Many wastewater treatment plants process municipal, industrial, and septic tank sludges that contain debris and inorganic solids such as hair, plastics, grease, and hygienic materials. However, if not addressed appropriately, this debris can damage downstream equipment by clogging pumps and valves, decreasing aeration effectiveness, and dewatering and filtering equipment and sludge digestion.

The SAP is a pre-engineered, self-contained, fully automated unit that removes debris and inorganic solids that typically pass through a conventional bar screen. Anchored by the reliable, heavy-duty Raptor® Fine Screen, the SAP is a simple, efficient way to pre-treat the increasing amount of municipal, industrial, and septic tank sludges processed at wastewater treatment plants.

Engineers, owners, and private companies recognize Lakeside as the industry leader in the design of septage acceptance equipment.
Raptor® Acceptance Control System (RACS) (Cont.)

The RACS is an optional feature of Lakeside Equipment Corporation’s Raptor Septage Acceptance Plant that provides security access, load management, and invoicing capabilities.

Hauler Access, Invoicing and Data Acquisition
Plant administrators can create and manage customer and truck account information; control sampling and access on a truck-by-truck basis; track the number and sizes of loads for each hauler; and assign PIN numbers from the office. Non-proprietary data format with no license fees.

Allen-Bradley Programmable Logic Controller
Built-in Ethernet communications enable the RACS hauler station to work directly with an inlet flow control valve and magnetic flow meter to allow access/record unloading of each authorized hauler.

Allen-Bradley PanelView Plus Operator Interface
Haulers receive access by a plant-assigned PIN number that activates the system, opens the inlet flow control valve, and allows the hauler to select one of five waste types on a touch screen. A magnetic card swipe or a key switch (with or without PIN) is also offered. A credit card access system with PIN number can be provided in lieu of an owner billing system.

Data Storage and Retrieval
The RACS touch screen makes data accessible via an Ethernet communications interface. A USB data port is standard for use with a removable flash drive. Comma Separated Variable (CSV) files can be viewed with most spreadsheet or database software.

Printer
The septage hauler receives a printout of the load details, including date, time, hauler name, waste type, total gallons uploaded, elapsed time for unloading and any faults incurred, if applicable.
Operators rely on the Lakeside Raptor® Septage Acceptance Plant for minimal maintenance, advanced administrative features, and faster load processing that attracts more haulers, allowing the unit to pay for itself in a short time frame.

Standard Features of the Lakeside SAP Offer Instant Benefits

- Large capacity and rapid screen cleaning cycle process
- Pre-engineered to reduce design and installation costs
- Single motorized component, simple design, and easy operation improve reliability and reduce maintenance
- All AISI Type 304 stainless steel construction provides superior corrosion resistance
- Small footprint reduces total building volume and saves heating expenditures
- Reliable water-actuated pinch valve controls flow into the SAP
- Full-penetration rake head removes all captured debris/grease from the screen basket bars
- Two-stage washing feature lowers organic content/ drier solids content
- Large compaction zone and 2 hp drive create a dry solid content of 40-50%, reducing screenings volume by 50% and weight by 67% for reduced disposal costs
- Contains septage, minimizes odors, and reduces insect and rodent attraction
- Pre-assembled, pre-wired, and pre-plumbed to enable one-day installation
- Integrated controls save design and installation costs

Optional Features Offer Even More Flexibility and Value

- AISI Type 316 stainless steel offers increased corrosion resistance for applications with chloride concentrations greater than 200 mg/L
- Explosion-proof enclosure that meets Class I/Division 1 or 2/Group D electrical environment
- Multiple inlets that allow operators to easily unload multiple tanker trucks at the same time
- Heat tracing, insulation, and protective cover for outdoor installations
- Individual bags or continuous hose bagger for odor control and to prevent re-hydration of screenings for outdoor installations
- Rock trap designs with 5 cubic feet of capacity to meet specific project requirements
- Magnetic flow meter that measures/totalizes flow from each septage tanker for billing purposes
- pH monitoring to detect septage outside the allowed pH range established by the plant
- Automatic sampling that allows owner to test each septage load
- Skid-mounted designs
- Raptor® Septage Complete Plant with screening, grit removal, and optional grease removal
Raptor® Acceptance Control System (RACS)

Management and Accounting System

A pre-configured personal computer periodically scans the RACS hauler station for new transactions and automatically enters them into an accounting system that permits customer tracking, invoicing and report generation. Plant personnel can manage hauler accounts and invoice septage haulers. The software package allows owner to:

- Receive data from up to ten RACS control stations
- Manage septage hauler identification information
- Generate reports and invoices and receive payments
- Record date, gallons and waste type for each load
- Permit entry of a minimum of five waste types and cost per gallon charges
- Import and export data
- Allow manual entry/import of load transactions
Treatment equipment and process solutions from Lakeside Equipment Corporation

Lakeside offers a wide range of equipment and systems for virtually all stages of wastewater treatment from influent through final discharge. Each process and equipment item that we supply is manufactured with one goal: to reliably improve the quality of our water resources in the most cost-effective way. We have been doing just that since 1928.

Screw Pumps
- Open Screw Pumps
- Enclosed Screw Pumps

Raptor® Screening Products
- Fine Screen
- Micro Strainer
- Rotating Drum Screen
- Wash Press

Trash and Screen Rakes
- Hydronic Type T Series
- Hydronic Type K Series
- Multi-Functional Series
- Horizontal Series
- Catronic Series
- Monorail Series
- HY-TEC Screen

Package Headworks Systems
- Raptor® Complete Plant
- H-Pac®

Grit Collection
- SpiraGrit
- Aeroductor
- Inline Grit Collector
- Raptor® Grit Washer
- Model L Grit Classifier
- Type W Grit Classifier

Filtration and Clarification
- Spiraflo Clarifier
- Spiravac Clarifier
- Full Surface Skimming
- MicroStar® Filter

Biological Treatment Solutions
- CLR Process
- Process Monitoring & Control Systems
- Magna Rotors
- Velocity Control Baffles
- Rotor Covers
- Level Control Weirs
- BioJet™ Surface Aerator
- Sequencing Batch Reactors
- Package Treatment Plants
- Low Speed Mixers
- Medium Speed Mixers
- Recirculation Pumps

Hauled Waste Receiving Systems
- Septage Acceptance Plant
- Septage Complete Plant

Represented by:
THE MAHER CORPORATION
192 PLEASANT STREET
ROCKLAND, MA 02370
1-800-456-2437

LAKESIDE EQUIPMENT CORPORATION
Water Purification Since 1928

1022 E. Devon, P.O. Box 8448
Bartlett, IL 60103
630.837.5640 FAX: 630.837.5647
E-mail: sales@lakeside-equipment.com

All trademarks owned by Lakeside Equipment Corporation. ©2015 Lakeside Equipment Corporation 07/15
Raptor® Complete Plants

For Municipal Wastewater
and Septage Applications
Raptor® Complete Plant

Accepted worldwide as a highly efficient preliminary treatment method, the Raptor® Complete Plant is a unique system that combines screening and grit removal into one self-contained unit for treating municipal wastewater.

The fully automated unit is supplied in a pre-engineered stainless steel tank and equipped with a Raptor® Fine Screen, Rotating Drum Screen, or Micro Strainer plus grit dewatering and transport screws in the grit removal chamber. The Raptor® Complete Plant can be installed either above or below ground.

- Screens, washes, compacts and dewateres more inorganic solids than conventional units
- Removes and dewateres grit

Raptor® Complete Plant Flow Diagram

- Screen with Integrated Washing & Compaction
- Grit Dewatering Screw
- Influent
- Grit Chamber
- Grit Transport Screw
- Optional Aeration
- Effluent

The unit is constructed of stainless steel for increased corrosion resistance.

Optional grease removal system
Screening
Wastewater flows into the plant’s screening basket that retains solids without clogging. Screened material is removed from the screening basket and is spray washed to return organics to the waste flow. The screened material is then transported up the unit’s central screw conveyor to storage containers. During transport, the screened material is washed a second time, then compacted and dewatered to a solids content of up to 40 percent.

Grit Collection
The wastewater that flows through the screening basket passes directly into a grit removal chamber. Grit removal is 90 percent of 65 mesh and larger material. Grit settles to the floor of the grit chamber and a grit transport screw moves the settled grit to a sump. The transport screw moves the grit against the wastewater flow creating crosscurrents that help keep organics in suspension. The grit chamber can also be equipped with aeration to maintain organics in suspension.

A grit dewatering screw transports the settled grit out of the sump and dewatered the grit before it is discharged. The grit can be disposed of with the inorganic solids collected by the Raptor® screen, or the grit can be disposed of separately.

Aeration
For treatment plants with wide variations in flow, the grit chamber can be equipped with aeration to help control circulation in the unit. The circulation keeps organics in suspension and allows grit to settle to the tank floor regardless of any variation in flow capacity.

Grease Trap
To improve the overall performance of the Raptor® Complete Plant and to improve the downstream process operation, the grit chamber can also be equipped with an optional grease trap. Excess grease can be removed manually or a motorized skimmer can be provided.

Features and Benefits
• Pre-engineered by Lakeside to reduce your engineering costs
• Integrated design eliminates expensive concrete forming, as well as added pipes, valves, gates associated with conventional installations
• Small footprint reduces total building volume, saving heating expenditures in cold climates
• Combined screening and grit removal minimizes building size and reduces overall construction costs
• Low headloss saves pumping costs
• All-stainless steel construction assures long equipment life
• Pre-assembled components permit quick and easy installation in a single day
• Easy exterior access for maintenance
• Integrated controls save installation costs

Options
• Enclosed transport and optional bagging attachments reduce odors and ensure a clean work environment
• Heavy duty Raptor® Fine Screen, Raptor® Rotating Drum Screen, or Raptor® Micro Strainer provide superior efficiency, durability and prolonged life for lower operational costs
• Aerated grit chamber
• Insulation and heating system for outdoor and cold climate applications
• Hook-up for disposal of tankered septage
• Available with optional grease trap

Optional insulation and heating system available for outdoor/cold climate applications.
The Complete Plant can be designed with a hook-up for disposal of tankered septage.
In addition to municipal and industrial waste, many wastewater treatment plants process septic tank sludges that contain debris and inorganic solids that can negatively impact downstream equipment, decreasing the effectiveness of aeration, dewatering and filtering equipment.

To solve this issue, Lakeside offers its Raptor® Septage Complete Plant, a self-contained, fully automatic unit that removes materials that typically pass through a conventional bar screen. Anchored by the reliable Raptor® Fine Screen, the Raptor® Septage Complete Plant simply and efficiently pretreats the increasing amounts of sludges processed at wastewater treatment plants. Operators welcome the unit’s dependability, minimal maintenance and optional advanced administrative features for billing and hauler access. The Septage Complete Plant's accurate metering system and faster processing of loads attracts more haulers, fostering quick payback of the unit.

Quick Processing Cycle

The Septage Complete Plant's large capacity and quick screen cleaning cycle time allows a 3,000 gallon tanker with up to 3 percent solids concentration to be unloaded in less than 10 minutes.

Full Penetration Basket Cleaning

The Raptor® Fine Screen offers a rake head that removes grease and debris, eliminating the binding and plugging common with perforated plate screens and step screens.

Raptor® Acceptance Control System (RACS)

Hauler Access, Invoicing and Data Acquisition

With the optional RACS, plant administrators can create and manage customer and truck account information, control sampling, control access on a truck-by-truck basis, track the number and sizes of loads for each hauler and assign PIN numbers from the office. No license fees and non-proprietary data format makes the RACS system a convenient, no-hassle choice.
Raptor® Septage Complete Plant (Cont.)

Raptor® Acceptance Control System (RACS) Cont.

Allen-Bradley Programmable Logic Controller
With built-in Ethernet communications, the RACS hauler station works directly with an inlet valve and flow meter to allow access and record the unloading of each authorized hauler.

Allen-Bradley PanelView Plus Operator Interface
Haulers receive access by a plant-assigned PIN number that activates the system. The hauler then selects one of five waste types on a touch screen. Another option allows magnetic card swipe or a key switch instead of a PIN.

Data Storage and Retrieval
The RACS touch screen makes data accessible via an Ethernet communications interface. A USB data port is also available for use with a removable flash drive. Comma Separated Variable (CSV) files can be viewed with most spreadsheet or database software.

Printer
The hauler receives a printout of the load details, including date, time, hauler name, waste type, total gallons uploaded, elapsed time for unloading and any faults incurred, if applicable.

Management and Accounting System
A pre-configured personal computer periodically scans the RACS hauler station for new transactions and automatically enters them into an accounting system that permits customer tracking, invoicing and report generation. Plant personnel are able to manage the hauler accounts and invoice septage haulers. Software package allows owner to:
- Receive data from up to ten RACS control stations
- Manage septage hauler identification information
- Generate reports and invoices and receive payments
- Record date, gallons and waste type for each load
- Permit entry of a minimum of five waste types and cost-per-gallon charges
- Import and export data
- Allow manual entry/import of load transactions

Features and Benefits
- Enclosed operation contains septage and reduces odors and nuisance insects
- Two-stage screenings and washing cleans screenings more thoroughly than ordinary pretreatment systems
- Specialized compaction and 2-hp or 3-hp drive create a dry solids content of at least 40 percent, reducing volume and weight
- Design and all stainless steel construction result in few wearing surfaces for simple operation and long life

Options
- Full weather protection unit
- Continuous or individual bagging attachments
- Raptor® Acceptance Control System (RACS)
Treatment equipment and process solutions from Lakeside Equipment Corporation

Lakeside offers a wide range of equipment and systems for virtually all stages of wastewater treatment from influent through final discharge. Each process and equipment item that we supply is manufactured with one goal: to reliably improve the quality of our water resources in the most cost-effective way. We have been doing just that since 1928.

Screw Pumps
- Open Screw Pumps
- Enclosed Screw Pumps

Raptor® Screening Products
- Fine Screen
- Micro Strainer
- Rotating Drum Screen
- Wash Press
- Septage Acceptance Plant
- Septage Complete Plant

Package Headworks Systems
- Raptor® Complete Plant
- H-Pac®

Grit Collection
- SpiraGrit
- Aeroductor
- Inline Grit Collector
- Raptor® Grit Washer
- Model L Grit Classifier
- Type W Grit Classifier

Trash and Screen Rakes
- Hydronic Type T Series
- Hydronic Type K Series
- Multi-functional Series
- Horizontal Series
- Catronic Series
- Monorail Series
- HY-TEC Screen

Biological Treatment Solutions
- Process Monitoring & Control Systems
- Magna Rotors
- Velocity Control Baffles
- Rotor Covers
- Level Control Weirs
- BioJet™ Surface Aerator

Submersible Products
- Low Speed Mixers
- Medium Speed Mixers
- Recirculation Pumps

Filtration and Clarification
- Spiraflo Clarifier
- Spiravac Clarifier
- Full Surface Skimming
- MicroStar™ Filter

Submersible Products
- Low Speed Mixers
- Medium Speed Mixers
- Recirculation Pumps

Filtration and Clarification
- Spiraflo Clarifier
- Spiravac Clarifier
- Full Surface Skimming
- MicroStar™ Filter

Screw Pumps
- Open Screw Pumps
- Enclosed Screw Pumps

Raptor® Screening Products
- Fine Screen
- Micro Strainer
- Rotating Drum Screen
- Wash Press
- Septage Acceptance Plant
- Septage Complete Plant

Package Headworks Systems
- Raptor® Complete Plant
- H-Pac®

Grit Collection
- SpiraGrit
- Aeroductor
- Inline Grit Collector
- Raptor® Grit Washer
- Model L Grit Classifier
- Type W Grit Classifier

Trash and Screen Rakes
- Hydronic Type T Series
- Hydronic Type K Series
- Multi-functional Series
- Horizontal Series
- Catronic Series
- Monorail Series
- HY-TEC Screen

Biological Treatment Solutions
- Process Monitoring & Control Systems
- Magna Rotors
- Velocity Control Baffles
- Rotor Covers
- Level Control Weirs
- BioJet™ Surface Aerator

Submersible Products
- Low Speed Mixers
- Medium Speed Mixers
- Recirculation Pumps

Filtration and Clarification
- Spiraflo Clarifier
- Spiravac Clarifier
- Full Surface Skimming
- MicroStar™ Filter
RAPTOR® SEPTAGE COMPLETE PLANT

DATE: 16-Feb-16
PROJECT: Portsmouth, New Hampshire - Pease
ENGINEER: Stantec
SALES REPRESENTATIVE: The Maher Corporation

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of RAPTOR® Septage Complete Plants</td>
<td>1</td>
</tr>
<tr>
<td>RAPTOR® Septage Complete Plant Model Number</td>
<td>31SCP-A</td>
</tr>
<tr>
<td>RAPTOR® Screen Model, inches</td>
<td>31</td>
</tr>
<tr>
<td>Bar Spacing, inches</td>
<td>0.25</td>
</tr>
<tr>
<td>Screen Maximum Rated Capacity at 3% solids, gal/min</td>
<td>400</td>
</tr>
<tr>
<td>Tank Length, feet</td>
<td>15.67</td>
</tr>
<tr>
<td>Tank Width, feet</td>
<td>3.50</td>
</tr>
<tr>
<td>Tank Height, feet</td>
<td>9.08</td>
</tr>
<tr>
<td>Wash Water Flow Rate, gal/min</td>
<td>5 to 15</td>
</tr>
<tr>
<td>Wash Water Pressure, psig</td>
<td>60</td>
</tr>
</tbody>
</table>

RAPTOR® SEPTAGE COMPLETE PLANT BUDGET PRICING

Budget pricing for the RAPTOR® Lakeside Septage Complete Plant is as follows:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model:</td>
<td>31SCP-A</td>
</tr>
<tr>
<td>Unit Price:</td>
<td>$275,900 per unit</td>
</tr>
<tr>
<td>Total Price:</td>
<td>$275,900 for project</td>
</tr>
<tr>
<td>Estimated Shipping Weight per Unit:</td>
<td>7,000 lb</td>
</tr>
<tr>
<td>Estimated Maximum Live Weight per Unit:</td>
<td>41,600 lb</td>
</tr>
<tr>
<td>Estimated Installation Time per Unit:</td>
<td>80 hours</td>
</tr>
</tbody>
</table>

Due to the current volatility of stainless steel prices, please contact Lakeside for a final budget cost estimate prior to advertisement for bids for this project.
Each Lakeside RAPTOR® Septage Complete Plant is furnished with the following:

- Lakeside RAPTOR® Septage Complete Plant Model 31SCP-A complete with:
 - Lakeside RAPTOR® Fine Screen Model 31 FS - 0.25 - 89
 - Drive assembly complete with a cycloidal-helical speed reducer and a 2 hp NEMA C-face premium-efficiency motor suitable for a Class I - Division 1 - Group D explosion-proof environment
 - Lower wash system
 - Screenings wash system
 - Compaction zone flush system
 - Solenoid valves (3) for flow control that are factory pre-wired to a NEMA 4/7/9 junction box
 - Stainless steel ball valves (3)
 - Plant water strainer
- Milltronics MultiRanger 100 ultrasonic level sensor with ST-H transducer and handheld programmer
- Grit blower package complete with:
 - Positive displacement blower
 - Premium-efficiency motor
 - V-belt and sheave drive
 - Fabricated carbon steel base with factory finish paint
 - Combination inlet air filter and silencer
 - Check valve
 - Blow-off valve
 - Outlet silencer
 - FRP sound enclosure
- All stainless steel tank complete with:
 - 3/16-inch thick stainless steel end plates
 - 10 gauge (0.135-inch) thick stainless steel sides and bottom
 - Adjustable feet (+ 3/4-inch) for leveling the tank
 - Lift off and gasketed screen and grit system access covers
 - Air or water operated pinch valve for inlet flow control
 - Schedule 40S 12-inch long plain end inlet and outlet pipe stubs for connecting piping
 - Tank drain line with 3-inch ball valve
 - Horizontal grit screw of all stainless steel construction with 1 hp NEMA C-face premium-efficiency motor for a Class I - Division 1 - Group D explosion-proof environment and cycloidal-helical speed reducer
 - Grit dewatering screw of all stainless steel construction with 2 hp NEMA C-face premium-efficiency motor for a Class I - Division 1 - Group D explosion-proof environment and cycloidal-helical speed reducer
 - Grit screws have 1/2-inch wide Lincore 60-G, or equal, hardened weld for superior abrasion resistance
 - Grit washing system complete with piping and needle valve
 - Lift out aeration headers with self-sealing membrane diffusers
- Local-mounted main control panel (MCP) complete with:
 - Fusible disconnect switch with door handle
 - 480/120 VAC 500 VA control transformer with one (1) set of spare fuses
- Variable frequency drive (VFD) with line reactor for each of the following:
 - Fine Screen 2 hp drive motor
 - Blower 2 hp drive motor
- Starter for the Horizontal Grit Screw 1 hp motor
- Starter for the Grit Dewatering Screw 2 hp motor
- Allen-Bradley MicroLogix 1100 programmable logic controller (PLC) with LCD screen and 10/100 Base T Ethernet complete with control logic for functional operation
- Cabinet heater for outdoor applications if required
- Proximity sensor switching amplifier for the Fine Screen
- Door-mounted elapsed time meters for the following:
 - Fine Screen
 - Horizontal Grit Screw
 - Grit Dewatering Screw
 - Blower
 - OPTIONAL grease collector skimmer
 - OPTIONAL grease pump
- Transient voltage surge suppressor (TVSS)
- HAND-OFF-AUTO switches for each of the following:
 - Fine Screen
 - Lower spray wash system
 - Screenings spray wash system
 - Compaction zone flush system
 - Tank wash system
 - Horizontal Grit Screw
 - Grit Dewatering Screw
 - OPTIONAL grease collector skimmer
 - OPTIONAL grease pump
- FORWARD-OFF-REVERSE momentary contact switches for each of the following:
 - Fine Screen
 - Horizontal Grit Screw
 - Grit Dewatering Screw
 - Blower HAND-OFF switch
- E-STOP pushbutton [red]
- CYCLE/RE-SET pushbutton [black]
- Full-voltage LED pilot lights for each of the following:
 - Power ON [white lens]
 - Screen RUN [green lens]
 - Horizontal Grit Screw RUN [green lens]
 - Grit Dewatering Screw RUN [green lens]
 - Blower RUN [green lens]
 - OPTIONAL Grease Skimmer RUN [green lens]
 - OPTIONAL Grease Pump RUN [green lens]
 - Common FAULT/MALFUNCTION [red lens]
 - Screen high water level ALARM [amber lens]
Isolated contacts for each of the following:

- Screen RUN
- Horizontal grit screw RUN
- Grit dewatering screw RUN
- Blower RUN
- Common screen malfunction/fault ALARM
- High water level ALARM

White phenolic nameplates with black lettering
- 600 VAC terminal block
- U.L. label for the project application
- NEMA 4/12 painted steel wall-mounted enclosure

- Number of service trips to the project site: 2
- Number of 8-hour days of start-up service on the project site: 3
- Freight allowed FOB our factory in Chariton, Iowa to the project site

RAPTOR® SEPTAGE COMPLETE PLANT OPTIONAL FEATURES

Lakeside offers a number of options as part of its **RAPTOR®** Septage Complete Plant Package. These options include the following:

- **All AISI Type 316 stainless steel construction** for the **RAPTOR®** Septage Complete Plant:

 Add-Deduct Price/Unit - $21,420 per unit for Model 31SCP-A

- **Extra height** of the **RAPTOR®** Fine Screen and Grit Dewatering Screw:

 Add-Deduct Price/Unit - $1,000 per foot of vertical height per unit

- **Explosion-proof design** complete with a local control station to meet a Class I - Division 1 - Group D explosion-proof environment with the noted items removed from the main control panel to the operator local control station (LCS):

 - HAND-OFF-AUTO selector switches for each of the following:
 - Fine Screen
 - Common screen wash systems solenoid valves
 - Tank wash system
 - Horizontal Grit Screw
 - Grit Dewatering Screw
 - OPTIONAL grease collector skimmer
 - OPTIONAL grease pump

 - FORWARD-OFF-REVERSE momentary contact switch for the Fine Screen:

 - Blower HAND-OFF switch
● E-STOP pushbutton [red]
● CYCLE/RE-SET pushbutton [black]
● White phenolic nameplates with black lettering
● NEMA 4/7/9 cast aluminum enclosure

Add Price/Unit - $5,670

■ Second inlet to include inlet quick-connect coupling, coupling cover and inlet pinch valve:

Add Price/Unit - NA for 31SCP for a 4-inch diameter inlet
Add Price/Unit - NA for 31SCP for a 6-inch diameter inlet

■ Weather protection system of entire screenings transport tube and grit dewatering screw length for cold weather indoor or outdoor applications complete with heat tracing, thermostat and an FRP protective jacket with encapsulated insulation:

Add Price/Unit - $27,700 plus/minus $1,400 $/ft for non-explosion proof design
Add Price/Unit - $28,490 plus/minus $1,600 $/ft for explosion proof design

NOTE: This option will add 4 weeks to the delivery schedule.

