Etd

Magnetic Resonance Imaging of the Rat Retina

Public

Downloadable Content

open in viewer

The retina is a thin layer of tissue lining the back of the eye and is primarily responsible for sight in vertebrates. The neural retina has a distinct layered structure with three dense nuclear layers, separated by plexiform layers comprising of axons and dendrites, and a layer of photoreceptor segments. The retinal and choroidal vasculatures nourish the retina from either side, with an avascular layer comprised largely of photoreceptor cells. Diseases that directly affect the neural retina like retinal degeneration as well as those of vascular origin like diabetic retinopathy can lead to partial or total blindness. Early detection of these diseases can potentially pave the way for a timely intervention and improve patient prognosis. Current techniques of retinal imaging rely mainly on optical techniques, which have limited depth resolution and depend mainly on the clarity of visual pathway. Magnetic resonance imaging is a versatile tool that has long been used for anatomical and functional imaging in humans and animals, and can potentially be used for retinal imaging without the limitations of optical methods. The work reported in this thesis involves the development of high resolution magnetic resonance imaging techniques for anatomical and functional imaging of the retina in rats. The rats were anesthetized using isoflurane, mechanically ventilated and paralyzed using pancuronium bromide to reduce eye motion during retinal MRI. The retina was imaged using a small, single-turn surface coil placed directly over the eye. The several physiological parameters, like rectal temperature, fraction of inspired oxygen, end-tidal CO2, were continuously monitored in all rats. MRI parameters like T1, T2, and the apparent diffusion coefficient of water molecules were determined from the rat retina at high spatial resolution and found to be similar to those obtained from the brain at the same field strength. High-resolution MRI of the retina detected the three layers in wild-type rats, which were identified as the retinal vasculature, the avascular layer and the choroidal vasculature. Anatomical MRI performed 24 hours post intravitreal injection of MnCl2, an MRI contrast agent, revealed seven distinct layers within the retina. These layers were identified as the various nuclear and plexiform layers, the photoreceptor segment layer and the choroidal vasculature using Mn54Cl2 emulsion autoradiography. Blood-oxygenlevel dependent (BOLD) functional MRI (fMRI) revealed layer-specific vascular responses to hyperoxic and hypercapnic challenges. Relative blood volume of the retina calculated by using microcrystalline iron oxide nano-colloid, an intravascular contrast agent, revealed high blood-volume in the choroidal vasculature. Fractional changes to blood volume during systemic challenges revealed a higher degree of autoregulation in the retinal vasculature compared to the choroidal vasculature, corroborating the BOLD fMRI data. Finally, the retinal MRI techniques developed were applied to detect structural and vascular changes in a rat model of retinal dystrophy. We conclude that retinal MRI is a powerful investigative tool to resolve layer-specific structure and function in the retina and to probe for changes in retinal diseases. We expect the anatomical and functional retinal MRI techniques developed herein to contribute towards the early detection of diseases and longitudinal evaluation of treatment options without interference from overlying tissue or opacity of the visual pathway.

Creator
Contributors
Degree
Unit
Publisher
Language
  • English
Identifier
  • etd-041608-144837
Keyword
Advisor
Committee
Defense date
Year
  • 2008
Date created
  • 2008-04-16
Resource type
Rights statement
Last modified
  • 2023-09-20

Relations

In Collection:

Items

Items

Permanent link to this page: https://digital.wpi.edu/show/zc77sq17w