Faculty Advisor or Committee Member

Neil T. Heffernan, Advisor

Faculty Advisor or Committee Member

Joseph E. Beck, Committee Member

Faculty Advisor or Committee Member

Erin R. Ottmar, Committee Member

Faculty Advisor or Committee Member

Ryan S. Baker, Committee Member

Identifier

etd-042419-162427

Abstract

Failure is a necessary step in the process of learning. For this reason, there has been a myriad of research dedicated to the study of student perseverance in the presence of failure, leading to several commonly-cited theories and frameworks to characterize productive and unproductive representations of the construct of persistence. While researchers are in agreement that it is important for students to persist when struggling to learn new material, there can be both positive and negative aspects of persistence. What is it, then, that separates productive from unproductive persistence? The purpose of this work is to address this question through the development, extension, and study of data-driven models of student affect, behavior, and knowledge. The increased adoption of computer-based learning platforms in real classrooms has led to unique opportunities to study student learning at both fine levels of granularity and longitudinally at scale. Prior work has leveraged machine learning methods, existing learning theory, and previous education research to explore various aspects of student learning. These include the development of sensor-free detectors that utilize only the student interaction data collected through such learning platforms. Building off of the considerable amount of prior research, this work employs state-of-the-art machine learning methods in conjunction with the large scale granular data collected by computer-based learning platforms in alignment with three goals. First, this work focuses on the development of student models that study learning through the use of advancements in student modeling and deep learning methodologies. Second, this dissertation explores the development of tools that incorporate such models to support teachers in taking action in real classrooms to promote productive approaches to learning. Finally, this work aims to complete the loop in utilizing these detector models to better understand the underlying constructs that are being measured through their application and their connection to productive perseverance and commonly-observed learning outcomes.

Publisher

Worcester Polytechnic Institute

Degree Name

PhD

Department

Learning Sciences and Technologies

Project Type

Dissertation

Date Accepted

2019-04-18

Accessibility

Unrestricted

Subjects

Behavior Modeling, Productive Perseverance, Student Affect, Student Learning, Student Modeling

Share

COinS