Identifier

etd-043016-130800

Abstract

Traditionally in the Architectural / Engineering / Construction industry, the design and construction phases are conducted by multiple professional and trade disciplines having minimum interaction among them along a rather sequential process. These parties bring their different objectives to the project that are not necessarily aligned with the overall project objectives. Design professionals do not necessarily work together giving little or no consideration for the requirements or constraints of subsequent functions such as construction and operation and maintenance of the facility. Design documentation that communicates the design intent to the builder, contains errors and inconsistencies, are incomplete or are simply difficult to read. This results in poor designs that have to be changed or modified during the construction phase and even during the long-term facility operation, thus increasing total cost and time of execution. It has been established that the decisions made at early stages of the design process have the highest impact on the project lifecycle cost and facility performance. For that reason, new project delivery systems, software tools and lean principles have emerged in the industry enhancing collaboration among project participants and reducing the existing gap between the design and construction phases. The increased use of Building Information Modeling (BIM) allows project participants to generate, manage and share information through a 3D digital model to better collaborate, communicate and understand the design intent. Still, design and construction professionals do not necessarily share their models and collaborate in an integrated fashion to accrue the benefits of an early involvement during design. This research uses the Axiomatic Design (AD) methodology to analyze some essential aspects of the design process to propose an improved process that seeks to produce better designs by adding value and reducing waste. Axiomatic Design is a systems design methodology using matrix methods to systematically analyze the transformation of customer needs into functional requirements, design parameters, and process variables. In AD, design principles or design Axioms govern the analysis and decision making process to develop high quality product or system designs. This research proposes an integrated, BIM-based design approach embracing compliance with the two AD axioms. Axiom one, the Independence axiom, seeks to maintain the design adjustable and controllable, and implements lean principles, BIM processes and tools following the concepts established by a BIM Project Execution Plan. Computer simulation techniques, the development of metrics and the calculation of Axiom two, the Information Axiom, are used to assess the benefits of an improved process.

Publisher

Worcester Polytechnic Institute

Degree Name

PhD

Department

Civil & Environmental Engineering

Project Type

Dissertation

Date Accepted

2016-04-30

Accessibility

Unrestricted

Subjects

Design process, Axiomatic Design, Building Information Modeling

Share

COinS