■ Bagging attachment with replaceable plastic bags for compacted and dewatered screenings and washed and dewatered grit:

Add Price/Unit - $1,260 for individual bag design - does not include bags
Add Price/Unit - $210 for one (1) case of fifty (50) bags for the individual bag design
Add Price/Unit - $1,760 for continuous hose bag design with replaceable cartridge with 262-ft of hose and two (2) replacement cartridges
Add Price/Unit - $120 for replacement cartridge with 262-ft of hose

■ External rock trap for those facilities that anticipate a large volume of rocks and stone from cesspools. See drawings D-93196-S and D-92873-S respectively for the two types of rock traps:

Add Price/Unit - $12,200 for Type "K" for Model 31SAP and Model 40SAP
 - $12,560 for Type "K" for Model 47SAP
Add Price/Unit - $16,070 for Type "H" for Model 31SAP and Model 40SAP
 - $16,430 for Type "H" for Model 47SAP
- **Grease collection system** can be added to capture grease that is normally present wastewater. This system increases the tank width by 2 ft. Grease is manually skimmed by a downward-opening weir gate to a grease collection sump. A 1 hp positive displacement grease pump that recycles grease back through the screen or to an external grease handling system:

Add Price/Unit - $42,900

- **Automated grease skimmer system** - can be added to mechanically skim grease from the tank surface to the grease collection sump. The skimmer includes a 3/4 hp drive, non-metallic chain and flight skimmer and stainless steel shafts and bearings:

Add Price/Unit - $11,800

- **NEMA 4X enclosure** for the main control panel:

 Add Price/Unit - $290 for a NEMA 4X stainless steel enclosure
 Add Price/Unit - $190 for a NEMA 4X FRP enclosure
 Add Price/Unit - $2,930 for a NEMA 4X stainless steel enclosure with white fused epoxy coating for outdoor location to minimize heat build-up complete with lockable front door with window. All HOA switches, FOR switch, indicating lights, and running time meter are mounted on a dead front swing out panel for security purposes. E-STOP and CYCLE/RE-SET pushbuttons are mounted on the side of the panel enclosure.

- **Local septage hauler control station** complete with REGULAR-HEAVY load selector switch and system common MALFUNCTION/FAULT LED pilot light in a NEMA 4X enclosure to be located near the hauler connection point. This station will be used when the Septage Complete Plant is located indoors and the hauler connection point is located outdoors, or when the Security Access System - Automated Data Acquisition System option is not selected:

Add Price/Unit - $480

- **Magnetic flow meter** by Yokogawa that can be part of the RAPTOR® Access Control Station (R.A.C.S.) and the Data Management and Accounting System below for recording and totalizing each hauler load:

Add Price/Unit - $6,130 for a 4-inch flow meter
Add Price/Unit - $8,350 for a 6-inch flow meter
Allen-Bradley programmable logic controller (PLC) Optional Models with LCD display, 10/100 Base T Ethernet port, relays and timers to monitor equipment-mounted electrical devices and to perform necessary logic functions with back-up memory module in lieu of MicroLogix 1100 PLC:

- Add Price/Unit - $2,720 for MicroLogix 1400 PLC
- Add Price/Unit - $7,740 for CompactLogix L16ER PLC & PanelView Plus 3.8" keypad

RAPTOR® Access Control Station (RACS) complete with the following items:

- 120 VAC - 60 Hertz - 1 Phase power supply
- NEMA 4X hinged polyester weather proof instrument cover
- Allen-Bradley MicroLogix 1100 programmable logic controller (PLC)
- Communications port - includes memory module
- Allen-Bradley PanelView Plus 700 HMI complete with Ethernet communications port, Web Studio Runtime, USB ports, compact flash card port, and protective overlay for touchscreen - 5 digit PIN access
- 2.25-inch thermal impact receipt printer for identifying hauler name, hauler identification, date, time totalized flow or tanker volume with auto cutter, front loading paper, and two (2) paper rolls
- Panel heater, thermostatically controlled
- Transient voltage surge suppressor (TVSS)
- MCR safety circuit
- Ethernet switch, 5 port, Cat 5
- External USB interface for data transfer
- 4 GB USB flash disk for data transfer
- 2 GB compact flash disk for HMI data storage
- System FAULT full-voltage LED pilot light
- One (1) spare fuse set
- NEMA components with 30 mm operators
- NEMA 4X lockable enclosure for local operator control station for swipe card, HMI, receipt printer, with 20-in. high by 24-in. wide by 12-in. deep enclosure

- Add Price/Unit - $15,040 for each base RACS system

The following options and spare parts are available for the RAPTOR® Access Control Station (RACS):

- Add Price/Unit - $1,120 for enclosure white fused epoxy coating to minimize heat
- Add Price/Unit - $220 for NEMA 4X hinged window, locking enclosure, w/ 2 keys
- Add Price/Unit - $1,520 for key switch with 100 keys for secondary security access
- Add Price/Unit - $1,520 for magnetic swipe card reader
- Add Price/Unit - $210 for a pack of 100 magnetic swipe cards for card reader
- Add Price/Unit - $3,870 for credit card reader - requires Ethernet connection
- Add Price/Unit - $1,310 for inlet valve position command, 4-20 mA signal I/O
- Add Price/Unit - $400 for external discreet sampler system control enabled
Add Price/Unit - $800 for customizable unload data configuration for plant SCADA
Add Price/Unit - $730 for I/O signals in lieu of using Ethernet
Add Price/Unit - $1,460 for 30-in. leg kit for mounting RACS panel
Add Price/Unit - $510 for red flashing alarm light
Add Price/Unit - $1,680 for 600 VAC, 30 Amp SUSU non-fusible disconnect
Add Price/Unit - $3,450 for Allen-Bradley 1609-U uninterruptible power supply (UPS)
Add Price/Unit - $230 for one (1) spare fuse set
Add Price/Unit - $20 for one (1) spare receipt paper roll

Data Management and Accounting System complete with the following items:

- System will include an automated accounting system software package that enables plant personnel to administer the septage and scavenged sludge haulers. The accounting system will use an off-the-shelf accounting software package from a major software manufacturer. This software package will be installed on a Windows based computer, which will act as the central computer for the accounting system.
- Intuit QuickBooks automated accounting software that will allow the Owner to:
 - Receive data from Acceptance Control Stations supplied as part of the septage receiving equipment
 - Manage septage hauler companies and truck identification information
 - Generate invoices and receive payments
 - Generate reports
 - Record the date, time, gallons, and waste type for each load
 - Permit entry of a minimum of five (5) waste types with individual cost per gallon charge
 - Import and export data to and from Microsoft Office documents
 - Allow manual entry/import of load transactions
- The accounting system will be capable of connecting to a minimum of ten (10) access control stations
- All communications between the Access Control Stations (R.A.C.S.) and the Data Management and Accounting System computer will be over a 10/100 BASE-T Ethernet connection
- Personal computer (PC) will meet the following minimum hardware and software requirements:
 - Intel® Processor 1
 - 100 GB hard drive
 - 1024 MB RAM
 - Microsoft Windows 7 operating system software
 - Keyboard
 - Wireless optical mouse
 - 19-inch flat panel LCD display
 - 10/100 Ethernet card
- PC hardware and software will be configured as part of the septage receiving system. The automated accounting system software package will be furnished and tested as a complete system with the controls furnished by the septage equipment manufacturer/control panel manufacturer

Add Price/Unit - $10,930 for data management and accounting system with PC
Add Price/Unit - $8,540 for system with customer-supplied PC per requirements above
Main control panel optional items can be provided for the following budget price of:

<table>
<thead>
<tr>
<th>Add Price/Unit</th>
<th>Price/Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,310</td>
<td>per unit for NEMA electrical standards design</td>
<td></td>
</tr>
<tr>
<td>$740</td>
<td>per unit for a 208 or 240 power supply in lieu of 480 VAC</td>
<td></td>
</tr>
<tr>
<td>$1,460</td>
<td>per unit for a 30-in. high main enclosure leg kit</td>
<td></td>
</tr>
<tr>
<td>$500</td>
<td>per unit for push-to-test full-voltage LED pilot lights</td>
<td></td>
</tr>
<tr>
<td>$170</td>
<td>per unit for a main enclosure interior panel light</td>
<td></td>
</tr>
<tr>
<td>$380</td>
<td>per unit for a convenience outlet</td>
<td></td>
</tr>
<tr>
<td>$690</td>
<td>per unit for an alarm horn or alarm light</td>
<td></td>
</tr>
<tr>
<td>$380</td>
<td>per unit for a 5" x 7" window kit to view VFD display</td>
<td></td>
</tr>
<tr>
<td>$3,450</td>
<td>per unit for an uninterruptible power supply (UPS)</td>
<td></td>
</tr>
<tr>
<td>$1,250</td>
<td>per unit for 3 Phase surge suppression in lieu of 1 Phase</td>
<td></td>
</tr>
<tr>
<td>$580</td>
<td>per unit for lightning arrester, 3 Phase</td>
<td></td>
</tr>
</tbody>
</table>

Spare parts can be provided at the following costs:

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>One (1) set of water-jet cut rake heads and mounting hardware</td>
<td>$2,630</td>
</tr>
<tr>
<td>One (1) brass slow close solenoid valve</td>
<td>$320</td>
</tr>
<tr>
<td>One (1) solenoid valve re-build kit</td>
<td>$170</td>
</tr>
<tr>
<td>One (1) screw tail sleeve bearing, stainless steel wear sleeve, and seals</td>
<td>$550</td>
</tr>
<tr>
<td>One (1) spare fuse set of each size and type</td>
<td>$230</td>
</tr>
<tr>
<td>One (1) spare set of blower inlet filter cartridges</td>
<td>$240</td>
</tr>
</tbody>
</table>

Extra service can be provided at a rate noted below plus travel costs and per diem costs:

<table>
<thead>
<tr>
<th>Add Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$750</td>
<td>for each additional trip to the project site</td>
</tr>
<tr>
<td>$1,080</td>
<td>for each additional 8-hour day on the project site</td>
</tr>
</tbody>
</table>

RAPTOR® SEPTAGE COMPLETE PLANT DRAWINGS AND FABRICATION TIMES

The RAPTOR® Septage Complete Plant will require the following times to complete our contractual obligations:

- Shop Drawing Time after receipt of fully-executed purchase order: 6 to 8 weeks
- Fabrication Time after shop drawing approval and release to our shop: 24 to 28 weeks
520SN/REL, 520UN/REL, 520DuN/REL

IP66 pumps fitted with LoadSure® element pumpheads

Watson-Marlow Bredel

FEATURES

- Flow rates up to 3500ml/min at 2 bar (30psi) peak pressure with 520 LoadSure® elements
- 520REL pumphead features large swept volume with sprung rollers for high accuracy, gentle pumping of shear-sensitive fluids
- Robust pumphead construction with PPS (polyphenylene sulphide) track and rotor and stainless steel rollers and bearings
- Precise 2200:1 speed control range from 0.1 to 220rpm in 0.1rpm increments
- Maintenance free brushless DC motor
- IP66 enclosure provides the highest level of ingress protection for arduous conditions and high pressure washdown environments
- Manual control with additional flow calibration and MemoDose for accurate single shot dispensing
- Dual voltage, 115V/230V 50/60Hz

FUNCTIONALITY

<table>
<thead>
<tr>
<th>Pump drives</th>
<th>520SN</th>
<th>520UN</th>
<th>520DuN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual control</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Full calibration with choice of flow units</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Simple calibration to display flow in ml/min</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Choice of flowrate or speed display</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Remote control</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Run/Stop, direction change, Auto/manual toggle, leak detector input (via contact closure or 5V TTL or 24V industrial logic)</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Remote operation of MemoDose (foot/hand-switch or logic input)</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Analogue speed control</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Software programmable inputs: 0-10V, 1-5V or 4-20mA</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Analogue outputs: 0-10V (8 bit resolution)</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Analogue outputs: 0-10V, 4-20mA (high resolution)</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Keypad/analogue input scaling (replacement of diaphragm pumps)</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Tacho frequency output; 0-1258Hz</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Digital communication</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>RS485 network control</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Security</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Basic security code to protect set-up</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

PERFORMANCE

<table>
<thead>
<tr>
<th>LoadSure® Element tubing flow rates (ml/min)</th>
<th>Speed</th>
<th>3.2mm</th>
<th>6.4mm</th>
<th>9.6mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumpsil, Sta-Pure, Chem-Sure, Neoprene</td>
<td>0.1 to 220rpm</td>
<td>0.18-390</td>
<td>0.70-1500</td>
<td>1.6-3500</td>
</tr>
<tr>
<td>MarpreneTL, Bioprene TL</td>
<td>0.1 to 220rpm</td>
<td>0.17-370</td>
<td>0.67-1500</td>
<td>1.5-3300</td>
</tr>
</tbody>
</table>
All flow rates shown were obtained pumping water at 20°C (68°F) with zero suction and delivery heads. Watson-Marlow, Bioprene and Marprene are trademarks of Watson-Marlow Limited. Disclaimer: The information contained in this document is believed to be correct but Watson-Marlow Limited accepts no liability for any errors it contains, and reserves the right to alter specifications without notice. LoadSure is a trademark of Watson-Marlow Limited. © Chem-Sure and © STA-PURE are registered trademarks of W.L. Gore & Associates Inc. Please state the product code when ordering pumps and tubing.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keypad</td>
<td>Polyester</td>
</tr>
<tr>
<td>Switch-plate</td>
<td>Glass filled ABS plastic</td>
</tr>
<tr>
<td>Rear blanking plate</td>
<td>Stainless steel 304</td>
</tr>
<tr>
<td>Drive casework</td>
<td>Pressure die-cast aluminium LM24</td>
</tr>
<tr>
<td>Case work coating</td>
<td>Alcom pre-treatment, exterior grade polyester powder coat</td>
</tr>
<tr>
<td>Drive shaft</td>
<td>Electroleass nickel plated carbon steel</td>
</tr>
<tr>
<td>Pumphead track</td>
<td>PPS (polyphenylene sulphide)</td>
</tr>
<tr>
<td>Guard - inner/outer</td>
<td>Polycarbonate</td>
</tr>
<tr>
<td>Guard seal</td>
<td>Neoprene</td>
</tr>
<tr>
<td>Rotor hub</td>
<td>Stainless steel 316</td>
</tr>
<tr>
<td>Roller arms, rotor cover</td>
<td>Stainless steel with PTFE seals</td>
</tr>
<tr>
<td>Rollers – main/guide</td>
<td>Stainless steel 316</td>
</tr>
<tr>
<td>Main roller bearings</td>
<td>Stainless steel with PTFE seals</td>
</tr>
<tr>
<td>Drain port and nut</td>
<td>PP (polypropylene)</td>
</tr>
<tr>
<td>Drain plug</td>
<td>Hytrel</td>
</tr>
</tbody>
</table>

ORDER INFORMATION

Pump and pumphead product codes

<table>
<thead>
<tr>
<th>Description</th>
<th>Partcode</th>
<th>Description</th>
<th>Partcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>520REL element pumphead only</td>
<td>053.1011.EL0</td>
<td>520SN drive only</td>
<td>056.713N.000*</td>
</tr>
<tr>
<td>520SN/REL pump</td>
<td>050.713N.EL0*</td>
<td>520UN drive only</td>
<td>056.714N.000*</td>
</tr>
<tr>
<td>520UN/REL pump</td>
<td>050.714N.EL0*</td>
<td>520DuN drive only</td>
<td>056.715N.000*</td>
</tr>
<tr>
<td>520DuN/REL pump</td>
<td>050.715N.EL0*</td>
<td>Leak Detector</td>
<td>059.8131.000</td>
</tr>
</tbody>
</table>

* Replace 0 (plug-less) with A for 2.8m American mains lead

Element product codes

<table>
<thead>
<tr>
<th>Component</th>
<th>Industrial LoadSure® elements</th>
<th>Industrial LoadSure® elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quick-release PVDF connectors</td>
<td>% in Sanitary PVDF connectors</td>
</tr>
<tr>
<td></td>
<td>3.2mm</td>
<td>6.4mm</td>
</tr>
<tr>
<td>Neoprene</td>
<td>920.0032.PFQ</td>
<td>920.0064.PFQ</td>
</tr>
<tr>
<td>Chem-Sure</td>
<td>965.0032.PFQ</td>
<td>965.0064.PFQ</td>
</tr>
<tr>
<td>Bioprene TL</td>
<td>960.0032.PFQ</td>
<td>960.0064.PFT</td>
</tr>
<tr>
<td>Sta-Pure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EleMech, Inc.
Waste Dump Station Model DS-82

PortALogic Management Software Included

For Controlling Access, Metering, and Sampling

Receiving waste from haulers such as septage is an essential process, but needs critical attention. Managing hauled-in waste irresponsibly could have adverse effects. Without an efficient process in place, it can also be costly. You see firsthand the challenges your facility faces and understand the importance of security, record keeping, and minimizing costs. Ensuring your receiving process is successful matters to you and to us.

We are EleMech, we created PortALogic stations to help you manage trucked-in waste. Our sole mission with PortALogic is to help facilities manage waste responsibly while decreasing costs through our automated stations paired with our PortALogic management software. Since 1987, facilities have been looking to us to provide stations that meet their unique needs. Get started with us and let us help you meet your goals.

Buy Now - Call EleMech, Inc. at 630-499-7080 to order a station for your site
DS-82
The DS-82 waste dump station is tamper-proof and simple for haulers to use. This station provides secure hauler access by PIN or swipe card. The station encloses an electrically actuated valve, flow meter, pH sensor, and sampler. It seamlessly communicates with PortALogic management software.

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>TYPES OF WASTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure</td>
<td>Septage</td>
</tr>
<tr>
<td></td>
<td>Fats-Oils-Grease (FOG)</td>
</tr>
<tr>
<td>Hauler Access</td>
<td>Sludge</td>
</tr>
<tr>
<td></td>
<td>Frac Water</td>
</tr>
<tr>
<td>Receipt Printer</td>
<td>Other Waste</td>
</tr>
</tbody>
</table>

- **Enclosure**: Dual access door- locking handle, water tight, outdoor rated type 3R, corrosion resistant, coated galvanized steel
- **Hauler Access**: Industrial display with card reader and keypad
- **Receipt Printer**: Heavy duty kiosk-style printer, illuminated chute, large capacity roll
- **Interior**: Encloses quick opening electrically actuated valve (4” or 6”), flow meter, pH sensor, refrigerated sampler, and power panel.
- **Power**: 240/120VAC, *30 AMP
- **Rate of Flow**: Up to 1,100 gallons per min (4,164 liters per min)
- **Temperature**: Operating temperature range -40°F to 122°F (-40°C to 50°C)
- **Software**: Station interfaces with PortALogic management software for record keeping, billing, monitoring, and reporting
- **Certifications**: Outdoor rated card reader/keypad with sunlight visible display, Integral “Done” and “Start” switch, “System Ready” light, Quick connect inlet and outlet on other side, Enclosure containing electrically actuated valve and flow meter, Illuminated receipt paper chute, Lockable dual access door

Ideal for discharging curbside and at unattended sites

www.portalogic.info
PortALogic Waste Dump Station - Model DS-82

OPTIONS

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Powered</td>
<td>Stations can be powered by solar energy for remote installations</td>
</tr>
<tr>
<td>Cold Climate Package</td>
<td>Heaters, insulation, and heat tracing can be added to protect the station in cold climates</td>
</tr>
<tr>
<td>Hot Climate Package</td>
<td>Air conditioners and sunshields can be added to protect the station in hot climates</td>
</tr>
<tr>
<td>Gate/Door Control</td>
<td>The station can interface with automatic gates and doors if needed</td>
</tr>
</tbody>
</table>

HAULER ACCESS STATION OPERATION

1. Hauler connects truck to inlet connection
2. Hauler turns the switch to “Start”
3. Hauler uses wipe card or enters PIN
4. Hauler follows display prompts and enters information such as waste type
5. Inlet valve opens, “System Ready” light illuminates, and hauler discharges
6. Hauler turns the switch to “Done” and a receipt is printed detailing the transaction

INSTALLATION

Stations come fully assembled, tested, and ready to install. The station comes with PortALogic management software which can be installed on any number of the facility’s PCs.

WARRANTY

All components furnished in specification are guaranteed for two years from date of shipment. Management software updates and phone support is provided for two years from date of shipment.

DIMENSIONS

www.portalogic.info
PortALogic Waste Products:

DS-200
The DS-200 waste dump station is tamper-proof and simple for haulers to use. This station provides secure hauler access by PIN or swipe card.

DS-22
The DS-22 waste dump station is secure and controls the valve. This station includes a pedestal base enclosing an electrically actuated valve.

DS-25
The DS-25 waste dump station is secure, controls the valve, and provides metering. This station encloses an electrically actuated valve and flow meter.

DS-82
The DS-82 waste dump station is the complete solution for waste receiving. This station encloses an electrically actuated valve, flow meter, sampler, and pH sensor.

For more information about PortALogic, please contact an EleMech engineer at 630-499-7080 or visit www.portalogic.info.
Receiving waste such as septage, fats-oils, grease, and sludge is an essential process in need of critical attention. Managing hauled-in waste irresponsibly could have adverse effects. Without an efficient process in place, it can also be costly. You see firsthand the challenges your facility faces and understand the importance of security, record keeping, and minimizing costs. Ensuring your waste receiving process is successful matters to you and to us.

We are EleMech, we created PortALogic stations to help you manage trucked in waste. Our sole mission with PortALogic is to help facilities manage waste responsibly while decreasing costs through our automated waste receiving stations. Since 2000, facilities have been looking to us to provide stations to meet their unique needs. Get started with us and let us help you meet your goals.

Buy Now - Call EleMech, Inc. at 630-499-7080 to order a station for your site
PortALogic Waste Dump Station - Model DS-25

DS-25
The DS-25 waste dump station is tamper-proof and simple for haulers to use. This station provides secure hauler access by PIN or swipe card and includes a pedestal base with an electrically actuated valve and flow meter. It seamlessly communicates with PortALogic management software.

