Faculty Advisor

Balgobin Nandram

Identifier

etd-121506-145455

Abstract

"We analyze data (length, weight and location) from a study done by the Army Corps of Engineers along the Tennessee River basin in the summer of 1980. The purpose is to predict the probability that a hypothetical channel catfish at a location studied is toxic and contains 5 ppm or more DDT in its filet. We incorporate spatial information and treate it separetely from other covariates. Ultimately, we want to predict the probability that a catfish from the unobserved location is toxic. In a preliminary analysis, we examine the data for observed locations using frequentist logistic regression, Bayesian logistic regression, and Bayesian logistic regression with random effects. Later we develop a parsimonious extension of Bayesian logistic regression and the corresponding Gibbs sampler for that model to increase computational feasibility and reduce model parameters. Furthermore, we develop a Bayesian model to impute data for locations where catfish were not observed. A comparison is made between results obtained fitting the model to only observed data and data with missing values imputed. Lastly, a complete model is presented which imputes data for missing locations and calculates the probability that a catfish from the unobserved location is toxic at once. We conclude that length and weight of the fish have negligible effect on toxicity. Toxicity of these catfish are mostly explained by location and spatial effects. In particular, the probability that a catfish is toxic decreases as one moves further downstream from the source of pollution."

Publisher

Worcester Polytechnic Institute

Degree Name

MS

Department

Mathematical Sciences

Project Type

Thesis

Date Accepted

2006-12-15

Accessibility

Unrestricted

Subjects

logistic regression, Bayesian statistics, MCMC, spatial statistics

Share

COinS