TOGGLE LINKAGE EQUATIONS

I. PER MARKS, Pg 859:

\[P = \frac{F \cdot s \cdot \cos \alpha}{t} \]

Simplifying Approximation:

Take \(F \) as always perpendicular to the toggle \(\phi \):

Then \(s = R \cos \phi \)

And \(t = R \cos [90 - \alpha - \phi] = R \cos [90 - (\alpha + \phi)] \)

\[t = R \sin (\alpha + \phi) \]

Substituting:

\[P = \frac{F (R \cos \phi) \cos \alpha}{R \sin (\alpha + \phi)} \]

\[P = \frac{F \cos \beta \cos \alpha}{\sin \alpha \cos \beta + \cos \alpha \sin \beta} \]

Divide numerator & denominator first by \(\cos \beta \), then by \(\cos \alpha \):

\[P = \frac{F}{\tan \alpha + \tan \beta} \] (Approximate)

II. Full Derivation of the Approximate Solution:

Resolving \(F \) into components

A & B, and looking at \(\alpha \) & \(\beta \)

Components of A & B:

\[F = A_x + B_x = A \sin \alpha + B \sin \beta \]

\[A_y = B_y; A \cos \alpha = B \cos \beta \]

\[B = A \ \frac{\cos \alpha}{\cos \beta} \]

\[F = A \sin \alpha + A \ \cos \alpha \ \tan \beta \]

\[F = A \sin \alpha + A \ \cos \alpha \ \tan \beta \]

Now, \(P \) must equal \(A \cos \alpha \), so that \(A = \frac{P}{\cos \alpha} \)

\[F = \frac{P}{\cos \alpha} \sin \alpha + P \tan \beta = PTan \alpha + P \tan \beta \]

\(\therefore \) \[P = \frac{F}{\tan \alpha + \tan \beta} \] (As Above)
TOGGLE LINKAGE EQUATIONS

1. PER MARKS, PG 859:

\[P = \frac{FS \cos \alpha}{t} \]

SIMPLIFYING APPROXIMATION:

TAKE \(F \) AS ALWAYS PERPENDICULAR TO THE TOGGLE \(L \):

THEN \(S = R \cos \beta \)

AND \(t = R \cos [90 - \alpha - \beta] = R \cos [90 - (\alpha + \beta)] \)

\[t = R \sin (\alpha + \beta) \]

SUBSTITUTING:

\[P = \frac{F(R \cos \beta) \cos \alpha}{R \sin(\alpha + \beta)} \]

\[P = \frac{F}{\frac{\cos \beta \cos \alpha}{\sin \alpha \cos \beta + \cos \alpha \sin \beta}} \]

DIVIDE NUMERATOR & DENOMINATOR FIRST BY \(\cos \beta \), THEN BY \(\cos \alpha \):

\[P = \frac{F}{\tan \alpha + \tan \beta} \] (APPROXIMATE)

II. FULL DERIVATION OF THE APPROXIMATE SOLUTION:

RESOLVING \(F \) INTO COMPONENTS

\(A \& B \), AND LOOKING AT \(x \& y \)

COMPONENTS OF \(A \& B \):

\[F = A_x + B_x = A \sin \alpha + B \sin \beta \]

\[A_y = B_y \]

\[\frac{A \cos \alpha}{\cos \beta} \]

\[F = A \sin \alpha + A \frac{\cos \alpha \sin \beta}{\cos \beta} \]

\[F = A \sin \alpha + A \cos \alpha \tan \beta \]

NOW, \(P \) MUST EQUAL \(A \cos \alpha \), SO THAT \(A = \frac{P}{\cos \alpha} \)

\[F = \frac{P \cos \alpha}{\sin \alpha + P \tan \beta} = P \tan \alpha + P \tan \beta \]

OR \[P = \frac{F}{\tan \alpha + \tan \beta} \] (AS ABOVE)