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>TYPES OF WASTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure</td>
<td>Septage</td>
</tr>
<tr>
<td>Access door-locking handle, water tight, outdoor rated NEMA 4X, corrosion resistant, stainless steel</td>
<td>Fats-Oils-Grease (FOG)</td>
</tr>
<tr>
<td>Hauler Access</td>
<td>Sludge</td>
</tr>
<tr>
<td>Industrial display with card reader and keypad</td>
<td>Frac Water</td>
</tr>
<tr>
<td>Receipt Printer</td>
<td>Other Waste</td>
</tr>
<tr>
<td>Heavy duty kiosk-style printer, illuminated chute, large capacity roll</td>
<td></td>
</tr>
<tr>
<td>Pedestal Base</td>
<td></td>
</tr>
<tr>
<td>NEMA 4X stainless steel enclosure, 60” wide. Encloses quick opening electrically actuated valve (4” or 6”) and flow meter</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>120VAC, 30 AMP</td>
<td></td>
</tr>
<tr>
<td>Rate of Flow</td>
<td></td>
</tr>
<tr>
<td>Up to 1,100 gallons per min (4,164 liters per min)</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range -40°F to 122°F (-40°C to 50°C)</td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td></td>
</tr>
<tr>
<td>Station interfaces with PortALogic management software for record keeping, billing, monitoring, and reporting</td>
<td></td>
</tr>
<tr>
<td>Certifications</td>
<td></td>
</tr>
<tr>
<td>UL, CUL, NSF</td>
<td></td>
</tr>
</tbody>
</table>

Outdoor rated card reader/keypad with sunlight visible display

Illuminated receipt paper chute

“System Ready” light

Integral “Done” and “Start” switch

60” Pedestal Base, lockable and encloses electrically actuated valve and flow meter

DS-200 Model, can be mounted on top of pedestal base or separately

 Tioga, ND
PortALogic Waste Dump Station - Model DS-25

OPTIONS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampler</td>
<td>Refrigerated samplers can be included in the system</td>
</tr>
<tr>
<td>pH Transmitter</td>
<td>pH monitors can be included in the system</td>
</tr>
<tr>
<td>Solar Powered</td>
<td>Stations can be powered by solar energy for remote installations</td>
</tr>
<tr>
<td>Cold Climate Package</td>
<td>Heaters, insulation, and heat tracing can be added to protect the station in cold climates</td>
</tr>
<tr>
<td>Hot Climate Package</td>
<td>Air conditioners and sunshields can be added to protect the station in hot climates</td>
</tr>
<tr>
<td>Gate/Door Control</td>
<td>The station can interface with automatic gates and doors if needed</td>
</tr>
</tbody>
</table>

HAULER ACCESS STATION OPERATION

1. Hauler connects truck to inlet connection
2. Hauler turns the switch to “Start”
3. Hauler uses wipe card or enters PIN
4. Hauler follows display prompts and enters information such as waste type
5. Inlet valve opens, “System Ready” light illuminates, and hauler discharges
6. Hauler turns the switch to “Done” and a receipt is printed detailing the transaction

INSTALLATION

Stations come fully assembled, tested, and ready to install. The station comes with PortALogic management software which can be installed on any number of the facility’s PCs.

WARRANTY

All components furnished in specification are guaranteed for two years from date of shipment. Management software updates and phone support is provided for two years from date of shipment.

DIMENSIONS

Features

1. Secure Hauler Login
 - Haulers enter PIN or use swipe card to gain access

2. Simple to Use
 - Display prompts guide haulers through transaction

3. Durable & Tamper-Proof
 - Stainless steel, lockable doors, tamper-proof card reader/keypad

4. Controls Access to Valve
 - Metered valve in base opens only to permitted haulers

www.portalogic.info
PortALogic Waste Products:

DS-200
The DS-200 waste dump station is tamper-proof and simple for haulers to use. This station provides secure hauler access by PIN or swipe card.

DS-22
The DS-22 waste dump station is secure and controls the valve. This station includes a pedestal base enclosing an electrically actuated valve.

DS-25
The DS-25 waste dump station is secure, controls the valve, and provides metering. This station encloses an electrically actuated valve and flow meter.

DS-82
The DS-82 waste dump station is the complete solution for waste receiving. This station encloses an electrically actuated valve, flow meter, sampler, and pH sensor.
Management Software
Included with Each PortALogic Station
For Monitoring Stations and Managing Billing

Receiving waste into your facility or dispensing water out to haulers needs critical attention. Managing these processes irresponsibly could have adverse effects. Without an efficient process in place, it can also be costly. You see firsthand the challenges your facility faces and understand the importance of security, record keeping, and minimizing costs. Ensuring your receiving process is successful matters to you and to us.

We are EleMech, we created PortALogic stations to help you manage water and waste. Our sole mission with PortALogic is to help facilities manage water and waste responsibly while decreasing costs through our automated stations paired with our PortALogic management software. Since 1987, facilities have been looking to us to provide stations that meet their unique needs. Get started with us and let us help you meet your goals.

Buy Now - Call EleMech, Inc. at 630-499-7080 to order a station for your site
Software for Water and Waste

PortALogic seamlessly communicates with one or more PortALogic water and waste stations. It helps you manage waste receiving and water dispensing through automated record keeping and reporting. Users can see when a truck is connected, what customer is using the station, the volume, cost, and more.

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
</tr>
<tr>
<td>Created for Windows® XP, Windows® 7, and Windows® 8</td>
</tr>
<tr>
<td>32 or 64-bit, 1.80 GHz or higher microprocessor</td>
</tr>
<tr>
<td>2 GB RAM for XP, 1 GB of available hard disk space</td>
</tr>
<tr>
<td>Data Collected</td>
</tr>
<tr>
<td>Stores customer, truck, date, time, receipt number, volume, cost, balance, water/waste type, pH, alarms, and more</td>
</tr>
<tr>
<td>Data Storage</td>
</tr>
<tr>
<td>Data is automatically uploaded into a secure SQL database</td>
</tr>
<tr>
<td>Database is easily backed-up and restored</td>
</tr>
<tr>
<td>Users</td>
</tr>
<tr>
<td>Unlimited number of software users</td>
</tr>
<tr>
<td>Integration</td>
</tr>
<tr>
<td>Manage multiple PortALogic Water and Waste Stations at separate locations with 1 centralized database</td>
</tr>
<tr>
<td>Reports</td>
</tr>
<tr>
<td>Preformatted reports can be exported as PDF, Excel document or data can be easily imported into accounting software</td>
</tr>
<tr>
<td>Networking</td>
</tr>
<tr>
<td>Ethernet or cell modem provides real-time access to data</td>
</tr>
</tbody>
</table>

INSTALLATION

PortALogic management software can be installed on any number of the facility’s PCs. An EleMech Technical Specialist will help you with the software installation over the phone and provide an introductory software webinar.

PREFORMATTED REPORTS

- Activity Reports
- Revenue Reports
- Customer Billing Statements

WARRANTY

Management software updates and phone support is provided for two years from date of shipment.

For Every Department

Administrators
Manage accounts and monitor stations

Accountants
Extract data and generate reports

Lab Personnel
Enter sample information

Provides monitoring, reporting, and billing of multiple water and waste stations
PortALogic Features

Control and Monitoring
Manage one or more stations comfortably from your office. You can activate or deactivate truck privileges, view station usage in real-time, set station hours, and more.

Customer Accounts
Easily create accounts for new customers and tie trucks to their accounts for easy tracking. Accounts can be set up on a credit or debit basis with balances automatically calculated.

Preformatted Reports
Generate preformatted activity reports, revenue reports, and customer billing statements. Reports can be exported as PDFs or Excel Documents.

Users
PortALogic can be installed on any number of computers at your facility. Set different user privileges such as read only, read and write, or admin.

Automated Record Keeping
PortALogic automatically synchronizes with the stations. Transaction details such as customer, truck, time, volume, cost, and more are stored in real-time.

Sampling
If a sampler is included with your station, you can easily set the sample frequency of all trucks or just a couple. Lab results of sampled loads can be stored in PortALogic.

Water/Waste Rates
PortALogic allows you to assign multiple water and waste type rates.

Home Screen of PortALogic
View complete customer list with account numbers and balances
Switch between viewing selected customer’s orders, ledger, and manifest information
See more detailed information about the selected customer
Create reports for the selected customer
Drag and drop column headers to quickly evaluate and sort data
View truck orders of selected customer with calculated charges
PortALogic Water and Waste Products:

DS-200
The DS-200 waste dump station is tamper-proof and simple for haulers to use. This station provides secure hauler access by PIN or swipe card.

DS-22
The DS-22 waste dump station is secure and controls the valve. This station includes a pedestal base enclosing an electrically actuated valve.

DS-25
The DS-25 waste dump station is secure, controls the valve, and provides metering. This station encloses an electrically actuated valve and flow meter.

DS-82
The DS-82 waste dump station is the complete solution for waste receiving. This station encloses an electrically actuated valve, flow meter, sampler, and pH sensor.

FS-200
The FS-200 water fill station is tamper-proof and simple for haulers to use. This station provides secure hauler access by PIN or swipe card.

FS-22
The FS-22 water fill station is secure and manages volume. This station provides secure access and includes a pedestal base enclosing a metered valve.

FS-82
The FS-82 water fill station is the complete solution for water dispensing. This station provides secure access and encloses a metered valve with a backflow preventer.

For more information about PortALogic, please contact an EleMech engineer at 630-499-7080 or visit www.portalogic.info.

EleMech, Inc.
2275 White Oak Circle
Aurora, IL 60502
Office: 630-499-7080
www.portalogic.info
www.elemech.com
Dump Station DS-200

This simple tamper-proof model is easy for haulers to use and provides secure access by PIN or swipe card.

Starting at $14,995

Dump Station DS-22

This model incorporates the features of the DS-200 model but also includes a pedestal base enclosing an electrically actuated valve.

Starting at $23,995

Dump Station DS-25

This model incorporates the features of DS-22 model but also includes a flow meter for a simple turnkey solution.

Starting at $31,995

Dump Station DS-82

This model is the complete solution for waste receiving. This dump station incorporates the features of DS-25 model and encloses a sampler and pH sensor.

Starting at $49,995
Appendix I: Alternative Equipment Brochures and Quotes from Vendors
The Maher Corporation
THE MAHER CORPORATION
WATER & WASTEWATER PROCESS, PUMPING & VALVE SYSTEMS

PROCESS & PUMPING EQUIPMENT

BIOREM TECHNOLOGIES INC. - Biofiltration Systems for Odor Control including BIOFILTER™, BASYS™, BIOCUBE™, MYTILUS™ and SYNERGY™, Biogas Conditioning Systems

BIOWATER TECHNOLOGY - Biofiltration Systems Biological Fixed Film Technology provider, including CFAS®, CMFF™, and CFIC® - Design and Build of Complete Package Plants, New Systems and Upgrades

BOERGER - Rotary Lobe Pump, Grinders

CALGON CARBON - Granular Activated Carbon Media, Engineered GAC Systems

CHARTER MACHINE CO. - Contract Dewatering, Belt Filter Presses, Gravity Belt Thickeners, Lime Stabilization, Rotary Drum Thickeners

CLEARSTREAM - Circular Clarifiers, Thickeners, DAFs and Rectangular DAFs for Water and Wastewater Treatment

DBS MANUFACTURING - OEM Clarifier and Thickener Drives, Direct "Bolt-in" Retrofit Drives, Low Speed Aeration and Rotary Distributors

DYNATEC SYSTEMS, INC. - Out of basin MBR systems

ECS - Odor Control Systems Specializing in Carbon Adsorbers with CALGON Carbon, Chemical Scrubbers, FRP Chemical Storage Tanks, Sound Enclosures, Covers and Buildings

ENVIRONMENTAL FABRICS INC. - Geosynthetic Liners, Lagoon Baffles, Curtains and Floating Cover Systems

FLO TREND SYSTEMS, INC. - Liquid/Solids Separation for Sludge and Grit, Container Filters, Sludge-Mate

FLYGT - Compact Mixers, Mid-Size Mixers, Slow Speed Mixers, Top-Entry Agitators

GILL TRADING.COM, INC. - WeinWasher Automated Cleaning Systems, Eco-Blaster Biological Control Systems

HAYWARD-GORDON, LTD. - Recessed Impeller Pumps, Screw Impeller Pumps, Chopper Pumps, Mixers

HEADWORKS, INC. - Headworks® Bar Screen Featuring Mahr™ Technology, MBBR Systems

HOWDEN ROOTS LLC - Positive Displacement and Centrifugal Air Blowers, EASYAIR™ RAMX2 Factory Packages, Authorized Repair Facility, Blower and Aeration Controls

KOECH MEMBRANE SYSTEMS - MBR Systems for Municipal Wastewater Treatment, Ultrafiltration, RO and Nanofiltration Systems for Municipal Water Treatment

LAKE SIDE EQUIPMENT CORPORATION - Fine Screen, Septage Acceptance Plant, Screenings Wash Press, Complete Plant; Oxidation Ditch Aerators, Clarifiers, Screw Pumps, Rotary Distributors, Grit Removal Systems, Mixers

NEFCO - FRP Weirs, Scum Baffles and Troughs, Density Current Baffles, Launder and Channel Cover Systems

PARKSON - DynaSand Filtration, MIOX Disinfection, Lagoon Aeration, Rotary Drum Thickeners

SANITAIRe CORPORATION -

ABJ - ICEAS and SBR Systems
Sanitaire - Ceramic and Membrane Fine Bubble Diffused Aeration Stainless Steel Coarse Bubble Diffused Aeration Systems, Oscar Process Controls

SPIRAC, INC. - Shaffless Screw Conveyors and Systems

SYNCROFLO - Prepackaged Water Pumping Systems

THERMAFAB - Floating Baffles, Clearwell Curtains and Portable Spill Containment Units

THERMA-FITE - BIO-SCRU® Biosolids Dryer for Class A Sludge Production

TROJAN TECHNOLOGIES, INC. -

SALNSIS Filter - Complete Primary Treatment Systems
TROJAN UV - Ultraviolet Disinfection Systems for Water and Wastewater

USP Technologies - Hydrogen Peroxide and Peroxide Based, Full-Service Environmental Treatment Programs

UNIFILT CORPORATION - Filter Media, Removal and Installation Services and UNIFILT Air Scour Filter Media Cleaning

VAPEX - O-Mega Hydroxyl Radical Odor, Grease and Corrosion Control

WATSON-MARLOW FLUID TECHNOLOGY GROUP - Peristaltic Pumps for Sludge, Lime and Chemical Metering/Transfer Applications

WESTFALIA SEPARATOR - Centrifuges and Thickeners

PIPING, VALVES & OPERATORS

ECS - AMCA Certified FRP Damper/Ductwork Systems

EIM CONTROLS - Valve Actuators (electric, pneumatic, manual)

FELKER BROTHERS, INC. - Stainless Steel Pipe and Fitting Systems

LATANICK EQUIPMENT - Telescoping Valves and Mud Valves

PROCO Inc. - Expansion Joints, Pipe Penetration Seals, Check Valves

SINGER VALVE - Automatic Control Valves

STRAUB - Stainless Steel Couplings

WACO PRODUCTS - Slide, Weir, Stop Gates and Stop Logs, Water Control Equipment in Stainless or Aluminum

01-04-2016
SPX65
High-Pressure Hose Pumps

Features and Benefits

• High-strength, twin-bearing hub integrated into the pumphead
• Rotor always fully and centrally supported by its own bearings
• Fail-safe shaft design
• New flat shim and improved epoxy shoe design
• Faster hose changing and improved sealing
• Easy access to shims and shoes
• Unique buffer zone provides protective barrier between pumphead and gearing
• Patented direct-coupled design
• Ultra compact planetary gearing
• No drive alignment for faster set-up
• No coupling or baseplate for compact footprint
• Adapter available for fitting hydraulic or pneumatic motors
• Improved frame design
• Increased corrosion resistance
• Compact design, low maintenance,
• Two year warranty

Performance Chart

How to calculate speed/horsepower
A Flow required, indicates pump speed
B Calculated discharge pressure
C Horsepower required
D Fluid temperature
E Calculated discharge pressure
F Maximum recommended pump speed**

** For maximum hose life, speed point (A) should be lower then temperature adjusted speed point (F). See example points (A) thru (F).
SPX65 High-Pressure Hose Pumps

Technical Specifications

Supply: 115/230 single phase or 230/460 or 575 three phase
Operating Speeds: up to 50 rpm continuous
up to 80 rpm intermittent
Fluid Temperature Range: -4° to 175°F
Hose Lubricant Required: 1.5 gallons
Flow Range: 3.54 - 141.6 gpm
Discharge Pressure: up to 232 psi
Suction pressure: 28 ft. lift to 30 psi
Available Hose Materials: Natural Rubber
BUNA N
BUNA K
EPDM
Available Insert Materials: Polypropylene
316 SS
PVDF
PVC

Materials of Construction

Pumphead: Cast iron
Rotor: Cast iron
Cover: Mild steel
Hub: Cast iron
Shoes: Epoxy
Flanges and Flange Brackets: Galvanized steel or 304 SS
Frame: Galvanized steel
Hardware: Zinc plated steel or 304 SS
Shaft: Alloy steel
Shims: 316 SS
Seals: NBR

The information contained in this document is believed to be correct, but Watson-Marlow/Bredel Pumps accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

Watson-Marlow, Inc.
220 BALLARDALE STREET, WILMINGTON, MA 01887
TEL: 800-928-7786, 978-658-6168 / FAX: 978-658-0041
http://www.watson-marlow.com
http://www.bredel.com
SPX80
High-Pressure Hose Pumps

Features and Benefits

- High-strength, twin-bearing hub integrated into the pumphead
- Rotor always fully and centrally supported by its own bearings
- Fail-safe shaft design
- New flat shim and improved epoxy shoe design
- Faster hose changing and improved sealing
- Easy access to shims and shoes
- Unique buffer zone provides protective barrier between pumphead and gearing
- Patented direct-coupled design
- Ultra compact planetary gearing
- No drive alignment for faster set-up
- No coupling or baseplate for compact footprint
- Adapter available for fitting hydraulic or pneumatic motors
- Improved frame design
- Increased corrosion resistance
- Compact design, low maintenance,
- Two year warranty

Performance Chart

How to calculate speed/horsepower
A Flow required, indicates pump speed
B Calculated discharge pressure
C Horsepower required
D Fluid temperature
E Calculated discharge pressure
F Maximum recommended pump speed**

** For maximum hose life, speed point (A) should be lower than temperature adjusted speed point (F). See example points (A) thru (F).
Engineering and Technical Data

SPX80 High-Pressure Hose Pumps

Technical Specifications

Supply: 115/230 single phase or 230/460 or 575 three phase

Operating Speeds: up to 40 rpm continuous, up to 50 rpm intermittent

Fluid Temperature Range: -4°F to 175°F

Hose Lubricant Required: 10.8 gallons

Flow Range: 6.2 - 182 gpm

Discharge Pressure: up to 232 psi

Suction pressure: 28 ft. lift to 23 psi

Available Hose Materials: Natural Rubber, BUNA N, BUNA K, EPDM, Hypalon (pending)

Available Insert Materials: Polypropylene, 316 SS, PVDF, PVC

Materials of Construction

Pumphead: Cast iron

Rotor: Cast iron

Cover: Mild steel

Hub: Cast iron

Shoes: Epoxy

Flanges and Flange Brackets: Galvanized steel or 304 SS

Frame: Galvanized steel or 304 SS

Hardware: Zinc plated steel or 304 SS

Shaft: Alloy steel

Shims: 316 SS

Seals: NBR

The information contained in this document is believed to be correct, but Watson-Marlow/Bredel Pumps accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

Gear Input Weight Frame

<table>
<thead>
<tr>
<th>Gear Reducer</th>
<th>Input Frame</th>
<th>A Lbs.</th>
<th>Motor P/N</th>
<th>B Ø</th>
<th>C Lbs.</th>
<th>Weight Lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRD2065</td>
<td>210TC</td>
<td>12.7</td>
<td>P21G3882</td>
<td>17.0</td>
<td>Ø10.5</td>
<td>170</td>
</tr>
<tr>
<td>250TC</td>
<td>15.4</td>
<td>195</td>
<td>P21G1101</td>
<td>17.0</td>
<td>Ø10.5</td>
<td>180</td>
</tr>
<tr>
<td>GRT3065</td>
<td>14.8</td>
<td>188</td>
<td>P21G1034</td>
<td>17.0</td>
<td>Ø10.5</td>
<td>154</td>
</tr>
<tr>
<td>250TC</td>
<td>17.5</td>
<td>202</td>
<td>P21G3863</td>
<td>16.9</td>
<td>Ø10.5</td>
<td>185</td>
</tr>
<tr>
<td>GRD2067</td>
<td>13.0</td>
<td>203</td>
<td>P21G4109</td>
<td>16.9</td>
<td>Ø10.5</td>
<td>185</td>
</tr>
<tr>
<td>250TC</td>
<td>15.7</td>
<td>217</td>
<td>P21G3863</td>
<td>17.0</td>
<td>Ø10.5</td>
<td>185</td>
</tr>
<tr>
<td>GRT3067</td>
<td>15.6</td>
<td>210</td>
<td>P21G1102</td>
<td>17.0</td>
<td>Ø10.5</td>
<td>180</td>
</tr>
<tr>
<td>250TC</td>
<td>18.4</td>
<td>224</td>
<td>P21G1139</td>
<td>16.9</td>
<td>Ø10.5</td>
<td>185</td>
</tr>
<tr>
<td>GRT3090</td>
<td>17.8*</td>
<td>259</td>
<td>P21G3864</td>
<td>16.9</td>
<td>Ø10.5</td>
<td>190</td>
</tr>
<tr>
<td>250TC</td>
<td>20.6*</td>
<td>286</td>
<td>P21G1462</td>
<td>17.8</td>
<td>Ø10.5</td>
<td>195</td>
</tr>
<tr>
<td>300TC</td>
<td>21.6</td>
<td>290</td>
<td>P21G3053</td>
<td>21.6</td>
<td>Ø12.2</td>
<td>238</td>
</tr>
</tbody>
</table>

Note: Dimensions shown are based on the standard pump and motor configuration. Overall length may vary depending on actual motor section.

* Estimated dimension

Watson-Marlow, Inc.

220 BALLARDVALE STREET, WILMINGTON, MA 01887

TEL: 800-928-7786, 978-658-6168 / FAX: 978-658-0041

http://www.watson-marlow.com
http://www.bredel.com
Type “K’ External Rock Trap

INLET

OUTLET

PLANT WATER

DRAIN
BE SURE TO CALCULATE PIPING LOSSES FROM THE INLET QUICK CONNECT TO THE 31SAP OR THE 31SCP. HEADLOSS INSIDE OF THE EXTERNAL ROCK TRAP TANK IS APPROXIMATELY 1.00 FT (6” INLET & OUTLET) TO 3.00 FT (4” INLET & OUTLET) AT THE 400 GAL/MIN RATED CAPACITY.
Enviro-Care
Fully integrated, secure, 24/7 operation and the next generation of septage screening.

A System Designed Specifically for Septage Pre-treatment

This system is made up of three different components. The Braun, the Integrator and the Brains.

The Flo-Beast SeptageStation DM is the Braun of this system. It screens the heavy solids from the septage and conveys, washes, and dewateres those solids prior to discharge. The Beast does not require a rock trap or other high maintenance add-ons, such as grinders.

Both the screen and tank have been designed to eliminate the problems that plague other equipment currently available for septage applications. The result is fast truck unloading times and high capture efficiency.

Between the Beast and the Brains, is the Integrator hauler station. The hauler station controls and monitors the flow of septage between the truck and the screen.

The hauler access panel is connected to the hauler station and contains the Brains of the system - the Flo-Logic® software.

The Hauler Station
- Electrically actuated inlet valve
- Magnetic flow meter
- Hauler access panel
- Flo-Logic® software
Security
- Provides 24/7 access to permitted haulers.

Data Logging
- Automatically collects data regarding trucks and septage loads.

Reporting
- Provides data sorting capabilities, report generating and billing information.
- Simple network connections.
- Can be WiFi enabled for data transfer to remote locations.

Kershaw County South Carolina Septage Receiving Station.
Municipal and Industrial Waste Water Mechanical Pre-treatment

WASTEMASTER® TSF 2-3
WASTEMASTER® TSF consists of a screw screen, a sedimentation tank, a sand extracting screw and a grease scraper.

<table>
<thead>
<tr>
<th></th>
<th>Solids Separation</th>
<th>Sedimentation</th>
<th>De-greasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSF 2</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>TSF 3</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

The first phase in the waste water treatment process is mechanical pre-treatment including:
- Solid-liquid separation, compaction and de-watering of solids larger in size than the screen slots;
- Sedimentation, lifting and de-watering of sand;
- Grease flotation and removal (TSF 3 only).

Subsequently the waste water is ready for further treatment (chemical, physical or biological), while solids are discharged for disposal.

Features

WASTEMASTER® TSF is designed for a wide range of waste water flow rates with different sedimentation capacities. The possibility to choose the size of the screen perforation/slots, as well as cross section and length of the tank, is the assurance for the customer that he will obtain the right solution to his problem.

