Faculty Advisor or Committee Member

Alex A. Zozulya, Advisor

Faculty Advisor or Committee Member

Courtney Lannert, Committee Member

Faculty Advisor or Committee Member

Padanabhan K. Aravind, Committee Member

Identifier

etd-032708-124639

Abstract

Over the last several years considerable efforts have been made to develop Bose-Einstein condensate (BEC) based devices for a number of applications including fundamental research, precision measurements, and navgation systems. These devices, capable of complex functionality, can be built from simpler components which is currently done in both optics and microelectronics. These components include cold atom equivalents of beamsplitters, mirrors, waveguides, diodes, and transistors. The operation of the individual components must be fully understood before they can be assembled into a more complex device. The primary goal of this dissertation is to present a theoretical analysis of these components. It begins with a theoretical analysis of several different types of cold-atom beamsplitters in the context of BEC interferometry. Next, the dynamics of an interferometer that uses optical pulses to control the dynamics of the BEC will be presented. Finally, a proposal for a BEC based component that has behavior that is similar to an electronic transistor is introduced.

Publisher

Worcester Polytechnic Institute

Degree Name

PhD

Department

Physics

Project Type

Dissertation

Date Accepted

2008-03-27

Accessibility

Unrestricted

Subjects

Atom Interferometery, Bose-Einstein Condensation, Interferometry, Bose-Einstein condensation

Share

COinS