6-1-1990

Optimal Large Eddy Simulation in One Dimension

Mayer Humi
Worcester Polytechnic Institute, mhumi@wpi.edu

Follow this and additional works at: https://digitalcommons.wpi.edu/mathematicalsciences-pubs

Part of the Mathematics Commons

Suggested Citation
http://dx.doi.org/10.1063/1.857644

This Article is brought to you for free and open access by the Department of Mathematical Sciences at DigitalCommons@WPI. It has been accepted for inclusion in Mathematical Sciences Faculty Publications by an authorized administrator of DigitalCommons@WPI. For more information, please contact akgold@wpi.edu.
the inner corner, measurements in water confirmed the formation of a counter-rotating vortex in that region. The formation of an infinite sequence of vortices near corners was first predicted by Moffat. Finally, tests with the model inserted backwards in the glycerol flow confirmed that the low-Re cavity flow was essentially reversible.

Because insect wings span a wide range of orientations with respect to the relative wind velocity, it was considered worthwhile to run a few tests with the model inserted at different angles relative to the flow direction. As shown in Figs. 6 and 7, an increase in the angle of attack in the range -20° to 20° resulted in a measurable increase in the size of the separation region.

The present results clearly document the characteristics of flow in and above two-dimensional, asymmetric, triangular cavities. Unfortunately, one of the long-term objectives of this work, namely an explanation for the possible aerodynamic effect of such cavities, has not yet been adequately resolved. Nachtigall's postulate that scales may increase lift by creating turbulence near the wing is incompatible with the Reynolds number range of such flows. The only possible connection that we have been able to infer is that the asymmetry of the cavities might create a component of the skin friction in the direction normal to the free stream, thus contributing to the lift. Obviously, more work is required in order for this question to be answered.

FIG. 6. Separation streamlines for different angles of attack ($Re = 0.62$).

ACKNOWLEDGMENTS

The above work was initiated following a suggestion by the late S. Corrsin. Financial assistance was provided by the Natural Sciences and Engineering Research Council of Canada and through a scholarship (to B.C.) by the Government of Tunisia/Canadian International Development Agency.

(To simplify notation we use u for \bar{u}.) By applying this filter to Navier–Stokes equations we then derive an equation for u after proper modeling of the subgrid terms.

To illustrate this process we consider Burger’s equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = v \frac{\partial^2 u}{\partial x^2}. \quad (2)$$

Applying the filter operation to this equation we obtain, after obvious algebra,

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \tau \frac{\partial \tau}{\partial x} = v \frac{\partial^2 u}{\partial x^2}, \quad (3)$$

where

$$\tau = u' + (u')^2 \quad (4)$$

and u' are the subgrid residuals

$$u' = u - \bar{u}. \quad (5)$$

Various prescriptions are available in the literature to model τ in terms of u, e.g., the Smagorinski eddy viscosity model or the mixed model proposed by Bardina et al. and Piomelli et al. In one dimension these models are given, respectively, by

$$\tau = -2v_r \frac{\partial u}{\partial x}, \quad v_r = k \frac{\partial u}{\partial x}$$

and

$$\tau = u'' - \bar{u}^2 - 2v_r \frac{\partial u}{\partial x}, \quad (15)$$

where k is a constant.

As to the filter function, three principal choices are available in the literature. These are the Gaussian filter, the sharp Fourier cutoff filter, and the top-hat filter. These different choices for G and τ lead us naturally to examine whether an optimal filter function and a subgrid model can be constructed for LES. Motivated by the properties of the filter functions \((6)\) and \((7)\) we require this optimal filter function G to be a smooth even function defined on $(- \infty, \infty)$. Furthermore, G has to be determined so that for a large class of flows the solutions of the filtered equations (using some fixed subgrid model) “resembles” as much as possible the characteristics of the original flow. This last requirement, however, can have different interpretations. For example, we may use it to derive an optimal model that is based on the structure of the Reynolds stress tensor. Another possibility is to require that the turbulence statistics, including the effect of the subgrid scales obtained from LES, represents a “good approximation” to those obtained from direct simulation. We also observe that from a formal point of view \((1)\) represents a change of variable and if this transformation is exactly invertible then we can obtain u back from \bar{u}. In practice, however, τ is not known exactly and the inversion on a finite precision machine will lead to further discrepancies between u and \bar{u}.

Our objective in this Brief Communication is to derive an optimal (Gaussian-like) filter function that is based on the requirement that the spectral decomposition of u and \bar{u} (with respect to some complete set of orthogonal functions) is the same up to order n. Furthermore, we shall derive a new model for τ that is based on the requirement that the flow energy represented by u and \bar{u} have the same decay profile.

We begin by performing a spectral analysis of LES in one dimension.