The machine comes in high-quality, industrially manufactured, standard modules, ready for comfortable on-site assembly if requested.

The screen section of the plant is equipped with a compacting device in the upper part for a volume reduction of the screenings of up to 35%. A washing system for the reduction of organic matter in the screenings is available on request.

The shaftless screen screw, which is manufactured in an innovative, patented process, ensures smooth operation without clogging even in presence of fibres.

The table below shows an example of how to choose the correct machine according to the requested sedimentation output rate.

<table>
<thead>
<tr>
<th>Size</th>
<th>Module</th>
<th>Tank length (m)</th>
<th>Flow Rate *</th>
<th>Min (l/s)</th>
<th>Max (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 1 0</td>
<td>1</td>
<td>2</td>
<td>TSF 2/3</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>S 2 0</td>
<td>2</td>
<td>4</td>
<td>TSF 2/3</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>M 1 0</td>
<td>2</td>
<td>4</td>
<td>TSF 2/3</td>
<td>25</td>
<td>39</td>
</tr>
<tr>
<td>M 2 0</td>
<td>3</td>
<td>6</td>
<td>TSF 2/3</td>
<td>35</td>
<td>60</td>
</tr>
<tr>
<td>M 3 0</td>
<td>4</td>
<td>8</td>
<td>TSF 2/3</td>
<td>60</td>
<td>85</td>
</tr>
<tr>
<td>L 1 0</td>
<td>4</td>
<td>8</td>
<td>TSF 2/3</td>
<td>80</td>
<td>115</td>
</tr>
<tr>
<td>L 2 0</td>
<td>5</td>
<td>10</td>
<td>TSF 2/3</td>
<td>110</td>
<td>145</td>
</tr>
<tr>
<td>L 3 0</td>
<td>6</td>
<td>12</td>
<td>TSF 2/3</td>
<td>140</td>
<td>175</td>
</tr>
<tr>
<td>L 4 0</td>
<td>7</td>
<td>14</td>
<td>TSF 2/3</td>
<td>170</td>
<td>205</td>
</tr>
</tbody>
</table>

* with a grain size of 0.2 mm and a Specific Gravity of 2.60-2.65 w/v
Easy on-site assembly (if necessary) thanks to modular design

Bolted wear bars (internal view of trough)

Self-adjusting grease scraper with limited water removal

Easy maintenance thanks to wide inspection hatches
Process Description

Overall Dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSF S 10</td>
<td>2,850</td>
<td>3,350</td>
<td>1,550</td>
<td>1,280</td>
<td>1,100</td>
<td>3,610</td>
</tr>
<tr>
<td>TSF S 20</td>
<td>4,850</td>
<td>3,350</td>
<td>1,550</td>
<td>1,280</td>
<td>1,100</td>
<td>3,610</td>
</tr>
<tr>
<td>TSF M 10</td>
<td>4,830</td>
<td>4,000</td>
<td>1,780</td>
<td>1,460</td>
<td>1,420</td>
<td>3,900</td>
</tr>
<tr>
<td>TSF M 20</td>
<td>6,830</td>
<td>4,000</td>
<td>1,780</td>
<td>1,460</td>
<td>1,420</td>
<td>3,900</td>
</tr>
<tr>
<td>TSF M 30</td>
<td>8,830</td>
<td>4,000</td>
<td>1,780</td>
<td>1,460</td>
<td>1,420</td>
<td>3,900</td>
</tr>
<tr>
<td>TSF L 10</td>
<td>8,820</td>
<td>4,630</td>
<td>2,310</td>
<td>1,750</td>
<td>1,940</td>
<td>4,270</td>
</tr>
<tr>
<td>TSF L 20</td>
<td>10,820</td>
<td>4,630</td>
<td>2,310</td>
<td>1,750</td>
<td>1,940</td>
<td>4,270</td>
</tr>
<tr>
<td>TSF L 30</td>
<td>12,820</td>
<td>4,630</td>
<td>2,310</td>
<td>1,750</td>
<td>1,940</td>
<td>4,270</td>
</tr>
<tr>
<td>TSF L 40</td>
<td>12,820</td>
<td>4,630</td>
<td>2,310</td>
<td>1,750</td>
<td>1,940</td>
<td>4,270</td>
</tr>
</tbody>
</table>

Dimensions in mm
Benefits

- Decreased infrastructure costs;
- Easy on-site machine assembly using standard tools → Reduction of intermediate storage costs;
- Best footprint-net volume ratio for this type of machine;
- Durable heavy-duty shaftless screws manufactured in patented process;

Easy on-site machine assembly using standard tools → Reduction of intermediate storage costs

Return On Investment - Life Cycle Cost Calculation Over 15 Years

Life Cycle Cost Comparison between
WASTEMASTER® TSF and traditional concrete construction

![Graph showing life cycle cost comparison between Compact Plant and Concrete Construction over 15 years based on sewage flow in m³/day.](chart.png)
WASTEMASTER® COMBI
Combined Pre-Treatment Plant
TSF-3

4.5 MGD WASTEMASTER® COMBI Plant

Enviro-Care
A WAMGROUP® Company
A Self-Contained Pre-Packaged Treatment Plant with Solids Screening, Grit Removal and Degreasing.

The WASTEMASTER COMBI is a complete, above-ground headworks requiring minimal space and civil works. The COMBI can be the only pre-treatment for a small plant or a way to increase pre-treatment capacity or avoid overloading of downstream processes in any size plant. The standard SPECO® design utilizes a WASTEMASTER GCP screw screen. However, other screens types such as rotating drum or multirake screens are an option depending on the application.

With over 10-years of experience and 500 installation worldwide, SPECO’s application and technical knowledge insures proper sizing and component selection for each specific applications. The unique modular design allows the SPECO COMBI to be configured for standard and specialized pre-treatment applications. The COMBI can be found processing wastewater, sludge, FOG and septage.

Features
- Compact, modular design.
- Best foot print / net volume ratio.
- Volume reduction of solids up to 40%.
- Long lasting, heavy-duty screws.
- Proprietary floating scraper.
- Above ground installation.
- Requires little space and minimal civil works.
- Low investment and maintenance costs.
- Sectional, durable polymer brushes for long life and ease of maintenance.
- Can be assembled on site.
SPEC® WASTEMASTER® COMBI configured as a septage receiving station.
Technical Information

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rates From</td>
<td>150 gpm to 4.8 MGD</td>
</tr>
<tr>
<td>Sand Separation</td>
<td>95% Capture of Particle Size ≥ 0.2 mm</td>
</tr>
<tr>
<td>Standard Tank Widths</td>
<td>3.6 ft., 5 ft. and 6.5 ft.</td>
</tr>
<tr>
<td>Standard Tank Lengths</td>
<td>6.5 ft. to 39 ft.</td>
</tr>
<tr>
<td>Perf screen Openings</td>
<td>2, 3, 5, 6 and 10 mm</td>
</tr>
<tr>
<td>Wedgewire Openings</td>
<td>0.5, 1 and 2 mm</td>
</tr>
</tbody>
</table>

Standard Wastewater Flow Rates

<table>
<thead>
<tr>
<th>Model</th>
<th>Flo Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 10</td>
<td>200 GPM</td>
</tr>
<tr>
<td>M 10</td>
<td>618 GPM</td>
</tr>
<tr>
<td>M 30</td>
<td>1.9 MGM</td>
</tr>
<tr>
<td>L 20</td>
<td>2.7 MGM</td>
</tr>
<tr>
<td>L 30</td>
<td>4.8 MGM</td>
</tr>
</tbody>
</table>
Project:
Pease Tradeport, NH

Equipment:
SAVI Flo-Beast Septage Receiving Station
SPECO WasteMaster Combination Plant

Represented By:
Wescor Associates, Inc.
Mark Dowdell
Phone: 508-384-8921
Email: mark@wescor1.net

Regional Sales Manager:
Enviro-Care
Jesus Rodriguez
Phone: 224-302-0305
Email: jrodriguez@enviro-care.com

Project No.: WEC216086
March 1, 2016
ITEM: "A" - One (1) Flo-Beast Septage Receiving Station Model FSR-1200-DM

BASIS OF DESIGN

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Units:</td>
<td>One (1)</td>
</tr>
<tr>
<td>Application:</td>
<td>Septage, Sludge and FOG Receiving</td>
</tr>
<tr>
<td>Influent Solids Concentration:</td>
<td>2-3%</td>
</tr>
<tr>
<td>Peak Flow:</td>
<td>650 gpm</td>
</tr>
<tr>
<td>Max Clean Water flowrate:</td>
<td>5700 gpm</td>
</tr>
<tr>
<td>Screen Perforated Opening:</td>
<td>6 mm</td>
</tr>
<tr>
<td>Nominal Screen Basket dia.:</td>
<td>47 inches</td>
</tr>
<tr>
<td>Nominal Screw Conveyor dia.:</td>
<td>10 inches</td>
</tr>
<tr>
<td>Drive motor HP:</td>
<td>2 HP</td>
</tr>
<tr>
<td>Spray wash water requirement:</td>
<td>43 gpm @ 60-80 psi</td>
</tr>
<tr>
<td>Inlet pipe size:</td>
<td>4 inch flanged</td>
</tr>
<tr>
<td>Outlet pipe size:</td>
<td>10 inch flanged</td>
</tr>
</tbody>
</table>

DESCRIPTION OF EQUIPMENT:

- Fully automatic, self-cleaning, dual drive, septage receiving system incorporating a perforated plate rotating drum screen and an integral screenings washing, conveying and dewatering/compacting contained within a stainless steel tank.
- The septage receiving unit shall be a dual drive system which allows the drum and screw to be driven independently.
- A cylindrical drum screen shall be constructed of perforated plate media in type 304 stainless steel with 6mm perforations around the entire basket.
- The drum screen shall be mounted on the drive end using a large diameter, single row, heavy duty industrial slewing ring bearing assembly with integral ring gear comprising part of the screen drive system.
- Drum gear reducer drive unit with 2.0 HP TEFC motor suitable for 460/3/60 electrical supply.
- The tank mounted rotating drum screen, conveying and dewatering system shall be positioned at a 25\(^\circ\) angle of inclination from horizontal.
- A cleaning brush and spray bars shall be located on the outside of the screen drum to prevent small solids from passing through the screen.
- Angled lifting vanes shall be positioned inside the drum screen to retain and lift solids into the screw trough.
• The screw trough shall extend beyond the drum screen opening at the influent end to maximize solids capture and reduce screenings recycle.
• The drive assembly for the screw shall be attached via a drive support flange welded to the upper end of the screenings transport tube.
• Screw drive unit with 2.0 HP TEFC motor suitable for 460/3/60 electrical supply.
• The shafted screenings screw conveyor to be constructed from high strength alloy steel with a two part epoxy coating.
• Compaction zone integral to the screw conveyor and with latched, hinged cover from type 304 stainless steel and safety interlock switch.
• Dewatering zone drain flush spray system from type 304 stainless steel with manual ball valve.
• Transport tube spray system from type 304 stainless steel and rubber hose with manual ball valves.
• The septage receiving unit shall be supplied with a two-stage tank. The inlet section of the tank shall slope toward the screen to prevent sedimentation. The second stage of the tank shall house the rotating drum screen.
• Tank flush wash system from type 304 stainless steel with manual ball valves.
• All covers will be gasketed and either hinged, bolted or latched.

HARDWARE (EACH)
• Assembly fasteners from type 304 stainless steel.
• Anchor rods from type 304 stainless steel.

CONTROL PANEL AND INSTRUMENTATION (EACH)
• One (1) NEMA 4X type 304 stainless steel wall mount main control panel suitable for 480/3/60 electrical supply. Control panel shall contain the following control devices for operation of the Beast unit.
 1. Main disconnect with through door interlock handle.
 2. Control Power Transformer, 480-120VAC w/branch circuit protection.
 3. Surge Protection Device, 120 VAC.
 4. Motor starter w/ overload (drum motor)
 5. Motor starter, reversing w/ overload (screw motor)
 8. Push buttons (E-Stop, System Reset).
 10. Programmable Logic Controller, Allen-Bradley MicroLogix, with Ethernet and Required IO.
 12. Panel Heater, with Thermostat.
 13. Load selector switch.
 15. UL Label.
• One (1) NEMA 4X Safety Microswitch: 120 volt safety interlock switch shall be factory mounted to the compaction/discharge zone access door. Interlock switch shall prevent operation of the screen while the door is open.

• Three (3) NEMA 4X brass body solenoid valves to control flow to the spray wash assemblies. Each valve shall be NEMA 4x 120 volt, single phase, 60 Hz.

• Level control: Provide conductivity rods controlled by an intrinsically safe relay.

SPARE PARTS (TOTAL)
• None.

FIELD SERVICE (TOTAL)
• Site service of one (1) trips of two (2) days for installation inspection, startup and operator training.

CLARIFICATIONS/COMMENTS
• None.

OPTIONAL ITEMS
• Item A-1: Hauler Station: The manufacturer shall provide a secured Hauler Access Station that shall identify waste haulers and be configurable to interface with associated equipment such as doors, gates, valves, samplers, and screens & washers.
 1. Enclosure, NEMA 4X Stainless Steel
 2. Internal Swing-out Door (Stainless Steel)
 3. Lockable Full-Grip Handle with 3-Point Latch
 4. Drip Shield
 5. Access Keypad / Card Reader with 100 cards
 6. Programmable Logic Controller, Allen-Bradley MicroLogix, with Ethernet and Required IO.
 7. Printer Interface
 8. Detachable Terminals
 9. Non-Volatile Memory
 10. Compact Thermal Printer with Integral Auto-cutter Backlit Receipt Dispenser
 11. RS232 and USB Data Port
 12. Pilot Devices
 13. Full Flo-Logic Hauler Management Software including the following features:
 - The data from each hauler transaction shall be collected and stored in a secure SQL database. The following data shall be collected:
 o Site ID
 o Station ID
 o Ticket Number (On Hauler Receipt)
 o Hauler ID
 o Date and Time of Transaction
Volume Unloaded
Waste ID
Alarm ID

- The software shall allow the facility to manage each customer, who shall receive a Hauler ID number or magnetic swipe card and 4-digit PIN number for each truck. PIN number assignment can be unique per truck or common to multiple trucks, depending on the facility and customer preference. The software shall allow the administrator to manually assign PIN numbers to trucks.
- The software shall allow the facility to enable or disable a truck’s access privilege. Once disable, a hauler’s access will immediately be denied at all sites. A message shall be displayed at log-in at the hauler station informing the hauler to contact the office.
- The software shall allow the facility to define the Hauler Access Station’s operating time schedule. If the station is closed, a message will alert the hauler that the station is closed.
- The software shall have a pre-formatted reporting feature that will, at a minimum, show activity with daily totals and truck usage. The reports shall be easily exported into an Adobe PDF, Microsoft Excel spreadsheet, or Word document.
- One (1) 4-inch flanged electrically actuated Gate Valve.
- One (1) 4-inch Flow meter, NEMA 4X rated with integral mount transmitter.
- One (1) Base station enclosure, NEMA 4X Stainless steel enclosure with locking access doors, contains gate valve, flow meter and necessary piping.
- Site service of one (1) trips of two (2) days for administrative training, field configuration and testing of the software system.

- Item A-2: Outdoor Freeze Protection - Weather protection system. Wash water piping wrapped with self-regulating heat trace cable supplied with insulation and protective jacket. Electrical wiring routed to a factory mounted conduit box for field connection. Includes One (1) NEMA 4X ambient temperature thermostat to control heat tracing and GFCI circuit breaker mounted in the control panel.
- Item A-3: Continuous Bagger Assemblies to collect dewatered screenings at discharge point with refillable bag cassette.

NOTE: ANY ITEM NOT LISTED ABOVE TO BE FURNISHED BY OTHERS.

EXCLUSIONS
Taxes, electrical wiring, conduit or electrical equipment, piping, valves, or fittings, shimming material, lubricating oil or grease, shop or field painting, field welding, erection, hoist or lifting apparatus, detail shop fabrication drawings, performance testing, unloading, storage, concrete work, civil design, grating, platforms, stairs, hand railing, dumpster (except as specifically noted).

This proposal section has been reviewed for accuracy and is approved for issue:
By: Chris Kincaid Date: March 1, 2016
ITEM: "A" - One (1) SPECO WasteMaster® Combination Plant Model TSF2-M20 BEAST

BASIS OF DESIGN (EACH)
Application: Septage, FOG and Sludge Receiving with Grit Removal
Influent Solids Concentration: 2-3%
Peak Flow: 650 GPM
Screen Opening: 6 mm
Opening Type: Perforated
Angle of Inclination: 35 degrees
Spray wash water requirement: 43 gpm @ 60-80 psi

Grit Capture at Maximum Flow
Of 2.65 SG Grit: 95% of grit 70 Mesh and greater in size

Tank Length: 23.3 feet
Tank Width: 5.0 feet
Tank Height: 6.8 feet

Inlet Flange Size: 14 inch
Effluent Flange Size: 14 inch
Air Requirements: 25 SCFM at 3-5 PSI

FINE SCREEN (EACH)
- Fully automatic, self-cleaning, dual drive, septage receiving system incorporating a perforated plate rotating drum screen and an integral screenings washing, conveying and dewatering/compacting contained within a stainless steel tank.
- The septage receiving unit shall be a dual drive system which allows the drum and screw to be driven independently.
- A cylindrical drum screen shall be constructed of perforated plate media in type 304 stainless steel with 6mm perforations around the entire basket.
• The drum screen shall be mounted on the drive end using a large diameter, single row, heavy duty industrial slewing ring bearing assembly with integral ring gear comprising part of the screen drive system.
• Drum gear reducer drive unit with 2.0 HP TEFC motor suitable for 460/3/60 electrical supply.
• The tank mounted rotating drum screen, conveying and dewatering system shall be positioned at a 25° angle of inclination from horizontal.
• A cleaning brush and spray bars shall be located on the outside of the screen drum to prevent small solids from passing through the screen.
• Angled lifting vanes shall be positioned inside the drum screen to retain and lift solids into the screw trough.
• The screw trough shall extend beyond the drum screen opening at the influent end to maximize solids capture and reduce screenings recycle.
• The drive assembly for the screw shall be attached via a drive support flange welded to the upper end of the screenings transport tube.
• Screw drive unit with 2.0 HP TEFC motor suitable for 460/3/60 electrical supply.
• The shafted screenings screw conveyor to be constructed from high strength alloy steel with a two part epoxy coating.
• Compaction zone integral to the screw conveyor and with latched, hinged cover from type 304 stainless steel and safety interlock switch.
• Dewatering zone drain flush spray system from type 304 stainless steel with manual ball valve.
• Transport tube spray system from type 304 stainless steel and rubber hose with manual ball valves.
• The septage receiving unit shall be supplied with a two-stage tank. The inlet section of the tank shall slope toward the screen to prevent sedimentation. The second stage of the tank shall house the rotating drum screen.
• Tank flush wash system from type 304 stainless steel with manual ball valves.
• All covers will be gasketed and either hinged, bolted or latched.

GRIT TANK (EACH)
• Integral grit tank from type 304 stainless steel with effluent weir, flanged effluent connection and capped 3” drain. Removable bolted covers provide fully enclosed system and allow for operator access.
• Horizontal and inclined grit shaftless spiral screws from high strength alloy steel with protective primer coating.
• Grit tank aeration system with type 304 stainless steel/PVC/EPDM fine bubble diffusers and manual shutoff valve. Air to be supplied by others.
• Drive units with 0.75 HP horizontal grit conveyor motor, and 0.75 HP inclined grit conveyor motor suitable for 480/3/60 electrical supply.

FINE SCREEN SUPPORTS
• A stand from type 304 stainless steel is supplied to support the fine screen unit.
CONTROL PANEL AND INSTRUMENTATION (EACH)

- One (1) NEMA 4X stainless steel main control panel suitable for 480/3/60 electrical supply. Control panel shall contain the following devices for operation of the unit:
 1. Main disconnect with through door interlock handle.
 2. Step down control transformer.
 4. Screen, horizontal and inclined grit drive motor starters.
 5. Emergency stop pushbutton.
 7. Load monitors for overload protection of screen and grit motors.
 8. Hour meter for each motor.
 9. Control power and run indicating lights.
 10. Alarm lights indicating overcurrent and starter overload.
 11. Alarm reset pushbutton.
 12. Programmable control relay for control logic functions.
 13. Run and alarm auxiliary contacts.

- One (1) NEMA 4X local Emergency Stop pushbutton for field mounting at the unit.
- Two (2) NEMA 4X safety microswitches mounted to the screen tank and screen dewatering/discharge access door.
- Three (3) NEMA 4X brass body solenoid valves to control flow to the spray wash assemblies. Each valve shall be NEMA 4x 120 volt, single phase, 60 Hz.

Level control: Provide conductivity rods controlled by an intrinsically safe relay.

SPARE PARTS (TOTAL)

- None.

FIELD SERVICE (TOTAL)

- Site service of one (1) trip of two (2) days for installation inspection, startup and operator training.

CLARIFICATIONS/COMMENTS

- None.

OPTIONAL ITEMS (EACH)

- Item B-1: Continuous Bagger Assemblies to collect dewatered screenings and grit at discharge points with refillable bag cassette.
- Item B-2: Grease Removal System –
 - Grit tank shall include grease capture zone with type 304 stainless steel baffles, drain box and 4” flanged discharge connection.
 - Grease removal system with scraper carriage. Carriage rides on stainless steel rails with UHMW guides and scraper, driven by a stainless steel cable system with a 1/3 HP motor suitable for 460/3/60 electrical supply.
 - Grease collection drain box with flanged discharged connection.
- Add necessary controls to control panel.
- Two (2) NEMA 4X limit switches mounted to the screen grease removal tank.

- Item B-3: Regenerative Blower with 1HP TEFC electric motor 480/3/60, inlet filter, silencer, PRV, check valve, pressure gauge, sound enclosure, and required controls added to control panel.

NOTE: ANY ITEM NOT LISTED ABOVE TO BE FURNISHED BY OTHERS.

EXCLUSIONS

Taxes, electrical wiring, conduit or electrical equipment, piping, valves, or fittings, shimming material, lubricating oil or grease, shop or field painting, field welding, erection, hoist or lifting apparatus, detail shop fabrication drawings, performance testing, unloading, storage, concrete work, civil design, grating, platforms, stairs, hand railing, dumpster (except as specifically noted).

This proposal section has been reviewed for accuracy and is approved for issue:
By: Chris Kincaid Date: March 1, 2016
BUDGETARY PRICING

<table>
<thead>
<tr>
<th>Item</th>
<th>Equipment</th>
<th>Price in USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>One (1) SAVI Flo-Septage Receiving Station Model FSR-1200-DM</td>
<td>$170,000</td>
</tr>
<tr>
<td>A-1</td>
<td>Adder - Hauler Access Station, Base Station & Flo-Logic Hauler Management Software.</td>
<td>$80,000</td>
</tr>
<tr>
<td>A-2</td>
<td>Adder – Outdoor Freeze Protection</td>
<td>$10,750</td>
</tr>
<tr>
<td>A-3</td>
<td>Adder – Continuous Bagger Assembly.</td>
<td>1,500</td>
</tr>
<tr>
<td>B</td>
<td>One (1) SPECO WasteMaster Combination Plant Model TSF2-M20 BEAST</td>
<td>$295,000</td>
</tr>
<tr>
<td>B-1</td>
<td>Adder – Continuous Bagger Assemblies.</td>
<td>$4,500</td>
</tr>
<tr>
<td>B-2</td>
<td>Adder – Grease Removal System.</td>
<td>$10,000</td>
</tr>
<tr>
<td>B-3</td>
<td>Adder – Regenerative Blower.</td>
<td>$8,000</td>
</tr>
</tbody>
</table>

Validity:

Prices are valid for a period of 30 days from the date of this proposal. Beyond 30 days, delivery is subject to prior sales.

Warranty Statement and Term:

Enviro-Care Company, Inc. warrants the supplied equipment to the original end user against defects in workmanship or material under normal use and service in compliance with the original design specifications and the maintenance requirements and instructions as found in the Operations & Maintenance Manual. All Enviro-Care supplied equipment is warranted for twelve (12) months from date of start-up or eighteen (18) months from date of shipment, whichever occurs first.

