Faculty Advisor or Committee Member

Emmanuel O. Agu, Advisor

Faculty Advisor or Committee Member

Emmanuel O. Agu

Identifier

etd-121815-134638

Abstract

"Global illumination (GI) rendering simulates the propagation of light through a 3D volume and its interaction with surfaces, dramatically increasing the fidelity of computer generated images. While off-line GI algorithms such as ray tracing and radiosity can generate physically accurate images, their rendering speeds are too slow for real-time applications. The many-light method is one of many novel emerging real-time global illumination algorithms. However, it requires many shadow maps to be generated for Virtual Point Light (VPL) visibility tests, which reduces its efficiency. Prior solutions restrict either the number or accuracy of shadow map updates, which may lower the accuracy of indirect illumination or prevent the rendering of fully dynamic scenes. In this thesis, we propose a hybrid real-time GI algorithm that utilizes an efficient Sparse Voxel Octree (SVO) ray marching algorithm for visibility tests instead of the shadow map generation step of the many-light algorithm. Our technique achieves high rendering fidelity at about 50 FPS, is highly scalable and can support thousands of VPLs generated on the fly. A survey of current real-time GI techniques as well as details of our implementation using OpenGL and Shader Model 5 are also presented."

Publisher

Worcester Polytechnic Institute

Degree Name

MS

Department

Computer Science

Project Type

Thesis

Date Accepted

2015-12-18

Accessibility

Unrestricted

Subjects

global illumination, scene voxelization, virtual point light

Share

COinS