Faculty Advisor or Committee Member

Zhongqiang Zhang, Advisor

Faculty Advisor or Committee Member

Zhongqiang Zhang, Committee Member

Faculty Advisor or Committee Member

Vladimir Druskin, Committee Member

Faculty Advisor or Committee Member

Akil Narayan, Committee Member

Faculty Advisor or Committee Member

Nikolaos A. Gatsonis, Committee Member

Faculty Advisor or Committee Member

Marcus Sarkis-Martins, Committee Member

Faculty Advisor or Committee Member

Darko Volkov, Committee Member




The fractional Laplacian is a promising mathematical tool due to its ability to capture the anomalous diffusion and model the complex physical phenomenon with long-range interaction, such as fractional quantum mechanics, image processing, jump process, etc. One of the important applications of fractional Laplacian is a turbulence intermittency model of fractional Navier-Stokes equation which is derived from Boltzmann's theory. However, the efficient computation of this model on bounded domains is challenging as highly accurate and efficient numerical methods are not yet available. The bottleneck for efficient computation lies in the low accuracy and high computational cost of discretizing the fractional Laplacian operator. Although many state-of-the-art numerical methods have been proposed and some progress has been made for the existing numerical methods to achieve quasi-optimal complexity, some issues are still fully unresolved: i) Due to nonlocal nature of the fractional Laplacian, the implementation of the algorithm is still complicated and the computational cost for preparation of algorithms is still high, e.g., as pointed out by Acosta et al \cite{AcostaBB17} 'Over 99\% of the CPU time is devoted to assembly routine' for finite element method; ii) Due to the intrinsic singularity of the fractional Laplacian, the convergence orders in the literature are still unsatisfactory for many applications including turbulence intermittency simulations. To reduce the complexity and computational cost, we consider two numerical methods, finite difference and spectral method with quasi-linear complexity, which are summarized as follows. We develop spectral Galerkin methods to accurately solve the fractional advection-diffusion-reaction equations and apply the method to fractional Navier-Stokes equations. In spectral methods on a ball, the evaluation of fractional Laplacian operator can be straightforward thanks to the pseudo-eigen relation. For general smooth computational domains, we propose the use of spectral methods enriched by singular functions which characterize the inherent boundary singularity of the fractional Laplacian. We develop a simple and easy-to-implement fractional centered difference approximation to the fractional Laplacian on a uniform mesh using generating functions. The weights or coefficients of the fractional centered formula can be readily computed using the fast Fourier transform. Together with singularity subtraction, we propose high-order finite difference methods without any graded mesh. With the use of the presented results, it may be possible to solve fractional Navier-Stokes equations, fractional quantum Schrodinger equations, and stochastic fractional equations with high accuracy. All numerical simulations will be accompanied by stability and convergence analysis.


Worcester Polytechnic Institute

Degree Name



Mathematical Sciences

Project Type


Date Accepted





fractional laplacian, spectral method, finite difference method, regularity, convergence, stability