Warranty Exclusions:

This warranty does not cover costs for standard and/or scheduled maintenance performed, nor does it cover consumables and Enviro-Care parts that, by virtue of their operation, require replacement through normal wear (aka: Wear Parts), unless a defect in material or workmanship can be determined by Enviro-Care. Wear parts are defined as brushes, rollers, spray nozzles, drum seals and other items specifically identified in the Operations & Maintenance Manual.

Warranty Coverage:

Enviro-Care’s liability is limited to the supply or repair of defective parts returned, freight prepaid by buyer to a location specified by Enviro-Care. Repaired or replacement parts will be shipped to buyer prepaid via standard ground freight. Express or expedited shipments will be at the expense of the buyer.

Exclusions and Exceptions:

This Warranty excludes damage or wear to equipment caused by misapplication of product, improper maintenance, accident, abuse, unauthorized alteration or repair, Acts of God, or installation or operation that is non-compliant with Enviro-Care installation and operations instructions.
Limited Liability:

Enviro-Care shall not under any circumstances be liable for any incidental or consequential damages arising from loss, damage to property, personal injury or other damage or losses owing to the failure of Enviro-Care’s equipment. The liability of Enviro-Care Company, Inc. is limited as set forth above within the time period set forth above.

Term: 15% with Submittal Approval
75% Net 30 Days after Shipment
5% - 120 Days after Shipment
5% after Startup and Training but not to exceed 180 Days.

Taxes: No sales or use taxes have been included in our pricing.

Freight: Prices quoted are F.O. B. shipping point with freight allowed to a readily accessible location nearest jobsite. Any claims for damage or loss in shipment to be initiated by purchaser.

Submittals: Full submittals will be supplied approximately 4 to 6 weeks after receipt and acceptance of purchase order at the Enviro-Care offices.

Shipment: Shipment time is approximately 18 to 20 weeks after receipt of approved submittal is received at the Enviro-Care offices. Under no circumstances will verbal approval be accepted.

Additional Field Service: This service may be scheduled at $960.00 per day plus expenses or is available through a yearly service contract.
Screening septage or heavy sludge comes with a long list of problems. The two most commonly identified are the inability to handle the heavy solids, and long truck unloading times. These are the result of not having the proper equipment for the application. The Beast has been engineered specifically for septage and heavy solids loading applications.

Unique Tank Design. Standard tank designs promote solids sedimentation. The Beast has a two-stage tank with a curved, sloped inlet section so septage is directed into the screen cylinder. The hopper trough extends beyond the cylinder opening which reduces screenings recycle. The drive configuration on the screen cylinder eliminates support arms and solves the ragging problem.

Dual Drive System. This feature enables the screen basket and auger to operate independently. The speed of the auger is increased to provide faster solids removal while the speed of the screen basket is decreased to improve screening efficiency.

Angle of Inclination. The drum screen component sits at a 25° angle inside the tank which promotes increased capture and transport of solids for faster unloading.

Sequence of Operation. As septage enters the tank, the short, narrow inlet directs the septage into the rotating screen drum. As the screen rotates, solids are captured on flights or scoops that carry the solids around the drum and deposit them into the auger trough. From the trough, solids are conveyed by the auger into the washing zone and then to dewatering. The percent of dryness achieved is dependent upon the solids concentration at the influent and the type of solids being dewatered.
Features & Benefits

1 Engineered for large septage screening applications and high solids loadings - Each feature solves a specific problem associated with these applications.

2 Proven Flo-Drum technology - Over 200 installations worldwide.

3 Dual drive system - Drum and auger are driven independently to optimize solids removal.

4 Screen is mounted using a large diameter, single row, heavy duty industrial bearing assembly with a built-in grease fitting - Better resistance to axial and radial loading with fewer maintenance points.

5 Two-stage tank design narrows the inlet - Solids are fed directly into the screen basket which prevents sedimentation.

6 The auger is run at a faster speed - Removes material more quickly.

7 The screen cylinder is run at a slower speed - Produces better solids capture and cleaning of the screen.

8 Dual seal on the screen cylinder - Prevents bypass and improves capture rate to 65%.

9 Angle of inclination is 25° - Screen handles more solids and removes them faster.

10 Trough extends beyond the screen opening - Reduces screenings recycle by preventing solids from dropping out of the front of the screen basket.

11 No support arms on the influent side of the screen drum - Nothing to snag and accumulate long stringy solids.

12 Eliminates brushes inside the screen basket - Less extrusion and manipulation of the screenings for better capture and less maintenance.

13 Additional monitoring options and security access may be added - Controls can be as basic or as sophisticated as required.

14 Optional bagger is available - Maintains a cleaner screenings area.
Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drum Screen OD</td>
<td>mm</td>
</tr>
<tr>
<td>Capacity (based on 3-4% solids content)</td>
<td>gpm</td>
</tr>
<tr>
<td>Screen media</td>
<td>Perforated plate</td>
</tr>
<tr>
<td>Openings</td>
<td>mm</td>
</tr>
<tr>
<td>Angle of inclination</td>
<td>25°</td>
</tr>
<tr>
<td>Wash water pressure</td>
<td>bar</td>
</tr>
<tr>
<td>Drive motor - Drum Screen</td>
<td>Kw</td>
</tr>
<tr>
<td>Drive motor - Shafted Screw</td>
<td>Kw</td>
</tr>
<tr>
<td>Controls</td>
<td>NEMA 4X/7</td>
</tr>
<tr>
<td>Voltage</td>
<td>V-Hz</td>
</tr>
</tbody>
</table>

Materials of Construction

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen media</td>
<td>AISI 304 SS (316 Optional)</td>
</tr>
<tr>
<td>Transport tube</td>
<td>AISI 304 SS (316 Optional)</td>
</tr>
<tr>
<td>Shafted screw</td>
<td>High Strength Alloy Steel (304/316 SS Optional)</td>
</tr>
<tr>
<td>Tank, piping, supports, end plates</td>
<td>AISI 304 SS (316 Optional)</td>
</tr>
<tr>
<td>Fasteners</td>
<td>AISI 304 SS (316 Optional)</td>
</tr>
</tbody>
</table>
Fully integrated, secure, 24/7 operation and the next generation of septage screening.

A System Designed Specifically for Septage Pre-treatment

This system is made up of three different components. The Braun, the Integrator and the Brains.

The Flo-Beast SeptageStation DM is the Braun of this system. It screens the heavy solids from the septage and conveys, washes, and dewater those solids prior to discharge. The Beast does not require a rock trap or other high maintenance add-ons, such as grinders.

Both the screen and tank have been designed to eliminate the problems that plague other equipment currently available for septage applications. The result is fast truck unloading times and high capture efficiency.

Between the Beast and the Brains, is the Integrator hauler station. The hauler station controls and monitors the flow of septage between the truck and the screen.

The hauler access panel is connected to the hauler station and contains the Brains of the system - the Flo-Logic® software.

The Hauler Station
- Electrically actuated inlet valve
- Magnetic flow meter
- Hauler access panel
- Flo-Logic® software
The Brains - Flo-Logic® Software

Security
- Provides 24/7 access to permitted haulers.

Data Logging
- Automatically collects data regarding trucks and septage loads.

Reporting
- Provides data sorting capabilities, report generating and billing information.
- Simple network connections.
- Can be WiFi enabled for data transfer to remote locations.

Key card activated.

Hauler Access Panel
Hauler Station

The Beast

Kershaw County South Carolina Septage Receiving Station.

© 2015 Enviro-Care
FWRS-1015
Revision: B
Municipal and Industrial Waste Water
Mechanical Pre-treatment
WASTEMASTER® TSF 2-3
WASTEMASTER® TSF consists of a screw screen, a sedimentation tank, a sand extracting screw and a grease scraper.

<table>
<thead>
<tr>
<th>Solids Separation</th>
<th>Sedimentation</th>
<th>De-greasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSF 2</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TSF 3</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

The first phase in the waste water treatment process is mechanical pre-treatment including:

- Solid-liquid separation, compaction and de-watering of solids larger in size than the screen slots;
- Sedimentation, lifting and de-watering of sand;
- Grease flotation and removal (TSF 3 only).

Subsequently the waste water is ready for further treatment (chemical, physical or biological), while solids are discharged for disposal.

Features

WASTEMASTER® TSF is designed for a wide range of waste water flow rates with different sedimentation capacities. The possibility to choose the size of the screen perforation/slots, as well as cross section and length of the tank, is the assurance for the customer that he will obtain the right solution to his problem.

The machine comes in high-quality, industrially manufactured, standard modules, ready for comfortable on-site assembly if requested.

The screen section of the plant is equipped with a compacting device in the upper part for a volume reduction of the screenings of up to 35%. A washing system for the reduction of organic matter in the screenings is available on request.

The shaftless screen screw, which is manufactured in an innovative, patented process, ensures smooth operation without clogging even in presence of fibres.

The table below shows an example of how to choose the correct machine according to the requested sedimentation output rate.

<table>
<thead>
<tr>
<th>Size</th>
<th>Module</th>
<th>Tank length (m)</th>
<th>FLOW RATE *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min (l/s)</td>
</tr>
<tr>
<td>S 1 0</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>S 2 0</td>
<td>2</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>M 1 0</td>
<td>2</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>M 2 0</td>
<td>3</td>
<td>6</td>
<td>35</td>
</tr>
<tr>
<td>M 3 0</td>
<td>4</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>L 1 0</td>
<td>4</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>L 2 0</td>
<td>5</td>
<td>10</td>
<td>110</td>
</tr>
<tr>
<td>L 3 0</td>
<td>6</td>
<td>12</td>
<td>140</td>
</tr>
<tr>
<td>L 4 0</td>
<td>7</td>
<td>14</td>
<td>170</td>
</tr>
</tbody>
</table>

* with a grain size of 0.2 mm and a Specific Gravity of 2.60-2.65 w/v
Easy on-site assembly (if necessary) thanks to modular design.

Easy maintenance thanks to wide inspection hatches.

Self-adjusting grease scraper with limited water removal.

Bolted wear bars (internal view of trough).
Process Description

Overall Dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSF S 10</td>
<td>2,850</td>
<td>3,350</td>
<td>1,550</td>
<td>1,280</td>
<td>1,100</td>
<td>3,610</td>
</tr>
<tr>
<td>TSF S 20</td>
<td>4,850</td>
<td>3,350</td>
<td>1,550</td>
<td>1,280</td>
<td>1,100</td>
<td>3,610</td>
</tr>
<tr>
<td>TSF M 10</td>
<td>4,830</td>
<td>4,000</td>
<td>1,780</td>
<td>1,460</td>
<td>1,420</td>
<td>3,900</td>
</tr>
<tr>
<td>TSF M 20</td>
<td>6,830</td>
<td>4,000</td>
<td>1,780</td>
<td>1,460</td>
<td>1,420</td>
<td>3,900</td>
</tr>
<tr>
<td>TSF M 30</td>
<td>8,830</td>
<td>4,000</td>
<td>1,780</td>
<td>1,460</td>
<td>1,420</td>
<td>3,900</td>
</tr>
<tr>
<td>TSF L 10</td>
<td>8,820</td>
<td>4,630</td>
<td>2,310</td>
<td>1,750</td>
<td>1,940</td>
<td>4,270</td>
</tr>
<tr>
<td>TSF L 20</td>
<td>10,820</td>
<td>4,630</td>
<td>2,310</td>
<td>1,750</td>
<td>1,940</td>
<td>4,270</td>
</tr>
<tr>
<td>TSF L 30</td>
<td>12,820</td>
<td>4,630</td>
<td>2,310</td>
<td>1,750</td>
<td>1,940</td>
<td>4,270</td>
</tr>
<tr>
<td>TSF L 40</td>
<td>12,820</td>
<td>4,630</td>
<td>2,310</td>
<td>1,750</td>
<td>1,940</td>
<td>4,270</td>
</tr>
</tbody>
</table>

Dimensions in mm
PART 1 - GENERAL

1.1 SCOPe OF WORK

A. This specification includes the controls and software for a complete Waste Receiving Station that shall enable the facility to manage waste delivered by haulers from remote sites. This specification outlines the required control system and software that shall, at a minimum, identify permitted haulers and automatically transfer the transaction data to the administrator’s office PC and other networked PCs.

1.2 QUALITY ASSURANCE

A. The control system and software furnished under the section shall be provided by a manufacturer who has been regularly engaged in the design and manufacture of waste receiving systems for at least 10 years.

B. The approved manufacturer of the control system and software shall be required to demonstrate a fully functional system that complies with this specification. The manufacturer shall provide a WEB presentation to show how the control system and software shall work.

C. The control system shall be manufactured in accordance with all local and applicable standards and shall be inspected as an “Industrial Control Assembly” with either UL508A or CSA label identification.

D. The manufacturer shall provide documentation necessary for the installation and operation of all associated components of the control system.

E. The control system and software shall be furnished complete. All features outlined in this specification shall not impose any obligation to the SCADA supplier or the owner of the facility. Any control systems and software that reference these features as being provided by SCADA shall not be accepted on this project.

1.3 WARRANTY

A. The manufacturer shall guarantee all components furnished as part of this specification for a period of one (1) year from date of shipment.

B. The manufacturer shall provide software updates and phone support services for a period of one (1) year from date of shipment.
1.4 APPROVED MANUFACTURER

A. The control system and software shall be the Flo-Logic System supplied by Enviro- Care of Rockford, IL.

1.5 TRAINING AND FIELD SERVICE

A. The manufacturer shall provide a minimum of eight (8) hours of online orientation and WEB-based training for initial software installation and configuration.

B. The manufacturer shall provide one service (1) trip if deemed necessary by the manufacturer. The trip shall include two (2) days of onsite service for administrative training, field configuration, and testing of the system.

1.6 USAGE AND LICENSING

A. The manufacturer shall provide a multi-user software license to the facility. The license shall allow the software to be installed on multiple PCs at no additional cost.

PART 2 – CONTROL SYSTEM AND SOFTWARE

2.1 HAULER ACCESS STATION

A. The manufacturer shall provide a secured Hauler Access Station that shall identify waste haulers and be configurable to interface with associated equipment such as doors, gates, valves, samplers, and screens & washers.

B. Hauler access shall be established using a keypad, magnetic-stripe card, non-insertion proximity card, or long-range proximity card.

C. The Hauler Access Station shall be constructed with an outer door that can be closed to enable a wash down of the area without damaging the internal mounted devices.

D. The hauler can access the station by opening the door to the enclosure and entering a truck ID number using the keypad or by using an assigned card. The card type shall be magnetic-striped or non-insertion proximity card.

E. If additional security measures are required by the facility, haulers shall use an additional card or pin number to access the front gate or door of the facility.

F. The Hauler Access Station shall include a daylight visible display and outdoor-rated robust keypad with integral 2-track card reader. The display shall provide log-on instructions for the hauler and
prompt the hauler for additional information such as waste type.

G. The Hauler Access Station shall include a receipt printer and integral light. The printer shall quickly print and cut each receipt and the integral light shall inform the hauler that a receipt has been printed.

H. Each printed receipt shall include the following:

1. Date and Time of Transaction
2. Station ID and Ticket Number
3. Hauler ID number
4. Volume Unloaded
5. Elapsed Time
6. pH Reading (if configured)
7. Alarm ID
8. Waste Type
9. Conductivity (if configured)

I. The Hauler Access Station shall continue to function normally even without a network connection to the office. All hauler transaction data shall be stored in non-volatile memory. If a network connection is established, all transaction data shall be automatically synchronized and stored securely in an IT managed SQL database.

J. The hauler access station shall be maintained without requiring Arc Flash protective clothing. All permitted personnel shall be able to access the Hauler Access Station without high risk. Activities such as changing the receipt paper shall be simple and possible by all permitted personnel. Motor Starters or other high voltage devices must be located in a separate control panel.

K. Optional Waste Features:

1. The Hauler Access Station shall divert the waste to a special holding tank
2. The Hauler Access Station shall be configured to set operational parameters to process thicker waste in shorter time to decrease the hauler’s unloading time.

L. The Hauler Access Station shall include the following components:

1. Enclosure
 a. NEMA 4X Stainless Steel
 b. Internal Swing-out Door (Stainless Steel)
 c. Lockable Full-Grip Handle with 3-Point Latch
 d. Drip Shield
 e. Thermally Protected for Severe Cold Weather Installations
 f. Instruction Decals
 g. Optional Sun Shield and Pedestal
2. Access Keypad / Card Reader
 a. Secure, Robust, and Outdoor Rated
 b. Clear, Backlit LCD Display, Visible in All Levels of Light
 c. Compliant with Local and Global Security Standards
 d. Advanced Tamper-Proof Design

3. Programmable Logic Controller, PLC, Including:
 a. Ethernet Connection to Flo-Logic Software
 b. Configurable Spare Analog and Digital I/O
 c. Printer Interface
 d. Detachable Terminals
 e. Non-Volatile Memory

4. Printer Terminal
 a. Compact Thermal Printer
 b. Exclusive Anti-Paper-Jam System (Self feeding, Self Correcting)
 c. Integral Auto-cutter
 d. Backlit Receipt Dispenser
 e. Printed Receipt for Each Hauler
 f. RS232 and USB Data Port

5. Pilot Devices
 a. Heavy Duty, 30mm. AB Type 800H or Equal
 b. 2-Position Switch with Done-Start Legend
 c. Green Light with System Ready Legend

6. 24VDC Power Supply

7. Ethernet Switch (Non-Managed)

2.2 MANAGEMENT SOFTWARE

A. The necessary management software shall be installed on one site owned PC. The PC must have a network card to communicate with Hauler Access Stations via Ethernet connection. The PC must have Windows XP Pro OS, Windows 7 OS, Windows 8 OS, or the appropriate server equivalent.

B. The software shall interface with one or more Hauler Access Stations at one or more receiving sites using an Ethernet Connection.

C. The software shall monitor the Hauler Access Station(s) and automatically upload hauler transaction data to the networked office PC.
D. The data from each hauler transaction shall be collected and stored in a secure SQL database. The following data shall be collected:

1. Site ID
2. Station ID
3. Ticket Number (On Hauler Receipt)
4. Hauler ID
5. Date and Time of Transaction
6. Volume Unloaded
7. pH (if configured)
8. Waste ID
9. Alarm ID
10. Sample Information (if configured)
11. Conductivity (if configured)

E. The software shall be used to configure the hauler’s pin number, magnetic-striped card, and/or proximity card used at the Hauler Access Station(s).

F. The software shall be used to configure any devices that will measure the volume, pH or other user required parameters. The software may also be used to configure the frequency of automatic sampling.

G. A user-friendly interface shall be provided to allow the facility to view hauler transaction data and enter/edit information when necessary. The software shall provide multiple tabs to display all necessary information:

1. Station Connection Status
2. Volume Statistics
3. Activity Reports
4. Truck List
5. Alarms and Waste Types List
6. Station and Instrument Configuration
7. Station Schedule

H. The software shall allow the facility to define the Hauler Access Station’s operating time schedule. If the station is closed, a message will alert the hauler that the station is closed.

I. The software shall allow the facility to periodically initiate a vacuum sampler. Samples can be taken automatically for each transaction or periodically for a specific truck. The software will collect data to show specifically which load was sampled.

J. Customer (Hauler) and Truck Features:

1. The software shall provide a table of 100 pre entered truck numbers for facility assignment to customers
2. Each customer shall receive a Hauler ID number and 4-digit PIN number for each truck. PIN number assignment can be unique per truck or common to multiple trucks, depending on the facility and customer preference. The software shall allow the administrator to manually assign pin numbers to customers.

3. The software shall allow the facility to enable or disable a truck’s access privilege. Once disable, a hauler’s access will immediately be denied at all sites. A message shall be displayed at log-in at the hauler station informing the hauler to contact the office.

K. Waste Type Features:

1. The software shall allow the facility to define a list of permitted waste types.

2. When accessing the station, the customer shall be prompted at log-in to identify the waste type that shall be unloaded.

L. Status and Alarm Features:

1. The software shall allow the facility to monitor the Hauler Access Station in real-time. The facility shall be able to monitor the current customers/trucks total flow, waste types, equipment faults, and additional information.

2. The software shall allow the facility to monitor alarms at the Hauler Access Station. Alarms make the station unusable or may prevent a hauler from unloading. These alarms include:
 a. E-Stop pressed
 b. Equipment Fault
 c. Storage Tank at High Level
 d. Optional User-Defined Alarms (ex. pH or Conductivity unacceptable)

M. Reporting Features:

1. The software shall have a pre-formatted reporting feature that will, at a minimum, show activity with daily totals and truck usage. The reports shall be easily exported into an Adobe PDF, Microsoft Excel spreadsheet, or Word document.

PART 3 – HAULER ACCESS STATION OPERATION

3.1 LOG-ON SEQUENCE

A. The hauler shall turn the selector switch to the “START” position.

B. The hauler will be prompted to enter swipe card or enter truck number.
C. The hauler will be prompted to enter a PIN number followed by a waste type, if required by the site.

D. The green “SYSTEM READY” pilot light will illuminate informing the hauler that access has been granted. The inlet valve will open.

3.2 LOG-OFF SEQUENCE

A. The hauler shall turn the selector switch to the “DONE” position.

B. The inlet valve shall then close and a receipt will be printed for the hauler.

3.3 ALARM SHUTDOWN

A. The Log-off sequence will automatically be initiated if an alarm is triggered.

B. An alarm ID shall be printed on the receipt and shall be recorded into the system.
PART 1 - GENERAL

1.01 SCOPE OF WORK

A. This section includes: one (1) fully automatic, self-cleaning, dual drive septage receiving unit and its associated motor controllers. Equipment shall be installed as shown on the plans, as specified herein, as recommended by the supplier and in compliance with all local, state and federal codes and regulations.

1.02 MANUFACTURER

A. The equipment supplier shall be Enviro-Care Co., Inc., Gurnee, IL.

B. The entire septage receiving unit shall be designed, coordinated and supplied by one manufacturer. The unit shall be supplied in one piece requiring no field assembly. The septage receiving system manufacturer shall take sole responsibility for the unit supplied.

1.03 REFERENCES

A. Septage receiving units and motor controllers shall, as applicable, meet the requirements of the following industry standards:
 - AISI (American Iron and Steel Institute)
 - ABMA (American Bearing Manufacturers Association)
 - AGMA (American Gear Manufacturers Association)
 - NEMA (National Electrical Manufacturer’s Association)
 - NFPA (National Fire Protection Association)
 - ASTM (American Society for Testing and Materials)
 - WSC (American Welding Society Code)
 - ASME (American Society of Mechanical Engineers)
 - NEC (National Electrical Code)
 - UL (Underwriters Laboratory Standards)

1.04 EXPERIENCE

A. One manufacturer will be responsible for the supply of the proprietary dual drive septage receiving system as specified herein. No deviations from this specification and system design shall be accepted.
1.05 SUBMITTALS

A. The Manufacturer shall furnish the required number of submittals (and an electronic version if required) within forty-five (45) days of receipt of the order to verify compliance with the specification. The submittals shall include:

B. Technical information:
 1. Shop drawings, manufacturer’s installation drawing and wiring and schematic drawings.
 3. Gear reducer data including service, efficiency, torque rating and materials of construction.

C. Operation & Maintenance Manuals
 1. Equipment Operating instructions
 2. Equipment weights and lifting instructions.
 3. Installation instructions
 4. Maintenance schedules
 5. Recommended lubricants
 6. Recommended spare parts including wear items.

D. Equipment information:
 1. Brochures and other descriptive literature.
 2. Installation reference list.
 3. Manufacturer’s Warranty

1.06 WARRANTY

A. All Enviro-Care equipment is covered against manufacturing defects in materials and workmanship during normal use and service for a period of one (1) year from date of start up as long as periodic maintenance procedures are followed and performed. Items specifically not covered by the one year warranty are consumable wear parts as identified in the O&M manual.

