Identifier

etd-050406-131631

Abstract

Fixtures accurately locate and secure a part during machining operations such that the part can be manufactured to design specifications. To reduce the design costs associated with fixturing, various computer-aided fixture design (CAFD) methods have been developed through the years to assist the fixture designer. Much research has been directed towards developing systems that determine an optimal fixture plan layout, but there is still a need to develop a CAFD method that can continue to assist designers at the unit level where the key task is identifying the appropriate structure that the individual units comprising a fixture should take. This research work details the development of a CAFD methodology (called CAFixD) that seeks to fill this hole in the CAFD field. The approach taken is to consider all operational requirements of a fixture problem, and use them to guide the design of a fixture at the unit level. Based upon a case-based reasoning (CBR) methodology where relevant design experience is retrieved and adapted to provide a new fixture design solution, the CAFixD methodology adopts a rigorous approach to indexing design cases in which axiomatic design functional requirement decomposition is adopted. Thus, the design requirement is decomposed in terms of functional requirements, physical solutions are retrieved and adapted for each individual requirement, and the design re-constituted to form a complete fixture design. Case adaptation knowledge is used to guide the retrieval process. Possible adaptation strategies for modifying candidate cases are identified and then evaluated. Case and adaptation strategy combinations that result in adapted designs that best satisfy the preferences of the designer are used as the final design solutions. Possible means of refining the effectiveness of the method include combining adaptation strategies and considering the order in which design decisions are taken.

Publisher

Worcester Polytechnic Institute

Degree Name

PhD

Department

Manufacturing Engineering

Project Type

Dissertation

Date Accepted

2006-05-04

Accessibility

Unrestricted

Subjects

axiomatic design, case-based reasoning, fixture design, retrieval-by-adaptabilty, Jigs and fixtures, Design, CAD/CAM systems, Case-based reasoning

Share

COinS