Faculty Advisor or Committee Member

Peder C. Pedersen, Advisor

Faculty Advisor or Committee Member

David Cyganski, Committee Member

Faculty Advisor or Committee Member

Michael A. Gennert, Committee Member

Faculty Advisor or Committee Member

Emmanuel O. Agu, Committee Member




For individuals with type 2 diabetes, diabetic foot ulcers represent a significant health issue and the wound care cost is quite high. Currently, clinicians and nurses mainly base their wound assessment on visual examination of wound size and the status of the wound tissue. This method is potentially inaccurate for wound assessment and requires extra clinical workload. In view of the prevalence of smartphones with high resolution digital camera, assessing wound healing by analyzing of real-time images using the significant computational power of today’s mobile devices is an attractive approach for managing foot ulcers. Alternatively, the smartphone may be used just for image capture and wireless transfer to a PC or laptop for image processing. To achieve accurate foot ulcer image assessment, we have developed and tested a novel automatic wound image analysis system which accomplishes the following conditions: 1) design of an easy-to-use image capture system which makes the image capture process comfortable for the patient and provides well-controlled image capture conditions; 2) synthesis of efficient and accurate algorithms for real-time wound boundary determination to measure the wound area size; 3) development of a quantitative method to assess the wound healing status based on a foot ulcer image sequence for a given patient and 4) design of a wound image assessment and management system that can be used both in the patient’s home and clinical environment in a tele-medicine fashion. In our work, the wound image is captured by the camera on the smartphone while the patient’s foot is held in place by an image capture box, which is specially design to aid patients in photographing ulcers occurring on the sole of their feet. The experimental results prove that our image capture system guarantees consistent illumination and a fixed distance between the foot and camera. These properties greatly reduce the complexity of the subsequent wound recognition and assessment. The most significant contribution of our work is the development of five different wound boundary determination approaches based on different computer vision algorithms. The first approach employs the level set algorithm to determine the wound boundary directly based on a manually set initial curve. The second and third approaches are the mean-shift segmentation based methods augmented by foot outline detection and analysis. These two approaches have been shown to be efficient to implement (especially on smartphones), prior-knowledge independent and able to provide reasonably accurate wound segmentation results given a set of well-tuned parameters. However, this method suffers from the lack of self-adaptivity due to the fact that it is not based on machine learning. Consequently, a two-stage Support Vector Machine (SVM) binary classifier based wound recognition approach is developed and implemented. This approach consists of three major steps 1) unsupervised super-pixel segmentation, 2) feature descriptor extraction for each super-pixel and 3) supervised classifier based wound boundary determination. The experimental results show that this approach provides promising performance (sensitivity: 73.3%, specificity: 95.6%) when dealing with foot ulcer images captured with our image capture box. In the third approach, we further relax the image capture constraints and generalize the application of our wound recognition system by applying the conditional random field (CRF) based model to solve the wound boundary determination. The key modules in this approach are the TextonBoost based potential learning at different scales and efficient CRF model inference to find the optimal labeling. Finally, the standard K-means clustering algorithm is applied to the determined wound area for color based wound tissue classification. To train the models used in the last two approaches, as well as to evaluate all three methods, we have collected about 100 wound images at the wound clinic in UMass Medical School by tracking 15 patients for a 2-year period, following an IRB approved protocol. The wound recognition results were compared with the ground truth generated by combining clinical labeling from three experienced clinicians. Specificity and sensitivity based measures indicate that the CRF based approach is the most reliable method despite its implementation complexity and computational demands. In addition, sample images of Moulage wound simulations are also used to increase the evaluation flexibility. The advantages and disadvantages of three approaches are described. Another important contribution of this work has been development of a healing score based mechanism for quantitative wound healing status assessment. The wound size and color composition measurements were converted to a score number ranging from 0-10, which indicates the healing trend based on comparisons of subsequent images to an initial foot ulcer image. By comparing the result of the healing score algorithm to the healing scores determined by experienced clinicians, we assess the clinical validity of our healing score algorithm. The level of agreement of our healing score with the three assessing clinicians was quantified by using the Kripendorff’s Alpha Coefficient (KAC). Finally, a collaborative wound image management system between the PC and smartphone was designed and successfully applied in the wound clinic for patients’ wound tracking purpose. This system is proven to be applicable in clinical environment and capable of providing interactive foot ulcer care in a telemedicine fashion.


Worcester Polytechnic Institute

Degree Name



Electrical & Computer Engineering

Project Type


Date Accepted





Foot Ulcer, K-Mean, CRF, SVM, Mean Shift, Image Capture Box