PART 2 - PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS

A. Flo-SeptageStation DM Model FSR-1000-DM shall be as supplied by Enviro-Care, Inc., of Gurnee, Illinois, U.S.A.

B. No alternative manufacturers shall be accepted.
2.02 QUALITY ASSURANCE

A. The septage receiving unit will be fully assembled and shop tested to confirm fit and function of the unit. A certificate of the shop test shall be supplied with the shipping documents.

B. The septage receiving unit will be shipped to the site fully assembled, some ancillary components may be removed in order to prevent damage during shipment.

2.03 PERFORMANCE REQUIREMENTS

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of units</td>
<td>1</td>
</tr>
<tr>
<td>Influent Type</td>
<td>Septage</td>
</tr>
<tr>
<td>Influent Solids Concentration (% solids)</td>
<td>4%</td>
</tr>
<tr>
<td>Peak flow per screen (gpm)</td>
<td>525</td>
</tr>
<tr>
<td>Perforation Size (mm)</td>
<td>6</td>
</tr>
<tr>
<td>Screenings discharge height from operating level</td>
<td>59°</td>
</tr>
<tr>
<td>Screen Installation Angle</td>
<td>25°</td>
</tr>
</tbody>
</table>

2.04 UTILITY REQUIREMENTS/ENVIRONMENTAL CONDITIONS

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray Wash Water (gpm/psi)</td>
<td>30/60</td>
</tr>
<tr>
<td>Power Supply (V/P/Hz)</td>
<td>460/3/60</td>
</tr>
<tr>
<td>Screen Installation Location (indoor/outdoor)</td>
<td></td>
</tr>
<tr>
<td>NFPA Classification Requirement</td>
<td></td>
</tr>
<tr>
<td>Control Panel Location (indoor/outdoor)</td>
<td></td>
</tr>
<tr>
<td>NFPA Classification Requirement</td>
<td></td>
</tr>
</tbody>
</table>

2.05 DESIGN REQUIREMENTS

A. General

1. Equipment provided shall be a fully automatic, self-cleaning, septage receiving unit incorporating a perforated plate rotating drum screen and an integral screenings washing, conveying and dewatering/compacting system contained within a stainless steel tank. The tank mounted rotating drum screen unit will be provided with an angle-of-inclination of 25° from horizontal.
2. Each rotating drum screen unit shall be provided with a rotating screen basket, exterior basket cleaning spray bar(s), exterior basket cleaning brush, concentric transport screw with integral screenings washing, dewatering and screenings compaction zone.

B. Rotating Drum Screen Basket

1. The Drum Screen Basket shall be designed and built to withstand the maximum possible static hydraulic forces exerted on the screen by the liquid flow. Structural and functional parts shall be sized to prevent deflections or vibrations that may impair the screening, conveying, washing and compacting operations.

2. The drum screen basket shall be mounted at the drive end using a large diameter, single row, heavy duty industrial bearing assembly with integral ring gear comprising part of the drive system. The bearing assembly shall have a built in grease fitting.

3. The drum screen basket shall be of a cylindrical shape with perforations around the entire basket.

4. The drum screen basket shall be perforated plate with maximum openings of 6 mm. Bar screens, wire mesh or wedge wire will not be acceptable screen media.

5. The drum screen basket shall have angled lifting vanes to retain loose solids during rotation and lift them up and into the screw auger trough. Helical shaped vanes which can tumble screenings rather than lift screenings shall not be accepted.

6. The screenings collection trough shall extend beyond the screen opening at the influent end to maximize solids capture and reduce screenings recycle.

7. The drum screen shall have no support arms on the influent side of the screen basket to snag and accumulate long stringy solids. Screens with influent side support arms will not be accepted.

8. The drum screen basket shall be provided with a double face seal system, incorporating UHMW-PE inner seal and a rubber seal pressing on the external part of the drum ring preventing laminar bypass. Any unit which does not incorporate this design will not be accepted.
C. Drum Screen Basket Cleaning Brush and Spray Bar(s)

1. The exterior of the rotating drum screen basket assembly shall be cleaned by a high pressure stainless steel spray bar and a stainless steel backed polypropylene brush. The drum screen basket shall continuously rotate in one direction during the cleaning cycle and pass through the topmost portion where it is cleaned by the spray bar and brush.

2. The exterior cleaning brush shall be mounted on a holding device which keeps the brush in constant contact with the screen basket and can be adjusted to compensate for brush wear.

D. Screenings Transport Screw and Dewatering Zone

1. The screenings transport screw shall be constructed of an epoxy coated high strength alloy steel for maximum torsion resistance in the screw. The screw shall be near-white blasted, primed with an inorganic zinc primer and coated with a 2 part epoxy.

2. The screenings collection trough shall be attached to the screenings transport tube by a basket support flange. The screw drive assembly shall be attached via a drive support flange welded to the upper end of the screenings transport tube.

3. The concentric transport/dewatering screw shall be designed to transport and dewater the screened material. The unit shall be provided with screw flights of constant pitch approaching the compaction zone in order to prevent clogging in the compaction zone. Designs incorporating a decreasing pitch screw will not be accepted.

4. The screenings transport screw shall be supported by a sealed, self lubricating lower bronze bushing. The lower bushing shall be designed such that it does not take any thrust load from the transport screw. Designs requiring bearings of any type or externally lubricated bushing(s) or water injection into the housing shall not be accepted.

5. The compaction zone shall be integral to the transport screw and compaction tube. The compaction zone shall be designed to form a screenings plug and return water released from the screened material back to the tank through circular holes that are machined into the screenings compaction tube.

6. The compaction zone housing shall be fabricated entirely of stainless steel. The lower body shall be a welded construction with a minimum of 10mm end plates for maximum torsion resistance. The bottom of the compaction zone shall be curved to promote maximum cleaning and minimum depositing of materials. Units utilizing a fiberglass reinforced compaction zone housing will not be accepted.
7. The compaction zone shall be furnished with a latched, hinged access cover with a gasket. The access cover shall incorporate a safety interlock switch in order to prevent operation of the unit with the access cover open. Units which require the use of any tools to gain access to the compaction zone will not be accepted.

E. Spray Wash Systems

1. Each spray system shall be furnished with a control solenoid valve, stainless steel piping and fittings, flexible reinforced hoses and spray nozzles.

2. Automatic spray wash systems for the screen shall be constructed of stainless steel piping and flexible reinforced hose. Spray wash system shall operate only when the screen basket is rotating.

3. A drum wash system shall be located over the rotating basket/drum which utilizes a spray bar(s) with adequate spray nozzles to ensure a consistent spray pattern over the entire length of the basket.

4. A screenings spray wash system shall be located in the lower section of the transport tube to break up and return organic materials to the flow stream and to ensure maximum screenings washing.

5. A compaction zone wash system shall be provided which periodically cleans the compaction and dewatering zone via a stainless steel wash header located in the uppermost end of the compaction/dewatering chamber. The header shall be designed to completely wash the full surface of the transport tube drainage area.

F. Tank

1. The septage receiving unit shall be supplied with a two stage stainless steel tank. The bottom of the influent section of the tank shall be sloped toward the screen to eliminate sedimentation. The inlet section shall be sized to match the inlet shape of the drum to prevent a wall for solids to dam and collect. Units with rectangular tanks which encourage sedimentation shall not be accepted.

2. The second stage tank shall house the rotating drum screen unit.

3. The inlet stage of the tank shall be provided with a flush wash system.

G. Drive Units

1. The septage receiving unit shall be a dual drive system which allows the drum and screw to be driven independently to optimize solids removal.
2. Gear reducers shall be a helical gear type as manufactured by NORD or approved equal. Provide a cast iron frame; design in accordance with AGMA recommendations for wastewater service.

3. Transport screw shall be directly driven by a flange mounted gear reducer.

4. The transport screw gear reducer shall be bolted to a machined flange welded to the upper end of the transport tube.

5. The rotating screen drum basket shall be driven by a flange mounted gear reducer using a spur gear and bull gear assembly.

6. Gear reducers shall be driven by 240/480v, 3ph, 60hz motors rated for the installation environment location. Motor horsepower shall be determined by the screen’s basket diameter.

7. Chain drives, belt drives, friction drives, or hydraulic drives will not be accepted.

8. Designs incorporating a separate upper bearing for the transport screw will not be accepted.

2.06 ELECTRICAL CONTROLS AND DEVICES – Drum Screen and Screw Control Panel

A. Panel shall include the following components:

1. (1) Enclosure, NEMA 4X, 304 Stainless Steel.

2. (1) Disconnect, with Door Interlocked Handle.

3. (2) Reversing motor starters with overload protection (480VAC Max, 2HP, Drum and Screw motor). (soft start on drum and reversing motor start on auger – with Load or Power Monitor if auto reversing/jam protection used)

4. (1) Control Power Transformer, 480-120VAC w/branch circuit protection.

5. (1) Surge Protection Device, 120VAC.

6. (1) Programmable Logic Controller, Allen-Bradley MicroLogix, with Ethernet and Required IO.

7. (1) Operator Interface Unit, Allen Bradley Panelview C400.

8. Panel Heater, with Thermostat [as required]

12. (1) Barrier relay (inspection door safety switch).
13. UL508A.

B. Safety Microswitch: safety interlock switch shall be factory mounted to the compaction/discharge zone access door. Interlock switch shall prevent operation of the screen while the doors is open.

C. Solenoid Valves: Provide two (2) solenoid valves to control flow to the spray wash assemblies. Each valve shall have a brass body. Each valve shall be 120 volt, single phase, 60 Hz.

D. Level Control: Provide capacitance rods controlled by an intrinsically safe capacitance relay.

2.07 OPERATION, MONITORING, AND CONTROL – Screen, Conveying, Dewatering Unit

A. Drum Screen Hand Operation: Screen to run continuously.

B. Drum Screen Automatic Operation: Screen to operate based on the level sensor. Provide provisions to prevent excessive starting and stopping of the unit.

C. Drum Screen Basket Spray Wash/Screening Wash System Hand Operation: Spray wash shall run continuously.

E. Drum Screen Basket Spray Wash/Screening Wash System Automatic Operation: Spray wash shall run when the drum assembly is rotating in forward operation.

D. Transport Screw Hand Operation: Screw to run continuously.

E. Transport Screw Automatic Operation: Screw to operate based on the level sensor. Provide provisions to prevent excessive starting and stopping of the unit.

F. Compaction Zone Spray Wash Hand Operation: Spray wash shall run continuously.

G. Compaction Zone Spray Wash Automatic Operation: Spray wash shall cycle on and off based on the spray wash cycle timer.
H. Fault Conditions:

1. In the event of momentary motor over current the controls shall attempt to clear the jam by reversing the direction of rotation of the transport screw. If the jam cannot be cleared, the controls shall stop the drive motor, and illuminate the alarm indicating light. Reset shall be manual on the outside of the control panel.

2. In the event of high water level, the Hauler Access Station shall close the inlet valve and illuminate the indicating light and alarm.

PART 3 - EXECUTION

3.01 PREPARATION

A. An adequate concrete equipment pad shall be provided for installation of the Flo-SeptageStation DM and Hauler Access Station Base. The equipment pad shall be flat and level.

3.02 LIFTING AND MOVING EQUIPMENT

A. Lifting points shall be identified on all Enviro-Care equipment. A crane of sufficient capacity must be on site for unloading the equipment from the truck and placing in the channel for installation.

3.03 INSTALLATION

A. The installation is the responsibility of the Purchaser. Complete installation procedures are included in the O&M manual shipped with the unit.

3.04 START UP/TRAINING/FIELD QUALITY CONTROL

A. The initial start-up of Enviro-Care equipment will be performed by Enviro-Care personnel and/or an authorized Enviro-Care representative(s). The Enviro-Care authorized representative(s) will verify the proper operation and installation, and provide training to the equipment operators. Two (2) days are allotted.

3.05 ADJUSTING AND CLEANING

A. Information on minor periodic adjustments and cleaning is contained in the Operating and Maintenance Manual.
PART 4 – OPTIONS

4.01 BAGGER SYSTEM

A. A continuous screenings bagger system with refillable bagger cassette shall be provided for containment, odor control, and sanitary handling of screenings.

B. Bagger system consists of a stainless steel and ABS plastic cassette holder with continuous polyethylene bag cassette.

4.02 RECOMMENDED SPARE PARTS

A. Spray nozzles

B. Solenoid valve rebuild kit

C. Spare bagger cassette containing 210 feet of bag material

4.03 YEARLY SERVICE CONTRACT (CONSULT MANUFACTURER FOR DETAILS)
PROCESS DESIGN INFORMATION:
APPLICATION: SEPTAGE SCREENING
PEAK DESIGN FLOW: 650 GPM
SCREEN INCLINE: 25 DEGREES FROM HORIZONTAL
PERFORATION SIZE: 6 MM

NOTES:
1. MOTORS:
 DRIV: 2 HP, 230/460 VOLT, 3 PHASE, 60 HZ
 AUGER: 2 HP, 230/460 VOLT, 3 PHASE, 60 HZ
2. APPROXIMATE WEIGHTS:
 SCREEN: 3,500 LBS (1,589 KG)
 HAULER STATION - 1,200 LBS (545 KG)
3. WATER REQUIREMENTS: 40 GPM @ 75-120 PSI (0.5 L/S @ 5.2 BAR)
4. ALL INTERCONNECTING PIPING AND WIRING BY OTHERS, NOT BY ENVIRO-CARE.
5. ALL DIMENSIONS ARE IN INCHES [MM].
EleMech, Inc.
Receiving waste such as septage, fats-oils, grease, and sludge is an essential process in need of critical attention. Managing hauled-in waste irresponsibly could have adverse effects. Without an efficient process in place, it can also be costly. You see firsthand the challenges your facility faces and understand the importance of security, record keeping, and minimizing costs. Ensuring your waste receiving process is successful matters to you and to us.

We are EleMech, we created PortALogic stations to help you manage trucked in waste. Our sole mission with PortALogic is to help facilities manage waste responsibly while decreasing costs through our automated waste receiving stations. Since 2000, facilities have been looking to us to provide stations to meet their unique needs. Get started with us and let us help you meet your goals.

Buy Now - Call EleMech, Inc. at 630-499-7080 to order a station for your site
DS-22
The DS-22 waste dump station is tamper-proof and simple for haulers to use. This station provides secure hauler access by PIN or swipe card and includes a pedestal base with an electrically actuated valve. It seamlessly communicates with PortALogic management software.

SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure</td>
<td>Access door-locking handle, water tight, outdoor rated NEMA 4X, corrosion resistant, stainless steel</td>
</tr>
<tr>
<td>Hauler Access</td>
<td>Industrial display with card reader and keypad</td>
</tr>
<tr>
<td>Receipt Printer</td>
<td>Heavy duty kiosk-style printer, illuminated chute, large capacity roll</td>
</tr>
<tr>
<td>Pedestal Base</td>
<td>NEMA 4X stainless steel enclosure, 24” wide. Encloses quick opening electrically actuated valve (4” or 6”)</td>
</tr>
<tr>
<td>Power</td>
<td>120VAC, 30 AMP</td>
</tr>
<tr>
<td>Rate of Flow</td>
<td>Up to 1,100 gallons per min (4,164 liters per min)</td>
</tr>
<tr>
<td>Temperature</td>
<td>Operating temperature range -40°F to 122°F (-40°C to 50°C)</td>
</tr>
<tr>
<td>Software</td>
<td>Station interfaces with PortALogic management software for record keeping, billing, monitoring, and reporting</td>
</tr>
<tr>
<td>Certifications</td>
<td>[UL] [CE]</td>
</tr>
</tbody>
</table>

TYPES OF WASTE

- Septage
- Fats-Oils-Grease (FOG)
- Sludge
- Frac Water
- Other Waste

Edgartown, MA

[PortALogic Waste Dump Station - Model DS-22](www.portalogic.info)
PortALogic Waste Dump Station - Model DS-22

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampler</td>
<td>Refrigerated samplers can be included in the system</td>
</tr>
<tr>
<td>pH Transmitter</td>
<td>pH monitors can be included in the system</td>
</tr>
<tr>
<td>Solar Powered</td>
<td>Stations can be powered by solar energy for remote installations</td>
</tr>
<tr>
<td>Cold Climate Package</td>
<td>Heaters, insulation, and heat tracing can be added to protect the station in cold climates</td>
</tr>
<tr>
<td>Hot Climate Package</td>
<td>Air conditioners and sunshields can be added to protect the station in hot climates</td>
</tr>
<tr>
<td>Gate/Door Control</td>
<td>The station can interface with automatic gates and doors if needed</td>
</tr>
</tbody>
</table>

HAULER ACCESS STATION OPERATION

1. Hauler connects truck to inlet connection
2. Hauler turns the switch to “Start”
3. Hauler uses wipe card or enters PIN
4. Hauler follows display prompts and enters information such as waste type
5. Inlet valve opens, “System Ready” light illuminates, and hauler discharges
6. Hauler turns the switch to “Done” and a receipt is printed detailing the transaction

INSTALLATION

Stations come fully assembled, tested, and ready to install. The station comes with PortALogic management software which can be installed on any number of the facility’s PCs.

WARRANTY

All components furnished in specification are guaranteed for two years from date of shipment. Management software updates and phone support is provided for two years from date of shipment.

DIMENSIONS

Features

1. **Secure Hauler Login**
 - Haulers enter PIN or use swipe card to gain access

2. **Simple to Use**
 - Display guides haulers through process and prompts hauler for information

3. **Durable and Tamper-Proof**
 - Stainless steel and built to last
 - Lockable doors, tamper-proof card reader/keypad

4. **Controls Hauler Access to Valve**
 - Electrically actuated valve in base opens only to permitted haulers

www.portalogic.info
PortALogic Waste Products:

DS-200
The DS-200 waste dump station is tamper-proof and simple for haulers to use. This station provides secure hauler access by PIN or swipe card.

DS-22
The DS-22 waste dump station is secure and controls the valve. This station includes a pedestal base enclosing an electrically actuated valve.

DS-25
The DS-25 waste dump station is secure, controls the valve, and provides metering. This station encloses an electrically actuated valve and flow meter.

DS-82
The DS-82 waste dump station is the complete solution for waste receiving. This station encloses an electrically actuated valve, flow meter, sampler, and pH sensor.

For more information about PortALogic, please contact an EleMech engineer at 630-499-7080 or visit www.portologic.info.

EleMech, Inc.
2275 White Oak Circle
Aurora, IL 60502
Office: 630-499-7080
www.portologic.info
www.elemech.com
DS-200 Waste Dump Station

PortALogic Management Software Included
For Secure Hauler Access

Receiving waste such as septage, fats-oils, grease, and sludge is an essential process in need of critical attention. Managing hauled-in waste irresponsibly could have adverse effects. Without an efficient process in place, it can also be costly. You see firsthand the challenges your facility faces and understand the importance of security, record keeping, and minimizing costs. Ensuring your waste receiving process is successful matters to you and to us.

We are EleMech, we created PortALogic stations to help you manage trucked in waste. Our sole mission with PortALogic is to help facilities manage waste responsibly while decreasing costs through our automated waste receiving stations. Since 2000, facilities have been looking to us to provide stations to meet their unique needs. Get started with us and let us help you meet your goals.

Buy Now - Call EleMech, Inc. at 630-499-7080 to order a station for your site
DS-200
The DS-200 waste dump station is tamper-proof and simple for haulers to use. This station provides secure hauler access by PIN or swipe card. It seamlessly communicates with PortALogic management software.

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>TYPES OF WASTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure</td>
<td>Septage</td>
</tr>
<tr>
<td>Access door- locking</td>
<td>Fats-Oils-Grease (FOG)</td>
</tr>
<tr>
<td>handle, water tight,</td>
<td>Sludge</td>
</tr>
<tr>
<td>outdoor rated NEMA 4X,</td>
<td>Frac Water</td>
</tr>
<tr>
<td>corrosion resistant,</td>
<td>Other Waste</td>
</tr>
<tr>
<td>stainless steel</td>
<td></td>
</tr>
<tr>
<td>Hauler Access</td>
<td></td>
</tr>
<tr>
<td>Industrial display</td>
<td></td>
</tr>
<tr>
<td>with card reader and</td>
<td></td>
</tr>
<tr>
<td>keypad</td>
<td></td>
</tr>
<tr>
<td>Receipt Printer</td>
<td></td>
</tr>
<tr>
<td>Heavy duty kiosk-style</td>
<td></td>
</tr>
<tr>
<td>printer, illuminated</td>
<td></td>
</tr>
<tr>
<td>chute, large capacity</td>
<td></td>
</tr>
<tr>
<td>roll</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>120VAC, 30 AMP</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td></td>
</tr>
<tr>
<td>range -40°F to 122°F</td>
<td></td>
</tr>
<tr>
<td>(-40°C to 50°C)</td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td></td>
</tr>
<tr>
<td>Station interfaces</td>
<td></td>
</tr>
<tr>
<td>with PortALogic</td>
<td></td>
</tr>
<tr>
<td>management software</td>
<td></td>
</tr>
<tr>
<td>for record keeping,</td>
<td></td>
</tr>
<tr>
<td>billing, monitoring,</td>
<td></td>
</tr>
<tr>
<td>and reporting</td>
<td></td>
</tr>
<tr>
<td>Certifications</td>
<td></td>
</tr>
</tbody>
</table>

WARRANTY
All components furnished in specification are guaranteed for two years from date of shipment. Management software updates and phone support is provided for two years from date of shipment.
PortALogic Waste Dump Station - Model DS-200

Options

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampler</td>
<td>Refrigerated samplers can be included in the system</td>
</tr>
<tr>
<td>pH Transmitter</td>
<td>pH monitors can be included in the system</td>
</tr>
<tr>
<td>Solar Powered</td>
<td>Stations can be powered by solar energy for remote installations</td>
</tr>
<tr>
<td>Cold Climate Package</td>
<td>Heaters, insulation, and heat tracing can be added to protect the station in cold climates</td>
</tr>
<tr>
<td>Hot Climate Package</td>
<td>Air conditioners and sunshields can be added to protect the station in hot climates</td>
</tr>
<tr>
<td>Gate/Door Control</td>
<td>The station can interface with automatic gates and doors if needed</td>
</tr>
</tbody>
</table>

Hauler Access Station Operation

1. Hauler connects truck to inlet connection
2. Hauler turns the switch to “Start”
3. Hauler uses wipe card or enters PIN
4. Hauler follows display prompts and enters information such as waste type
5. Inlet valve opens, “System Ready” light illuminates, and hauler discharges
6. Hauler turns the switch to “Done” and a receipt is printed detailing the transaction

Installation

Stations come fully assembled, tested, and ready to install. The station comes with PortALogic management software which can be installed on any number of the facility’s PCs.

Features

1. **Secure Hauler Login**
 - Haulers enter PIN or use swipe card to gain access
2. **Simple to Use**
 - Display guides haulers through process and prompts hauler for information
3. **Durable and Tamper-Proof**
 - Stainless steel and built to last
 - Lockable doors, tamper-proof card reader/keypad
4. **Prints Hauler Receipts**
 - Once waste is unloaded, a detailed receipt is printed
 - Receipts can be emailed too

Dimensions

Grimsby, Ontario

www.portalogic.info
PortALogic Waste Products:

DS-200
The DS-200 waste dump station is tamper-proof and simple for haulers to use. This station provides secure hauler access by PIN or swipe card.

DS-22
The DS-22 waste dump station is secure and controls the valve. This station includes a pedestal base enclosing an electrically actuated valve.

DS-25
The DS-25 waste dump station is secure, controls the valve, and provides metering. This station encloses an electrically actuated valve and flow meter.

DS-82
The DS-82 waste dump station is the complete solution for waste receiving. This station encloses an electrically actuated valve, flow meter, sampler, and pH sensor.

For more information about PortALogic, please contact an EleMech engineer at 630-499-7080 or visit www.portalogic.info.

