Faculty Advisor or Committee Member

Krishna Venkatasubramanian, Advisor

Faculty Advisor or Committee Member

Robert Walls

Identifier

etd-042518-164253

Abstract

This work demonstrates the viability of the ballistocardiogram (BCG) signal derived from a head-worn device as a biometric modality for authentication. The BCG signal is the measure of an individual's body acceleration as a result of the heart's ejection of blood. It is a characterization of an individual's cardiac cycle and can be derived non-invasively from the measurement of subtle movements of a person's extremities. Through the use of accelerometer and gyroscope sensors on a Smart Eyewear (SEW) device, derived BCG signals are used to train a convolutional neural network (CNN) as an authentication model, which is personalized for each wearer. This system is evaluated using data from 12 subjects, showing that this approach has an equal error rate of 3.5% immediately after training, and only marginally degrades to 13% after about 2 months, in the worst case. We also explore the use of our authentication approach for individuals with severe motor disabilities, and observe that the results fall only slightly short of those of the larger population, with immediate EER values at 11.2% before rising to 21.6%, again in the worst case.. Overall, we demonstrate that this model presents a longitudinally-viable authentication solution for passive biometric authentication.

Publisher

Worcester Polytechnic Institute

Degree Name

MS

Department

Computer Science

Project Type

Thesis

Date Accepted

2018-04-25

Accessibility

Restricted-WPI community only

Subjects

neural networks, ballistocardiography, wearable technology, security, biometrics

Available for download on Thursday, April 25, 2019

Share

COinS