Identifier

etd-112314-203503

Abstract

"After decades of development, Intelligent Tutoring Systems (ITSs) have become a common learning environment for learners of various domains and academic levels. ITSs are computer systems designed to provide instruction and immediate feedback, which is customized to individual students, but without requiring the intervention of human instructors. All ITSs share the same goal: to provide tutorial services that support learning. Since learning is a very complex process, it is not surprising that a range of technologies and methodologies from different fields is employed. Student modeling is a pivotal technique used in ITSs. The model observes student behaviors in the tutor and creates a quantitative representation of student properties of interest necessary to customize instruction, to respond effectively, to engage students¡¯ interest and to promote learning. In this dissertation work, I focus on the following aspects of student modeling. Part I: Student Knowledge: Parameter Interpretation. Student modeling is widely used to obtain scientific insights about how people learn. Student models typically produce semantically meaningful parameter estimates, such as how quickly students learn a skill on average. Therefore, parameter estimates being interpretable and plausible is fundamental. My work includes automatically generating data-suggested Dirichlet priors for the Bayesian Knowledge Tracing model, in order to obtain more plausible parameter estimates. I also proposed, implemented, and evaluated an approach to generate multiple Dirichlet priors to improve parameter plausibility, accommodating the assumption that there are subsets of skills which students learn similarly. Part II: Student Performance: Student Performance Prediction. Accurately predicting student performance is one of the most desired features common evaluations for student modeling. for an ITS. The task, however, is very challenging, particularly in predicting a student¡¯s response on an individual problem in the tutor. I analyzed the components of two common student models to determine which aspects provide predictive power in classifying student performance. I found that modeling the student¡¯s overall knowledge led to improved predictive accuracy. I also presented an approach, which, rather than assuming students are drawn from a single distribution, modeled multiple distributions of student performances to improve the model¡¯s accuracy. Part III: Wheel-spinning: Student Future Failure in Mastery Learning. One drawback of the mastery learning framework is its possibility to leave a student stuck attempting to learn a skill he is unable to master. We refer to this phenomenon of students being given practice with no improvement as wheel-spinning. I analyzed student wheel-spinning across different tutoring systems and estimated the scope of the problem. To investigate the negative consequences of see what wheel-spinning could have done to students, I investigated the relationships between wheel-spinning and two other constructs of interest about students: efficiency of learning and ¡°gaming the system¡±. In addition, I designed a generic model of wheel-spinning, which uses features easily obtained by most ITSs. The model can be well generalized to unknown students with high accuracy classifying mastery and wheel-spinning problems. When used as a detector, the model can detect wheel-spinning in its early stage with satisfying satisfactory precision and recall. "

Publisher

Worcester Polytechnic Institute

Degree Name

PhD

Department

Computer Science

Project Type

Dissertation

Date Accepted

2014-11-23

Accessibility

Unrestricted

Subjects

Intelligent Tutoring Systems, Maching learning, User modeling

Share

COinS