The Challenges Behind Cyanobacteria in Southern Florida
Caitlin Burner (CE), Shanel Chisholm (CHE), Tapanont David Laavoravit (RBE), Gina Rios (EVE), Alexander Ruggiero (RBE)
Advisors: Professors Derren Rosbach (CEE) and Sharon Wulf (SoB)

Abstract
Cyanobacteria are microorganisms that are important in the formation of the earth’s atmosphere as well as in the process of nitrogen fixation. In Lake Okeechobee, algae blooms of Anabaena and Microcystis strains of toxic cyanobacteria have been increasing since 1987. Due to an increase of the water level, the U.S. Army Corps of Engineers have been forced to release water from the lake, allowing the cyanobacteria and nutrients to flow into the waterways. We researched multiple methods of cyanobacteria filtration and compiled what we believe are the most effective methods into one system. We recommend the use of filtration strip switchgrass and filtration plates to filter out the nitrogen and phosphorous and remove the cyanobacteria in the long term.

Background
- Blue-green algae produces cyanotoxins which have side effects on humans ranging from abdominal cramps, nausea, diarrhea, and vomiting to liver damage.
- The toxic cyanobacteria blooms are leading to deaths in the populations of dolphins, manatees, shellfish, reefs, sea grasses, oysters, and has even been linked to human deaths.
- Cyanobacteria obtain their energy through photosynthesis and thrive under conditions with high nitrogen and phosphorous levels.

Project Goals
- Analyze methods of removing phosphates and nitrates from agricultural runoff
- Analyze methods of removing adequate amounts of cyanobacteria, phosphates and nitrates from Lake Okeechobee and it’s surrounding tributaries
- Consider feasible methods of implementing a feasible and cost effective solution

Methods
- We researched the political and environmental situations in Florida. Both are complex situations on their own.
- We decided to focus on the environmental aspect of the issue.
- We compared various methods of extracting cyanobacteria, phosphates and nitrates from water. Our group compiled all the researched extraction processes into one filtration system.
- In this system phosphates and nitrates are extracted both at the source of pollution and in the lake water as well and cyanobacteria would be extracted on the locks of the gates.
- Assessed the cost feasibility of implementing our system during current rehabilitation works on the Herbert Hoover Dike on Lake Okeechobee.

Outcomes
- Prevention of nitrates and phosphates from entering Lake Okeechobee from agricultural runoff using switchgrass biomass filter strips.
- Implementation of filtration plates on dam locks to remove the existing cyanobacteria from the water as the water is released into Lake Okeechobee’s tributaries.

Conclusions
Nutrient rich runoff from agricultural land near Lake Okeechobee is causing toxic cyanobacteria to thrive more rapidly, negatively impacting the economy, ecosystem, and livelihood of southern Florida. To solve this, cyanobacteria must be removed from the water and systems must be created to eradicate and to prevent further buildup of phosphate and nitrate and to filter the exiting water.

Recommendations
- Installing switchgrass around Lake Okeechobee and nearby farms
- Installing filtration plates (phosphorus-binding clay, denitrifying bacteria and chlorophyll-binding proteins) on Herbert Hoover dike.
- Removing cyanobacteria through mechanical separation process

References
Abrams, M. E. (2013). Scott urges Obama to visit Lake Okeechobee to ‘see federal shortcomings’, Naked Politics.
Burner, C., & Shanel, C. (2013). State of knowledge and concerns on toxic cyanobacteria to thrive more rapidly, negatively impacting the economy, ecosystem, and livelihood of southern Florida. To solve this, cyanobacteria must be removed from the water and systems must be created to eradicate and to prevent further buildup of phosphate and nitrate and to filter the exiting water.

Caitlin Burner (CE), Shanel Chisholm (CHE), Tapanont David Laavoravit (RBE), Gina Rios (EVE), Alexander Ruggiero (RBE)
Advisors: Professors Derren Rosbach (CEE) and Sharon Wulf (SoB)