April 2018

Cider Foam Reduction at Downeast Cider House

Alex Kolodziejczak
Worcester Polytechnic Institute

Emily M. Riendeau
Worcester Polytechnic Institute

Jason Anthony Bruno
Worcester Polytechnic Institute

Rose Gougian
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

Repository Citation
This report represents the work of WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review. For more information about the projects program at WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html
This project analyzed the different factors that affected foam formation during the packaging process of Downeast cider. This was done by pouring Downeast cider at different flow rates under different conditions and measuring the amount of foam produced. Foam is formed by the CO\textsubscript{2} bubbles releasing from the cider. Turbulence in the liquid forces the gas bubbles to fall out of solution. Cider was placed in a sealed container and pressurized with CO\textsubscript{2} to push the cider out at a consistent flow rate. Our testing showed that slower flow rates and pouring down the side of the container reduces the amount of foam produced. The slower flow rates and pouring down the side result in less turbulence.

This MQP contains information deemed confidential to the business interest of the industrial sponsor. Please contact Stephen Kmiotek at sjkmiotek@wpi.edu for additional information.