EleMech, Inc.
2275 White Oak Circle
Aurora, IL 60502
Office: 630-499-7080
www.portalogic.info
www.elemech.com

Copyright © 1987-2013 EleMech, Inc. All rights reserved. Made in the U.S.A.
JWC Environmental
BUDGET QUOTATION #MB2016-02-18_STANTEC_AQS_SRS3235-XE
NH WWTP / Katherine Hedberg - Stantec
SRS Honey Monster
With HOT Trap

QUOTE DATE: February 18, 2016

REPRESENTATIVE: AQS (Chris Shea) TERMS: Net 30 days
SUBMITTALS: 8 weeks PRICING: Valid for 90 days
SHIP EQUIPMENT: 12-14 weeks after release FREIGHT: Included

We thank you for your inquiry and are pleased to quote pricing and delivery on the equipment listed below. This quotation is subject to the terms and conditions listed on the JWC Environmental "Terms and Conditions" page, and any comments and exceptions listed below.

HOT-SRS3235-XE Billing

One (1) SRS3235-XE Honey Monster ™ Septage Receiving System suitable for 400 GPM of septage material at approx. 10% d.s. (1000 GPM of clean water), as received from septage hauling trucks through 4” dia. transfer lines.

Scope of supply to include:

* 4” diameter cast aluminum ‘cam and groove’ inlet connector and 4” Schedule 10 304 stainless steel inlet piping components

* 30004T-1204 Muffin Monster™ grinder with 12” cutter stack using 7-tooth cam cutters in alloy steel, cartridge-style tungsten carbide mechanical seals with BUNA-N elastomers rated for 90 psi, green epoxy-coated ductile iron castings, 29:1 speed reducer and 5 HP TEXP 230-460v/3ph/60Hz electric motor

* 4” plug valve and actuator with analog inputs for proportional control
* 4” Endress Hauser magnetic flow meter

* 304 stainless steel tank with 4” dia. Class 150 inlet flange, 12” dia. straight-pipe liquid discharge, hinged tank lid, downstream inspection port, ultrasonic level transducer with analog outputs, upper and lower stainless steel spray wash assemblies with manual & explosion-proof bronze solenoid valves (recommended wash water supply: 30 GPM at minimum 30 psi in 1” line.

* Easy to service pivoting auger assembly, 35deg inclination, 304 stainless steel trough & casings, 1/4” (6mm) perforated screen, nom. 20” dia. Alloy steel spiral with nylon brush, 12” dia. 304 stainless steel transport spiral with tapered element, 500mm transport segment length, dewatering bottom discharge segment allowing approx. 75” discharge clearance, 160:1 speed reducer, 2 HP TEXP 230-460v/3ph/60Hz electric motor coated with green epoxy paint

One (1) PC2450 motor controller in a NEMA 4X 304 stainless steel enclosure accepting 230-460v/3ph/60Hz input power, includes IEC starters with over-current protection, jam-sensing current transformers, micro - PLC with operator interface, start & stop pushbuttons, card swipe reader with 50 cards, closed-loop control system to maintain tank material level for optimum throughput/solids washing, transaction printer, and choice of on-board flash card drive or RS232 data port, (for connection to remote PLC or computer).
One (1) GRA0103-1804 Heavy Object Trap fabricated in 304 stainless steel with 4" Class 150 inlet & outlet flanges, lid, bar screen elements, removable debris basket, spray nozzles, 2" drain with manual ball valve, 3/4" hot water inlet with manual ball valve.

Screen Notes:
1. See attached standard JWC Terms and Conditions of Purchase.
2. Anchor bolts are to be provided by others and are to be appropriate to the physical conditions and equipment.

Four (4) Operation and Maintenance manuals

Budget Price Each: $147,643.00

PRICE ADDER for 24" Trap in lieu of 18"

One (1) GRA0103-2404 Heavy Object Trap fabricated in 304 stainless steel with 4" Class 150 inlet & outlet flanges, lid, bar screen elements, removable debris basket, spray nozzles, 2" drain with manual ball valve, 3/4" hot water inlet with manual ball valve.

Budget Price Each: $3,528.00

Comments:
1. Standard one year warranty is included.
2. Estimated weight of unit is 6150 lbs.
3. Freight is included in this pricing.
4. One (1) Start up service is included in this proposal.

Unless specifically stated above, this quotation does not include installation, any taxes, disconnect switches, anchor bolts, hydraulic fluid, mounting frames, spare parts, or special tools.

Authorized JWC Signature: Marc Beaudry (Eastern Sales Operations Manager) marc@jwce.com

Continued on the next page
LIMITED WARRANTY
Subject to the terms and conditions hereof, JWC Environmental (the “Company”) warrants until one year after the operation start-up (written start-up date notification required) of the system of which such product is a part or until 18 months after delivery of such product to Buyer, whichever is earlier, that each product will be free of defects in materials and workmanship. If (a) the Company receives written notification of such defect during the warranty period and the defective Product’s use is discontinued promptly after the defect is discovered by the person who then owns the defective Product (the "Owner") and (b) if the Owner forwards the product to the Company’s nearest service/repair facility, transportation and related insurance charges prepaid, the Company will cause any products whose defect is covered under this warranty to either be replaced or repaired at no cost to the Owner. The foregoing warranty does not cover repairs required due to repair or alteration other than by the Company’s personnel, accident, neglect, misuse, wear whether ordinary or extraordinary, transportation or causes other than ordinary use and maintenance in accordance with the Company’s instructions and specifications. In addition, the foregoing warranty does not cover any Products, or components thereof, which are not directly manufactured for the Company. To the extent a warranty for repair or replacement of such Products or components not manufactured directly for the Company and not warranted by the Company is available to Buyer under agreements of the Company with its vendors, the Company will make such warranties available to Buyer. Costs of transportation of any covered defective item to and from the nearest service/repair center and related insurance will be paid or reimbursed by Buyer. Any replaced Products will become the property of the Company. Any replacement Products will be warranted only for the remaining term of the original limited warranty period and not beyond that term.

DISCLAIMER OF WARRANTIES AND LIMITATIONS ON LIABILITY
The foregoing limited warranty is the exclusive and only warranty with respect to the Products and shall be in lieu of all other warranties (other than the warranty of title), express, statutory or implied, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose and any statements made by employees or agents of the Company or others regarding the Products. The obligations of the Company under the foregoing warranty shall be fully satisfied by repair or replacement of the defective Product or part, as provided above. In no event shall the Company be liable for lost profits or other special, indirect or consequential damages, resulting from any breach of warranty of the Company or Buyer’s ordering, using, owning or disposing of the Products covered hereby, even if the Company has been advised of the possibility of such damages. The total liability of the Company to Buyer and others arising from any cause whatsoever in connection with the Buyer's purchase, use and disposition of any Product covered hereby shall under no circumstances, exceed the purchase price paid for the Product by Buyer. No action, regardless of form, arising out of this agreement or based upon Buyer's purchase, use or disposition of the Products may be brought by either party more than one year after the cause of action accrues, except that any cause of action for the nonpayment of the purchase price may be brought at any time. Unless specifically agreed to in writing by the Company, no charges may be made to the Company by Buyer or any third party employed by Buyer for removing, installing, or modifying any Product. The Company and its representatives may furnish at no additional expense, data and engineering services relating to the application, installation or use of its Products by Buyer. The Company will not be responsible and it does not assume any liability whatsoever for damages of any kind sustained either directly or indirectly by any person through the adoption or use of such data or engineering services in whole or in part.

CHANGES IN PRODUCTS
The Company may make changes in materials, designs and specifications for its products without notice. The Company shall not incur any obligations to furnish or install any such changes or modifications on products previously ordered by or sold to Buyer.
BUDGET QUOTATION #MB2016-02-18A_STANTEC_AQS_SRS3235-XE

NH WWTP / Katherine Hedberg - Stantec
SRS Honey Monster
With Standard Rock Trap

QUOTE DATE: February 18, 2016

REPRESENTATIVE: AQS (Chris Shea) TERMS: Net 30 days
SUBMITTALS: 8 weeks PRICING: Valid for 90 days
SHIP EQUIPMENT: 12-14 weeks after release FREIGHT: Included

We thank you for your inquiry and are pleased to quote pricing and delivery on the equipment listed below. This quotation is subject to the terms and conditions listed on the JWC Environmental “Terms and Conditions” page, and any comments and exceptions listed below.

HOT-SRS3235-XE Billing

One (1) SRS3235-XE Honey Monster™ Septage Receiving System suitable for 400 GPM of septage material at approx. 10% d.s. (1000 GPM of clean water), as received from septage hauling trucks through 4” dia. transfer lines.

Scope of supply to include:

* 4” diameter cast aluminum ‘cam and groove’ inlet connector and 4” Schedule 10 304 stainless steel inlet piping components
* 30004T-1204 Muffin Monster™ grinder with 12” cutter stack using 7-tooth cam cutters in alloy steel, cartridge-style tungsten carbide mechanical seals with BUNA-N elastomers rated for 90 psi, green epoxy-coated ductile iron castings, 29:1 speed reducer and 5 HP TEXP 230-460v/3ph/60Hz electric motor
* 4” plug valve and actuator with analog inputs for proportional control
* 4” Endress Hauser magnetic flow meter
* 304 stainless steel tank with 4” dia. Class 150 inlet flange, 12” dia. straight-pipe liquid discharge, hinged tank lid, downstream inspection port, ultrasonic level transducer with analog outputs, upper and lower stainless steel spray wash assemblies with manual & explosion-proof bronze solenoid valves (recommended wash water supply: 30 GPM at minimum 30 psi in 1” line.
* Easy to service pivoting auger assembly, 35deg inclination, 304 stainless steel trough & casings, 1/4” (6mm) perforated screen, nom. 20” dia. Alloy steel spiral with nylon brush, 12” dia. 304 stainless steel transport spiral with tapered element, 500mm transport segment length, dewatering bottom discharge segment allowing approx. 75” discharge clearance, 160:1 speed reducer, 2 HP TEXP 230-460v/3ph/60Hz electric motor coated with green epoxy paint

One (1) PC2450 motor controller in a NEMA 4X 304 stainless steel enclosure accepting 230-460v/3ph/60Hz input power, includes IEC starters with over-current protection, jam-sensing current transformers, micro - PLC with operator interface, start & stop pushbuttons, card swipe reader with 50 cards, closed-loop control system to maintain tank material level for optimum throughput/solids washing, transaction printer, and choice of on-board flash card drive or RS232 data port, (for connection to remote PLC or computer).
One (1) “Rock” trap fabricated in 304 stainless steel with 4” Class 150 inlet & outlet flanges, fitted with 4” dia. knife gate valve for discharging collected solids.

Screen Notes:
1. See attached standard JWC Terms and Conditions of Purchase.
2. Anchor bolts are to be provided by others and are to be appropriate to the physical conditions and equipment.

Four (4) Operation and Maintenance manuals

Budget Price Each: $137,075.00

Comments:
1. Standard one year warranty is included.
2. Estimated weight of unit is 5950 lbs.
3. Freight is included in this pricing.
4. One (1) Start up service is included in this proposal.

Unless specifically stated above, this quotation does not include installation, any taxes, disconnect switches, anchor bolts, hydraulic fluid, mounting frames, spare parts, or special tools.
Authorized JWC Signature: Marc Beaudry (Eastern Sales Operations Manager) marc@jwce.com

Continued on the next page
LIMITED WARRANTY
Subject to the terms and conditions hereof, JWC Environmental (the “Company”) warrants until one year after the operation start-up (written start-up date notification required) of the system of which such product is a part or until 18 months after delivery of such product to Buyer, whichever is earlier, that each product will be free of defects in materials and workmanship. If (a) the Company receives written notification of such defect during the warranty period and the defective Product's use is discontinued promptly after the defect is discovered by the person who then owns the defective Product (the "Owner") and (b) if the Owner forwards the product to the Company's nearest service/repair facility, transportation and related insurance charges prepaid, the Company will cause any products whose defect is covered under this warranty to either be replaced or repaired at no cost to the Owner. The foregoing warranty does not cover repairs required due to repair or alteration other than by the Company's personnel, accident, neglect, misuse, wear whether ordinary or extraordinary, transportation or causes other than ordinary use and maintenance in accordance with the Company's instructions and specifications. In addition, the foregoing warranty does not cover any Products, or components thereof, which are not directly manufactured for the Company. To the extent a warranty for repair or replacement of such Products or components not manufactured directly for the Company and not warranted by the Company is available to Buyer under agreements of the Company with its vendors, the Company will make such warranties available to Buyer. Costs of transportation of any covered defective item to and from the nearest service/repair center and related insurance will be paid or reimbursed by Buyer. Any replaced Products will become the property of the Company. Any replacement Products will be warranted only for the remaining term of the original limited warranty period and not beyond that term.

DISCLAIMER OF WARRANTIES AND LIMITATIONS ON LIABILITY
The foregoing limited warranty is the exclusive and only warranty with respect to the Products and shall be in lieu of all other warranties (other than the warranty of title), express, statutory or implied, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose and any statements made by employees or agents of the Company or others regarding the Products. The obligations of the Company under the foregoing warranty shall be fully satisfied by repair or replacement of the defective Product or part, as provided above. In no event shall the Company be liable for lost profits or other special, indirect or consequential damages, resulting from any breach of warranty of the Company or Buyer's ordering, using, owning or disposing of the Products covered hereby, even if the Company has been advised of the possibility of such damages. The total liability of the Company to Buyer and others arising from any cause whatsoever in connection with the Buyer's purchase, use and disposition of any Product covered hereby shall under no circumstances, exceed the purchase price paid for the Product by Buyer. No action, regardless of form, arising out of this agreement or based upon Buyer's purchase, use or disposition of the Products may be brought by either party more than one year after the cause of action accrues, except that any cause of action for the nonpayment of the purchase price may be brought at any time. Unless specifically agreed to in writing by the Company, no charges may be made to the Company by Buyer or any third party employed by Buyer for removing, installing, or modifying any Product. The Company and its representatives may furnish at no additional expense, data and engineering services relating to the application, installation or use of its Products by Buyer. The Company will not be responsible and it does not assume any liability whatsoever for damages of any kind sustained either directly or indirectly by any person through the adoption or use of such data or engineering services in whole or in part.

CHANGES IN PRODUCTS
The Company may make changes in materials, designs and specifications for its products without notice. The Company shall not incur any obligations to furnish or install any such changes or modifications on products previously ordered by or sold to Buyer.
Description

Turning used restaurant grease into a useful resource is becoming popular at wastewater treatment plants. Grease and other high-strength organics are pumped into sludge digesters to boost biogas production and increase the production of renewable energy. However, it's difficult dealing with the rocks, rags, silverware and plastics in the grease.

The new JWCE Heavy Object Trap (model GRS) makes it quick and easy to screen out trash and debris that causes damage to downstream pumps and systems.

The HOT is available in six sizes and features an adjustable bar screen with 1/2” or 1” (12 or 25mm) spacings. As grease trucks unload, rocks, rags, knives, plastics and other debris are captured. The Muffin Monster® grinder then homogenizes the liquid grease – breaking clumps into an easy to pump slurry.

Once unloading is complete a hot water washdown* flushes debris off the bars and into the perforated capture basket below. The truck driver or plant operator then opens the lid, removes the perforated basket and empties it into a trash bin.

Available flow rates:
- 4” pipe (100mm) - 400 GPM (25 l/s)
- 6” pipe (150mm) - 600 GPM (38 l/s)
- Flow Rate - max. 15 psi (1 bar)

Applications

- Grease receiving/screening
- Septage receiving/screening
- Sludge receiving/screening
- Wastewater treatment plants
- Private septage haulers

Options

- MonsterTrack™ billing controller
- Receipt printer
- Card lock
- Flow meter
- Plug valve

Models

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Pipe Size - in.(mm)</th>
<th>Basket Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRS0103-1804</td>
<td>4 (100mm)</td>
<td>1.1 ft³ (0.03 m³)</td>
</tr>
<tr>
<td>GRS0103-2004</td>
<td>4 (100mm)</td>
<td>1.5 ft³ (0.04 m³)</td>
</tr>
<tr>
<td>GRS0103-2404</td>
<td>4 (100mm)</td>
<td>*2.2 ft³ (0.06 m³)</td>
</tr>
<tr>
<td>GRS0103-1806</td>
<td>6 (150mm)</td>
<td>1.1 ft³ (0.03 m³)</td>
</tr>
<tr>
<td>GRS0103-2006</td>
<td>6 (150mm)</td>
<td>1.5 ft³ (0.04 m³)</td>
</tr>
<tr>
<td>GRS0103-2406</td>
<td>6 (150mm)</td>
<td>*2.2 ft³ (0.06 m³)</td>
</tr>
</tbody>
</table>

* Supplied by others.

* Lifting station recommended to empty basket.
A grease truck unloads through the JWCE Heavy Object Trap and into a wastewater treatment plant's holding tank.

The screening bars use a unique design for max flow while capturing silverware, rags and plastics. A hot water washdown cleans the bars.

Heavy objects, rocks, silverware, rags and other debris drop or are washed into the perforated capture basket.

A Muffin Monster grinder in a grease receiving line.

Macerators work poorly in grease/waste receiving applications.

MonsterTrack billing controller features a card lock & receipt printer.
NOTES UNLESS OTHERWISE SPECIFIED:
1. INTERPRET DRAWING IN ACCORDANCE WITH ASME Y14.5M-1994 STANDARDS.
2. APPLY PIPE DOME OR TEFLON NUMBERS TAPE TO ALL THREADED PIPE FITTINGS.

USE REMOVABLE LOCTITE ON ITEM 7.

DRAWING NO. GRA0103-1804

DIMENSIONS ARE IN INCHES
ALL X1

NOTES UNLESS OTHERWISE SPECIFIED:
1. INTERPRET DRAWING IN ACCORDANCE WITH ASME Y14.5M-1994 STANDARDS.
2. APPLY PIPE DOME OR TEFLON NUMBERS TAPE TO ALL THREADED PIPE FITTINGS.

USE REMOVABLE LOCTITE ON ITEM 7.

DRAWING NO. GRA0103-1804

DIMENSIONS ARE IN INCHES
ALL X1

NOTES UNLESS OTHERWISE SPECIFIED:
1. INTERPRET DRAWING IN ACCORDANCE WITH ASME Y14.5M-1994 STANDARDS.
2. APPLY PIPE DOME OR TEFLON NUMBERS TAPE TO ALL THREADED PIPE FITTINGS.

USE REMOVABLE LOCTITE ON ITEM 7.

DRAWING NO. GRA0103-1804

DIMENSIONS ARE IN INCHES
ALL X1

NOTES UNLESS OTHERWISE SPECIFIED:
1. INTERPRET DRAWING IN ACCORDANCE WITH ASME Y14.5M-1994 STANDARDS.
2. APPLY PIPE DOME OR TEFLON NUMBERS TAPE TO ALL THREADED PIPE FITTINGS.

USE REMOVABLE LOCTITE ON ITEM 7.
Overview

The automated Honey Monster receiving and screening system quickly tracks and screens septage, grease or sludge to remove unwanted debris. Our model SRS-XE system uses an auger screw and perforated screening basket with ¼" (6mm) circular openings to remove rocks, rags, plastics, silverware and other trash. It provides complete protection for downstream equipment and the treatment plant.

The unique combination of grinding, solids removal, washing and dewatering allows a typical septage truck to unload in 5 to 15 minutes. The system is completely enclosed to ensure safety, vector control and to capture foul odors.

Features & Benefits

Advanced Screening and Dewatering
- Auger Monster screen with 1/4" (6mm) perforations removes unwanted solids and trash
- Perf screen captures far more than bar screens
- Patented dual compartment compaction zone provides significant additional dewatering

Easy Access, Pivoted Auger
- The auger is mounted to a pivot support for easy inspections and removal
- A forklift or crane can lift and swivel the screening trough and auger out of the tank

Dual-Shafted Grinder
- Muffin Monster® grinder maximizes surface area of solids for better washing and compacting

Triple-manifold Wash Water System
- Washes soft organics off of captured debris
- Ensures optimal throughput while minimizing odors

High Level Ultrasonic Sensor
- Regulates plug valve for optimum performance
- Baffles prevent overflow conditions

Optional ‘MonsterTrack’ System
- Records driver information and measures flow data
- PIN or card access for security
- Printed transaction receipts
- Data stored on compact flash card
- Ethernet/SCADA connection capable

Exclusive Tilt and Swivel Auger
Track Loads with MonsterTrack!
Septage Receiving with Automated Solids Removal

Honey Monster®

Model: SRS-XE

Materials of Construction

Tank, piping & Support: 304 stainless steel

Auger Assembly: Casings and trough are 304ss; rotor is 480mm Ø alloy steel

Grinder Housing: ductile iron housings ASTM A536-77

Cutters: 8620 carburized alloy steel, hardened to 60-65 Rockwell C

Mechanical Seal Faces: Tungsten carbide

Options

- Macho Monster grinder for higher-flows
- 6” (150mm) inlet pipeline
- Cold weather protection system
- Discharge bagger
- pH and conductivity sensing loop
- 316 stainless steel pipe and tank
- MonsterTrack billing controller
- Skid mounted system

Configurations

1. Septage Screening
2. Sludge Screening
3. Grease Screening

Screens and Capacities

<table>
<thead>
<tr>
<th>Model</th>
<th>Screen Diameter</th>
<th>Auger Motor</th>
<th>Screenings Capacities</th>
<th>*Typical Septage Flow Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRS3235-XE</td>
<td>19” (480mm)</td>
<td>2 HP (1.5 kW)</td>
<td>90 ft³/h (2.55 m³/h)</td>
<td>400 gpm (25.2 l/s)</td>
</tr>
</tbody>
</table>

*Up to 1,000 gpm (63 l/s) through tank screen (clean water)
*Recommended max 15 psi (1 bar)

Materials of Construction

Tank, piping & Support: 304 stainless steel

Auger Assembly: Casings and trough are 304ss; rotor is 480mm Ø alloy steel

Grinder Housing: ductile iron housings ASTM A536-77

Cutters: 8620 carburized alloy steel, hardened to 60-65 Rockwell C

Mechanical Seal Faces: Tungsten carbide
Grease Receiving

Heavy Object Trap + Muffin Monster®
Model: GRS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Pipe Size - in.(mm)</th>
<th>Basket Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRS0103-1804</td>
<td>4 (100mm)</td>
<td>1.1 ft³ (0.03 m³)</td>
</tr>
<tr>
<td>GRS0103-2004</td>
<td>4 (100mm)</td>
<td>1.5 ft³ (0.04 m³)</td>
</tr>
<tr>
<td>GRS0103-2404</td>
<td>4 (100mm)</td>
<td>*2.2 ft³ (0.06 m³)</td>
</tr>
<tr>
<td>GRS0103-1806</td>
<td>6 (150mm)</td>
<td>1.1 ft³ (0.03 m³)</td>
</tr>
<tr>
<td>GRS0103-2006</td>
<td>6 (150mm)</td>
<td>1.5 ft³ (0.04 m³)</td>
</tr>
<tr>
<td>GRS0103-2406</td>
<td>6 (150mm)</td>
<td>*2.2 ft³ (0.06 m³)</td>
</tr>
</tbody>
</table>

*Lifting station recommended to empty basket

Overview
This trap features adjustable bar screens to capture and direct heavy objects into the debris basket. As trucks unload grease, the silverware, rags, knives and other large debris are removed. The Muffin Monster then homogenizes the grease – breaking grease solids into an easy to pump slurry. Optional MonsterTrack billing controller, flow meter and modulating plug valve are also available.

Features
- 5 HP (3.7 kW) Grinder Motor
- Hot Water Wash Down (supplied by others)
- Adjustable bar spacings 1/2” or 1” (12 or 25mm)

Flow Capacity
- 4” pipe - 400 GPM (25 l/s)
- 6” pipe - 600 GPM (38 l/s)
- Flow Rate - max. 15 psi

Septage Receiving

Rock Trap + Muffin Monster®
Model: SRS3000

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Pipe Size - in.(mm)</th>
<th>Basket Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRS3000-1204</td>
<td>4 (100mm)</td>
<td>0.18 ft³ (0.005 m³)</td>
</tr>
<tr>
<td>SRS3000-1206</td>
<td>6 (150mm)</td>
<td>0.24 ft³ (0.007 m³)</td>
</tr>
</tbody>
</table>

Overview
This small rock trap is a good choice for small sites receiving only a few thousand gallons per day. The perforated screening basket has ½” (12mm) circular openings and captures rocks and silverware.

