Abstract

Hybrid/Electric Vehicles (EV/HEVs) will represent 7% of the global vehicle market by 2020. Lithium-ion (Li-ion) batteries, half the car’s cost, are safe while in use but hazardous when they enter traditional waste streams. By developing a closed loop recycling process, subsidies reduce consumer battery cost by 11%, and an energy storing electrical grid balances energy supply/demand, increases useful battery life by 100%, and increases grid efficiency. Green Battery Recycling technology recycles 90% of material value into new raw materials. Our closed loop process manages valuable hazardous materials responsibly, thereby decreasing cost, improving national security, and promoting environmental health.¹, ², ³, ⁴, ⁵, ⁶, ⁷, ⁸

Goals

• Understand Current Li-ion Battery Lifecycle: economic analysis, recycling methods, challenges
• Design Economical Closed Loop Recycling Program

Challenge Addressed

• Necessity for Closed Loop Recycling Process: manage hazardous materials and recover valuable resources
• Toxicity: Li-ion batteries are less safe than public perceives
 - Safe when sealed and used properly but materials pose health and safety hazards in landfills and incinerators
• Exponential Growth: necessity for responsible management
• Lack of Legislation: mandate Li-ion battery recycling
• Insufficient Traditional Recycling Method: large value losses
• Proactive Approach Proposed: enact recycling program in time for projected first wave of retired batteries in 2019⁵, ⁶, ¹¹

Background

• Li-ion Battery Technology: Powering EV/HEVs
 - High performance, lightweight, in-vehicle safety, commonly used in consumer electronics
• Traditional Lead-Acid Car Batteries: 96% recycling rate
 - Material hazards well understood by the public⁸, ¹⁰, ¹¹

Methodology

A Socially Conscientious Method to Enact Closed Loop Li-ion Battery Recycling

Motivation

Electrolyte in Regular Li-ion Batteries
Not Recoverable

Structural

Make Recycling Attractive to Consumers
Significantly More Affordable Li-ion
Increased Reliability & Decreased Electrical Costs
Satisfaction of Green Lifestyle

Group

Knowledgeable Industry to Provide Li-ion/HEV Services
Charging, Maintenance, Support

Personal

Regular Li-ion Batteries: Reactive to Li-ion Batteries

Battery Value from 80% Remaining Battery Capacity Lost

Green Battery Recycling Method

<table>
<thead>
<tr>
<th>Green Battery Recycling</th>
<th>Traditional Battery Recycling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most value recovered</td>
<td>10% value recovered</td>
</tr>
<tr>
<td>Environmentally friendly</td>
<td>Very energy intensive</td>
</tr>
<tr>
<td>No toxicity byproducts</td>
<td>Batteries must be incinerated</td>
</tr>
<tr>
<td>Creates new raw materials for batteries</td>
<td>Most valuable materials put into concrete</td>
</tr>
</tbody>
</table>

Green Battery Recycling vs. Traditional Battery Recycling

Battery Energy Storage System (BESS):
second use batteries store energy in electric grid

• Problem
 - Average power generation > average demand
 - Battery value from 80% remaining battery capacity lost

• Solution: “Peak Shaving”
 - Store excess off-peak generated energy
 - Use stored energy during peak demand

• Save Energy, Make Money
 - Expensive peak generation unnecessary
 - Recovers the typically lost off-peak energy
 - Allows effective use of wind turbines and solar panels, cyclical renewable sources⁵, ⁶

Engineering Solution

Recycling System Design

Comparison of Idealized (Green) and Current (Red) Lifecycles

Recommendations

Implementation of “A Socially Conscientious Method to Enact Closed Loop Li-ion Battery Recycling” would reduce upfront and maintenance cost of batteries by up to 11% by using Li-ion batteries in the electric grid and recycling them using Green Battery Recycling.⁶

Acknowledgements

We would like to thank Eric Gratz (right) for guiding our project, the Electrochemistry Lab at WPI for sharing the Green Battery Recycling Technology with us, and Martin Burt, founder of Fundacion Paraguaya for introducing us to Influencer Theory.²

Notes: