Faculty Advisor

Dr. Michael A. Demetriou

Faculty Advisor

Dr. Nikolaos A Gatsonis

Faculty Advisor

Dr. John J. Blandino

Faculty Advisor

Dr. Mark W. Richman

Abstract

"The development of Retarding Potential Analyzers (RPAs) capable of measuring high-density stationary and flowing plasmas is presented. These new plasma diagnostics address the limitations of existing RPAs and can operate in plasmas with electron densities in excess of 1x1018 m-3. Such plasmas can be produced by high-powered Hall Thrusters, Pulsed Plasma Thrusters (PPTs), and other plasma sources. The Single-Channel micro-Retarding Potential Analyzer (SC-microRPA) developed has a minimum channel diameter of 200 microns, electrode spacing on the sub-millimeter scale and can operate in plasmas with densities of up to 1x1017 m-3. The electrode series consists of 100 micron thick molybdenum electrodes and Teflon insulating spacers. The alignment process of the channel, as well as the design and fabrication of the stainless steel outer housing, the Delrin insulating tube, and all other microRPA components are detailed. To expand the applicability of the SC-microRPA to densities above 1x1018 m-3 a low transparency Microchannel Plate (MCP) has been incorporated in the design of a Multi-Channel micro-Retarding Potential Analyzer (MC-microRPA). The current collection theory for the SC-microRPA and the MC-microRPA is also derived. The theory is applicable to microRPAs with arbitrary channel length to diameter ratios and accounts for the reduction of ion flux due to the microchannel plate in the case of the MC-microRPA, due to absorption of ions by channel walls, and due to the applied potential. Current-voltage curves are obtained for incoming plasma flows that range from near-stationary to hypersonic, with temperatures in the range of 0.1 to 10 eV, and densities in the range of 1x1015 m-3 to 1x1021 m-3. The SC-microRPA current collection theory is validated by comparisons with the classical RPA theory and particle-in-cell simulations. Determination of unknown plasma properties is based on a fuzzy-logic approach that uses the generated current-voltage curves as lookup tables."

Publisher

Worcester Polytechnic Institute

Degree Name

MS

Department

Mechanical Engineering

Project Type

Thesis

Date Accepted

2005-11-10

Accessibility

Unrestricted

Subjects

Ion Energy Distribution, Current Collection Theory, Energy Diagnostic, Retarding Potential Analyzer, Electric Propulsion, Electric propulsion, Electrodes

Share

COinS