Flow Capacity
- 4” pipe - 400 GPM (25 l/s)
- 6” pipe - 600 GPM (38 l/s)
- Flow Rate - max. 15 psi

Features
- 5 HP (3.7 kW) Grinder Motor
Operation

1) Haulers connect to the cam lock inlet and start the flow of septage which first passes through the rock trap.
2) Muffin Monster grinds-up solids.
3) Ultrasonic level sensor and modulating plug valve regulate flow.
4) If the ‘MonsterTrack’ option is installed, the flow meter sends data to the controller.
5) Septage and solids now enter the perf screening trough. Spray wash cleans the solids and keeps the screen clear.
6) The unwanted solids are captured by the inclined auger screen and transported to the compaction zone for additional dewatering before being discharged.
7) The screened septage now safely flows into the wastewater treatment plant.

Photo Gallery - Options

Skid Mounted System

Muffin Monster®

MonsterTrack™ Billing Controller

Heat Tracing and Blanket

Optional Endless Bagger
PRELIMINARY DRAWING
NOT FOR FINAL DESIGN

SRS + HOT GENERAL ARRANGEMENT
SRS3235/METAL TRAP/GRINDER/BILLING
SEPTAGE RECEIVING STATION

305 7/16 (7759 mm)
48 1/8 [1228 mm]

1" NPT SPRAY WASH INLET

4" MAGNETIC FLOW METER
4" ACTUATED PLUG VALVE
30004T-1204 SHP MUFFIN MONSTER GRINDER

106 3/8 (2701 mm)
142 9/16 (3620 mm)
30 3/4 (781 mm)
25 13/16 (656 mm)

2" NPT DRAIN PORT
1" NPT DRAIN PORT
1" NPT SPRAY WASH INLET

1" NPT SPRAY WASH INLET

38 13/16 [985 mm]
142 9/16 [3620 mm]
30 3/4 [781 mm]
25 13/16 [656 mm]

1" NPT SPRAY WASH INLET

1" NPT SPRAY WASH INLET

4" ACTUATED PLUG VALVE
30004T-1204 SHP MUFFIN MONSTER GRINDER

4" MAGNETIC FLOW METER

1" NPT SPRAY WASH INLET

1" NPT SPRAY WASH INLET
SECTION 11330
HONEY MONSTER®
SEPTAGE RECEIVING STATION-SERIES SRS-XE
(Includes Grinder-XPFC Explosion Proof and MonsterTrack™ Data Collection)

PART 1 GENERAL

1.1 SUMMARY

A. This section of the specification describes the septage receiving station(s) and controller(s).
The equipment shall be installed as shown on the plans, as recommended by the supplier, and in compliance with all OSHA, local, state and federal codes and regulations.

B. The number of septage receiving station(s) and controller(s) shall be ______.

1.2 REFERENCES

A. Station(s) shall, as applicable, meet the requirements of the following industry standards:

5. American Iron and Steel Institute (AISI) 303 Stainless Steel

6. American Iron and Steel Institute (AISI) 304 Stainless Steel

7. American Iron and Steel Institute (AISI) 316 Stainless Steel

8. American Iron and Steel Institute (AISI) 4130 Heat Treated Alloy Steel

9. American Iron and Steel Institute (AISI) 4140 Heat Treated Alloy Steel

10. American Iron and Steel Institute (AISI) 8620 Heat Treated Alloy Steel

11. American Iron and Steel Institute (AISI) 17-4 Stainless Steel

B. Controllers shall, as applicable, meet the requirements of the following Regulatory Agencies:

1. National Electrical Manufacturer’s Association (NEMA) Standards

2. National Electric Code (NEC)

3. Underwriters Laboratory (UL and cUL)

4. International Electrotechnical Commission (IEC)
PART 1 GENERAL (Cont'd)

1.3 DOCUMENTS

A. Submittals

Supplier shall submit six (6) sets of submittals. Submittals shall include equipment
descriptions, functional descriptions, dimensional and assembly drawings, catalog data, and
job specific drawings.

B. Operation and Maintenance manuals.

The supplier shall provide three (3) Operation & Maintenance manuals. An electronic version
shall be supplied to create additional copies. The manuals shall include equipment
descriptions, operating instructions, drawings, troubleshooting techniques, a recommended
schedule, and the recommended lubricants.

1.4 QUALITY ASSURANCE

A. Identification

1. Equipment shall be identified with a corrosion resistant nameplate affixed in a
conspicuous location.

2. Nameplate information shall include manufacturer’s name and address, equipment model
number, and serial number.

B. Manufacturer

1. Supplier shall be ISO9001 certified and have a minimum 30 years experience as a
manufacturer of municipal waste water equipment and a minimum 50 prior installations
of similar equipment.

2. Supplier, at request, shall provide a list of reference sites for similar equipment for
verification by the Engineer or Owner’s Representative.

3. Supplier shall conduct factory testing and verification of equipment prior to shipment.

4. Supplier shall have factory owned bi-coastal service centers in USA.

C. Installation & Start-up

1. Supplier and provide services of a factory trained representative to check installation and
review start-up of equipment and controls.

2. Supplier Representative shall inspect and approve site installation and supervise a review
of the operation of the equipment.

3. Supplier Representative shall provide training on operation and maintenance
requirements of the equipment.
PART 1 GENERAL (Cont'd.)

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging

1. Containers or skids shall be constructed for normal shipping, handling, and storage.

2. Containers shall provide adequate protection for the equipment in a dry indoor environment between +40°F (+4.5°C) and +100°F (+37.8°C).

1.6 WARRANTY

Manufacturer’s standard 12-month limited warranty shall be provided on equipment.

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Septage Receiving station(s) shall be in accordance with these specification and plans and shall be supplied by one of the following manufacturers:

1. JWC Environmental, 290 Paularino Ave, Costa Mesa, CA 92626; Tel: 800-331-2277
 www.jwce.com
 JWC Environmental Series SRS3235 Honey Monster®-Septage Receiving Station
 JWC Environmental Model PC2450 Controller.

2. Approved equal.

B. Manufacturers requesting to be selected as an approved equal shall submit certified documentation showing compliance with these specifications a minimum of ten (10) days prior to bid opening. Selected equipment manufacturers shall be added to the list of approved manufacturers.

C. Selected approved equal manufacturers shall conduct an onsite test within ten (10) days of installation demonstrating compliance with all areas of this specification.

2.2 SEPTAGE RECEIVING SYSTEM(S)

A. General

The septage receiving station(s) shall effectively reduce, separate, wash and de-water septic waste that has been delivered to the system. The septage receiving station shall record transaction data and provide the information for use.

B. Performance

1. Septage receiving station(s) shall be rated for 1000 GPM (63l/s) clean water flow.

2. Septage receiving station(s) shall be rated for 15 PSI (103 kPA) maximum inlet pressure.
PART 2 PRODUCTS (Cont’d)

2.3 METAL TRAP

A. Description

The metal trap shall reduce inlet velocities to allow large metal and other large objects
entrained in the process flow to be captured and removed at a convenient location. A
manual knife gate shall allow the captured objects to be discharged into a debris receptacle for
draining of excess liquid and disposal of the large objects.

A. Components

1. Metal Trap shall be constructed of AISI 304 stainless steel and PVC/ stainless steel knife
gate.

2. A 4-inch cast aluminum male cam & groove fitting with removable cap shall provide
connection to inlet feed hoses.

3. A velocity reduction zone shall reduce velocities to 3 ft/s (.91 m/s) at 375 GPM (23.6 l/s)

4. A manual knife gate shall be used to open the trap to release captured objects into the
debris receptacle.

5. Debris receptacle shall have a 4-inch NPT drain and a removable basket with ½-inch (13
mm) perforations.

2.4 INLET PIPING

A. Description

Inlet piping shall provide connection between the metal trap, grinder, plug valve, flow meter,
and tank.

B. Components

1. Inlet Piping shall be constructed of passivated AISI 304 stainless steel

2. Pipe segments shall have 4-inch class 150 lb weld neck flanges.

3. Gaskets shall be constructed of 1/8 neoprene rubber.

4. Fasteners shall be constructed of 18-8 stainless steel.

2.5 GRINDER

A. Description

Grinder shall reduce inlet solids for protection of other components and enhance the separation,
washing, and de-watering process. Grinder shall be two shafted design consisting of individual
cutters and spacers. Grinder shall have a single piece main body housing consisting of pipe flanges
and inspection ports. Cutter cartridge shall be removable with the main body housing remaining in
situ. Grinder shall have motor and speed reducer for cutter drive.
PART 2 PRODUCTS (Cont’d)

2.5 GRINDER

B. Components

1. Cutters and Spacers
 a. Cutting stack height shall be a nominal height of 12-inches (305 mm).
 b. Cutter shall be an individual disk constructed of ASTM 4130 alloy steel surface ground to thickness of .310-inches +.000/-.001 (7.9 mm +.000/-.003).
 c. Cutters shall be carburized to produce a hardness of 45-50 Rockwell C.
 d. Cutters shall have 7 cam shaped teeth. Tooth height shall not be greater than ½-inch (13 mm) above the root diameter of the cutter.
 e. Spacers shall be an individual disk constructed of ASTM 4130 alloy steel surface ground to a thickness of .319-inches +.001/-.000 (8.1 mm +.003/-.000).
 f. Spacers shall have a hardness of 34-38 Rockwell C.
 g. Spacers shall have a smooth outside diameter with no tooth profiles.

2. Shafts
 a. Shafts shall be constructed from ASTM 4140 alloy steel with a minimum tensile strength of 149,000 PSI (1,027 kPA).
 b. Shafts shall be measure a nominal 2-inches (51 mm) across flats of hex.
 c. Shafts shall be hardened to 32-38 Rockwell C.

3. Seal Cartridges
 a. Seal cartridges shall be rated to a maximum of 90 PSI (620 kPA).
 b. Seal cartridges shall not require flushing.
 c. Dynamic and rotating seal faces shall be tungsten carbide with 6% nickel binder.
 d. O-rings shall be Buna-N (Nitrile).
 e. Radial and axial loads shall be borne by sealed, oversized, deep-groove ball bearings.

4. Housings and Covers
 a. Main body, gear, base, and end housings shall be ASTM A536-84 ductile iron.
 b. Top cover and inspection port covers shall be ASTM A536-84 ductile iron.
 c. Main body housing shall have inlet and outlet flanges with bolt pattern machined to class 150 4-inch pipe flange size.
PART 2 PRODUCTS (Cont'd)

2.5 GRINDER (Cont'd)

B. Components (Cont'd)

4. Housing and Covers (Cont'd)

d. Main body housing shall have integral side wall deflectors to direct solids into cutters.

e. Inspection port covers shall be on both inlet and outlet sides of main body housing.

f. End housing shall have integral bushing deflector to guide solids away from seal cartridges.

5. Speed Reducer

a. Reducer shall be manufactured by Sumitomo Machinery Corporation of America.

b. Reducer shall be internal planetary mechanism with trochoidal curved tooth profile.

c. Reducer shall be a vertically mounted single 29:1 reduction.

d. Reducer shall be grease lubricated.

6. Motor

a. Motor shall be manufactured by Baldor Electric Company.

b. Motor shall be 5 hp (4 kW), XPFC, 1725 rpm, 230/460 volt, 3 phase, 60 Hz.

c. Motor shall have a minimum service factor of 1.00, 87.5% minimum efficiency factor at full load, minimum 80% power factor at full load.

C. Performance

1. Grinder shall have a maximum headloss of 11 inches (280 mm) of water column at 400 GPM of clean water (25 L/S).

2. Grinder shall provide a peak shaft torque of 4,246 lb-in/hp (643 Nm/kW).

3. Grinder shall provide a peak force at cutter tip of 1,831 lbf/hp (10,921 N/kW).

2.6 PLUG VALVE

A. Description

The actuated plug valve shall provide security and regulate the process flow as controlled by the ultrasonic level sensor.

B. Components

1. Valve Body

a. Valve body shall be manufactured by Milliken and cast of ASTM A-126 iron class B.
PART 2 PRODUCTS (Cont’d)

2.6 PLUG VALVE (Cont’d)

B. Components (Cont’d)

b. Valve shall have 4-inch (100 mm) class 125 inlet and outlet flanges.

c. Valve body shall have 316 SST sleeve type metal shaft bearings, sintered, oil impregnated permanently lubricated.

d. The valve plug shall a cylindrical seating surface that is offset from the center of the plug shaft.

f. The valve plug shall be 100% encapsulated with Buna-N, 70 shore and shall withstand 75 lbs pull under test procedure ASTM D-429-73 Method B.

2. Actuator

a. The actuator shall be manufactured by Rotork and be model IQT125

b. The actuator enclosure shall be rated NEMA 4/4x/6 (IP68).

c. The actuator shall have a drive hand wheel for emergency manual operation.

d. A hand held infra-red IQ Setting Tool shall be included to make setting changes without removal of any covers.

2.7 FLOW METER

A. Description

The flow meter shall provide a discrete pulse output to the controller providing flow measurement of the processed fluid in gallons or liters.

B. Components

1. Flow meter shall be manufactured by Endress+Hauser.

2. Flow meter body shall have class 150 4-inch inlet and outlet flanges.

3. Throat of flow meter body shall be coated with polyurethane.

4. Electrodes shall be AISI 316L stainless steel bullet nose type.

5. Control transceiver housing shall be rated NEMA 4X (IP67).

2.8 TANK ASSEMBLY

A. Description

The tank shall house auger assembly and spray wash assemblies for the purpose of separating undesirable solids from the processed fluid. The tank shall include covers for access and removal of the inclined screw conveyor for maintenance. The tank shall include mounting tubes for the ultrasonic level sensor. Two spray wash assemblies shall direct water onto to the captured solids and perforations of the incline screw screen trough for purposes of cleaning.
PART 2 PRODUCTS (Cont’d)

2.8 TANK ASSEMBLY (Cont’d)

A. Description (Cont’d)

the captured solids. A third spray wash assembly shall direct water onto the tank walls for cleansing. The spray wash assemblies shall all be controlled from a single control loop with 1-inch NPT inlet connection.

B. Components

1. Tank

 a. Tank shall have a class 150 4-inch inlet flange.
 b. Tank shall have a 12-inch straight pipe discharge port.
 c. Tank shall be constructed of passivated 10 gauge AISI 304 stainless steel.
 d. Tank shall include lifting points for slings and separate lifting points for forklift.
 e. Tank shall include mounting points for spray wash assemblies.
 f. Tank shall have fully removable covers.

2. Spray Wash Assemblies

 a. Basket strainer shall be 304 stainless steel with 80 mesh screen.
 b. Y-strainer shall be bronze construction with a 20 mesh AISI 304 stainless steel screen.
 c. Solenoid valves shall be bronze body construction with a 120 volt AC Coil, explosion proof.
 d. Ball valves shall be manual and constructed of 304 stainless steel.
 e. Pipe and fitting shall be constructed of 316 stainless steel.
 f. Spray nozzles shall be constructed of 303 stainless steel, V-spray.
 g. Nozzles shall be AISI 303 stainless steel and rated 1.5 GPM @ 40 PSI.
 h. Tank spray rotating nozzle shall be AISI 304 stainless steel/ polypropylene and rated 10 GPM @ 40 PSI.

2.9 PIVOT SUPPORT

A. Description

Pivot Support shall provide a structure for positioning and lifting of the inclined screw in or out of the tank. Pivot Support shall allow 360° rotation of the inclined screw once removed from the tank. Pivot Support shall include a maintenance support stand for supporting of the inclined screw above the tank.
PART 2 PRODUCTS (Cont'd)

2.9 PIVOT SUPPORT (Cont'd)

B. Components

1. Support and stand shall be constructed of AISI 304 stainless steel.
2. Support shall include braces for positioning of the Pivot Support relative to the tank.
3. Support stand shall allow inclined screw to disengage from stand without disassembly.
4. Pivot Support shall support inclined screw at a 35° inclination.

2.10 INCLINED SCREW CONVEYOR

A. Description

Inclined screw conveyor shall separate, transport, de-water, and discharge captured solids. Inclined screw shall include a perforated screen trough, transport segment, de-watering segment, packing gland, drive, and rotor. The baffles of the screen trough shall create an overflow weir for protection of excess flow.

B. Components

1. Perforated Screen Trough
 a. Screen trough shall be constructed of AISI 304 stainless steel and electropolished to remove burrs.
 b. Perforations shall be ¼-inch (6 mm) diameter.
 c. Screen trough shall have baffles mounted on either side of the trough with replaceable ¼-inch neoprene seals attached to the baffles.
2. Transport Segment
 a. Transport segment shall be constructed of passivated AISI 304 stainless steel.
 b. Transport segment shall have 17-4PH wear bars.
 c. Transport segment shall be 19-11/16 inch (500 mm) flange to flange.
3. De-watering Segment
 a. De-watering segment shall be constructed of passivated AISI 304 stainless steel.
 b. De-watering segment shall have dual compartment design for shaft to enter in one compartment and captured solids into another compartment.
4. Packing Gland and Housing
 a. Packing shall be constructed of four (4) PTFE impregnated cords.
 b. Packing Gland housing shall be constructed of AISI 304 stainless steel.
PART 2 PRODUCTS (Cont'd)

2.10 INCLINED SCREW CONVEYOR (Cont'd)

A. Components (Cont'd)

5. Rotor

a. Rotor shall be constructed of alloy steel.

b. Lower section of rotor shall be 480 mm diameter with ½-inch (12.7 mm) groove for mounting of brush.

c. Brush shall mount into groove and be secured with set screws.

d. Rotor shall have a transition section from 480 mm to 285 mm.

e. Rotor shall have a double helix 285 mm section prior to compaction zone.

f. Brush shall be single piece design with stainless steel backing and nylon bristles.

6. Speed Reducer

a. Reducer shall be manufactured by Nord Gear Corporation

b. Reducer shall be helical parallel shaft mounted with a 160:1 reduction.

7. Motor

a. Motor shall be manufactured by Baldor Electric Company.

b. Motor shall be 2 hp (1.5 kW), XPFC, 1725 rpm, 230/460 volt, 3 phase, 60 Hz.

c. Motor shall have a minimum service factor of 1.00, 84% minimum efficiency factor full load, minimum 79% power factor at full load.

2.11 CONTROLLER

A. Description

A dual enclosure controller shall provide control of the septage receiving station components. The operator enclosure shall have a magnetic card reader, Operator Interface Terminal, printer and control devices for operating the system and providing data collection. The main enclosure shall have indicator lights, switches and other control devices.

B. Components

1. Enclosures

a. Main enclosure shall be AISI 304 stainless steel NEMA 4X and house the control devices, motor starters, Emergency Stop and PLC.

b. Operator Enclosure shall be AISI 304 stainless steel NEMA 1 and house the printer, magnetic card reader, OIT with compact flash memory card recorder, and Start & Stop pushbuttons.
PART 2 PRODUCTS (Cont’d)

2.11 CONTROLLER (Cont’d)

B. Components (Cont’d)

2. Magnetic Card Reader (Operator Enclosure)
 a. Card reader shall be manufactured by ID-Tech.
 b. Card reader shall be rated for outdoor use.
 c. Card reader shall provide identification and authorization for use of the system.

3. Printer (Operator Enclosure)
 a. Printer shall be manufactured by Infinite Peripherals.
 b. Printer shall use 80 mm wide single roll thermal paper.
 c. Printer shall print a transaction receipt that lists site address, date, time, user ID, and total flow processed.

4. Operator Interface Terminal (Operator Enclosure)
 a. OIT shall be manufactured by Red Lion.
 b. OIT shall be rated for outdoor use.
 c. OIT shall display fail, service reminder and operational messages.
 d. OIT shall display Volume, Tank Level and Valve Position when processing a transaction.
 e. OIT shall allow for a programmable system cleaning cycle.
 f. Recorder shall store transaction data and provide transfer of the data via a memory card reader as a CSV file to a Personal Computer.
 g. A custom template that formats the data shall be provided on CD.

6. Start & Stop Pushbuttons (Operator Enclosure)
 a. Pushbuttons shall be rated NEMA 4X.
 b. Start pushbutton shall initiate operation of the system after successful identification and authorization of the user’s PIN has been entered via the card reader or OIT.
 c. Stop pushbutton shall initiate a stop of the system and immediately stop the grinder motor, and close the plug valve. Transaction data shall be written to the PLC data register and a transaction receipt printed. Tank spray wash solenoid shall energize and operate along with the auger motor and auger spray wash for the duration of the cleaning cycle.
2.11 CONTROLLER (Cont’d)

B. Components (Cont’d)

7. Grinder ON/OFF/AUTO three-position keyed selector switch. (Main Enclosure)
 a. In the ON position, the grinder shall run continuously.
 b. In the AUTO position, the grinder shall operate as controlled by the START and STOP pushbuttons.

8. Auger ON/OFF/AUTO three-position keyed selector switch. (Main Enclosure)
 a. In the ON position, the auger shall run continuously.
 b. In the AUTO position, the auger shall operate as controlled by the START and STOP pushbuttons.

9. Plug Valve OPEN/CLOSE/AUTO three-position keyed selector switch. (Main Enclosure)
 a. In the OPEN position, the plug valve will open.
 b. In the CLOSE position, the plug valve will close.
 c. In the AUTO position, the plug valve will open and close as controlled by the ultrasonic level sensor mounted on the tank.

10. RESET momentary two-position keyed selector switch. (Main Enclosure)
 a. Switch shall be rated NEMA 4X
 b. Reset switch shall clear any fault condition and rest system for operation.

11. Pilot Lights (Main Enclosure)
 a. Lights shall be LED type rated NEMA 4X.
 b. Lights shall indicate GRINDER RUN, AUGER RUN, PLUG VALVE OPEN and FAIL.

12. Emergency Stop Pushbutton (Main Enclosure)
 a. Emergency Stop Pushbutton shall be rated NEMA 4X.
 b. When activated Emergency Stop shall close plug valve, stop all motors and de-energize solenoid valves.

13. Motor Starter and Control Transformer (Main Enclosure)
 a. Starter shall be a full-voltage reversing type with 120 volt operating coils.
 b. Overload relays shall be adjustable and sized to full load amperes (FLA) of the motor.
PART 2 PRODUCTS (Cont'd)

2.11 CONTROLLER (Cont'd)

B. Components (Cont'd)

14. Programmable Logic Controller (Main Enclosure)
 a. PLC shall be manufactured by Panasonic.
 b. PLC shall have a minimum of 16K of memory.
 c. PLC shall be able to store 1000 transactions

C. Safety Features

1. When a grinder jam condition occurs while the system is operating, the controller shall stop the grinder, then reverse the grinder rotation to clear the obstruction. If the jam is cleared, the controller shall return the grinder to normal operation. If three reverses occur within a 30 second interval, the controller shall de-energize the grinder motor and activate the grinder FAIL indicator and relay. The auger shall continue to operate.

2. When an inclined screw jam condition occurs while the system is operating, the controller shall stop the screw, then reverse the screw rotation to clear the obstruction. If the jam is cleared, the controller shall return the screw to normal operation. If two reverses occur within a 30 second interval, the controller shall de-energize the grinder motor and activate the auger FAIL indicator and relay. The grinder shall continue to operate.

3. When a power failure occurs while the system is operating, the transaction shall terminate. Once power is restored, a receipt shall print.

4. When a power failure occurs while the grinder or auger is in a fail condition, once power is restored the fail indicator shall reactivate and remain until reset.

5. Reset shall only be from the main control only.

PART 3 EXECUTION

3.1 INSTALLATION

Septage Receiving Station(s) and controller(s) shall be installed in accordance with the supplier’s installation instructions, and in accordance with all OSHA, local, state, and federal codes and regulations.

3.2 TESTING

Test the Septage Receiving Station to demonstrate correct alignment, smooth operation and freedom of excessive vibration and noise. Test period shall include one cycle of processed fluid that demonstrates accurate measurement of the flow and all run cycles are properly set.

3.3 TRAINING

A field training course shall be provided for operating and supervisory staff members. Field instruction shall cover all items contained in the operation & maintenance manuals.

END OF SECTION