Since G must be defined on $(- \infty, \infty)$ it is natural to expand it in terms of an orthogonal basis of $L_2(- \infty, \infty)$. Such a basis is given by the Hermite polynomials $H_n(x)$, which are orthogonal to each other with respect to the weight function e^{-x^2}, i.e.,

$$\int_{-\infty}^{\infty} e^{-x^2} H_n(x) H_m(x) dx = 2^n n! \sqrt{\pi} \delta_{m,n}. \quad (8)$$

Moreover, since $H_{2k+1}(x)$, $k = 0, 1, \ldots$, are odd it follows that an expansion for G (which is even) in terms of these functions can take, without loss of generality, the form

$$G(x) = e^{-x^2} \sum_{k=0}^{\infty} b_{2k} H_{2k}(x). \quad (9)$$

Assuming that u, \bar{u} are also defined on $(- \infty, \infty)$ we introduce the spectral decomposition

$$u(x,t) = \sum_{n=0}^{\infty} a_n(t) H_n(x), \quad (10)$$

$$\bar{u}(x,t) = \sum_{n=0}^{\infty} \bar{a}_n(t) H_n(x). \quad (11)$$

Substituting \((10)\) in \((2)\) we can use the identities

$$H'_n(x) = 2n H_{n-1}(x), \quad (12)$$

$$H'_m(x) H'_n(x) = 2^m m! \sum_{k=0}^{m} \frac{H_{n-m-2k}(x)}{2^k k! (k+n-m)! (m-k)!}, \quad n > m \quad (13)$$

to simplify and linearize the products of Hermite polynomials that appear. Multiplying the resulting expression by e^{-x^2} we obtain an infinite system of ordinary differential equations for $a_n(t)$,

$$\frac{\partial a_n}{\partial t} = 8va_2 - 2a_1(a_0 + 4a_2) - 48a_2a_3 + \cdots, \quad (14a)$$

$$\frac{\partial a_1}{\partial t} = -2a_1^2 - a_2(16a_2 - 4a_0) + 24(v - a_1 - 6a_3) + \cdots, \quad (14b)$$

etc.

Similarly, by substituting \((11)\) in \((3)\) we can linearize the products of Hermite polynomials in the expression

$$I = \int_{-\infty}^{\infty} G(x - x') u(x',t) \frac{\partial u(x',t)}{\partial x'} dx', \quad (15)$$

which appear in this equation. To this end we first linearize the products in the term $u(\partial u/\partial x)$ by using the identities \((12)\) and \((13)\). Then we make use of the identity

$$H_n(x') = \frac{1}{2^n n^2} \sum_{k=0}^{n} \binom{n}{k} H_{n-k} [H_{\sqrt{2}}(x') \sqrt{2}], \quad (16)$$

to replace $H_n(x')$ in I. Expressing $H_n[(x' - x)\sqrt{2}]$ in terms of $H_n(x' - x)$ we can evaluate the resulting integrals using (8). Substituting this result in Eq. (3) we obtain, as before, a system of ordinary differential equations for $a_n(t)$,

$$\frac{da_n}{dt} = 8\nu_T a_2 + \sqrt{\pi} (2a_1 (2b_1 a_1 - b_2 a_0)
+ 4a_2 (2b_1 a_0 - a_1 (5b_0 + 12b_2))
+ 16a_2 (5b_1 + 12b_2) + \cdots),$$

(17a)

$$\frac{da_1}{dt} = 24\nu_T a_3 + \sqrt{\pi} (2a_1 (12b_1 a_2 - b_2 a_1)
- 4a_2 (b_2 a_0 + 2a_2 (5b_0 + 12b_2)) + \cdots),$$

(17b)

etc.

In these equations ν_T represents the sum of molecular and eddy viscosity (but no specific model is assumed). It follows then that the exact and filtered equations yield the same spectral approximation for the flow up to order n if $a_n(t)$ and $a_n(t)$ satisfy the same differential equations up to that order. For this to happen we should be able to solve the algebraic equations,

$$(14k) - (17k) = 0, \quad k = 0, 1, \ldots, n$$

(18)

(after setting $a_i = a_0$ for $i > n$ and $a_i = a_0$ for $i < n$) for the b_{2k}'s in terms of the a_k's and obtain scalar expressions, i.e., expressions that are time independent.

It turns out that the maximal order of n for which this program can be carried out is $n = 3$, and we obtain

$$b_0 = 1/\sqrt{\pi}, \quad b_2 = -1/4\sqrt{\pi},
$$

$$b_4 = (15a_2 + \nu_T - \nu)/480\sqrt{\pi}a_3$$

(19)

(the expression for b_4 is time independent only if we let $\nu_T = \nu$). For $n > 3$ the solution of the linear system (18) for b_{2k} contains polynomials of $a_n(t)$ and it is impossible to obtain exact agreement between u and \bar{u} with scalar b's. This discrepancy between u and \bar{u} will increase as the number of degrees of freedom in the flow increases and the modes with $n > 3$ make significant contributions to the overall flow. Thus we demonstrated that under present assumptions and constraints the approximation for u obtained through any filter function will break down as the Reynolds number increases. Moreover, even for Reynolds numbers that are not large, Eq. (19) shows that the optimal filter function is not purely Gaussian and should contain contributions from higher-order terms.

Finally, we observe that u and \bar{u} are assumed to satisfy the same boundary conditions and therefore (19) is independent of these.

We now present an energy model for τ.

Let u be the solution of Burger's equation on some region Ω subject to some boundary conditions. By multiplying (2) and (3) by u and u, respectively, and integrating over Ω we obtain the energy equations

$$\frac{d}{dt} \int_\Omega u^2 dx + \nu \frac{\partial^2 u}{\partial x^2} + \frac{u}{3} = 0,$$

(20)

$$\frac{d}{dt} \int_\Omega \langle u \rangle^2 dx + \int_\Omega (\bar{u} - \langle u \rangle) \frac{\partial \langle u \rangle}{\partial x} dx
+ \nu \frac{\partial^2 \langle u \rangle}{\partial x^2} = 0.$$